文档库 最新最全的文档下载
当前位置:文档库 › 向量的加法及其几何意义

向量的加法及其几何意义

向量的加法及其几何意义
向量的加法及其几何意义

向量的加法及其几何意义

一、教材分析

高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。

二、学生学习情况分析

学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。

三、设计理念

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。

四、教学目标

根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为:

1、理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律。

2、理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识。

3、培养类比、迁移、分类、归纳等能力。

4、进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

五、教学重点与难点

1、教学重点:两个向量的和的概念及其几何意义。(两个向量的和的概念是向量加法的基础,而向量加法是向量运算的基础,向量的线性运算的另一个特点是它有深刻的物理背景和几何意义,因此在引入一种向量运算后,总是要考察一下它的几何意义,正因为向量的几何意义,使得向量在解决几何问题时可以发挥很好的作用。)

2、教学难点:向量加法的运算律。(设计让学生先猜想后验证来学习运算律,需要利用类比的思想进行猜测,还要在猜测的基础上加以验证,有一定难度。)

六、教学过程设计

1、问题引入(约5分钟)

引例:有两条拖轮牵引一艘驳船,它们的牵引力分别是=3000牛,=2000牛,牵绳之间的夹角θ=60°。如果只用一条拖轮来牵引,而产生的效果跟原来的相同,试求出这条拖轮的牵引力下的大小和方向。

在物理中,我们已知道,两个不在一条直线的共点力与的合力是以、为邻边的平行四边形OACB的对角线所表示的力。这就是说,是与相加所得到的和。

[设计说明] 引导学生利用物理中合力的概念,来解决这个实际问题,以现有的知识为出发培养学生的知识类比、迁移能力。

[学情预设] 把实际问题抽象为数学概念是学生的认知难点。

2、概念形成(约5分钟)

一般地,把以、为邻边的平行四边形OACB的对角线,叫做与两个向量的和,记作+。求两个不平行向量的和可按平行四边形法则进行。

问题1:如何求两个平行向量的和向量?

问题2:任意一个向量与一个零向量的和是什么?

求两个向量的和的运算叫做向量的加法。

[设计说明] 补充说明两个向量和的概念,同时让学生体验分类的思想。

3、概念深化(约15分钟)

练习根据图中所给向量画出向量

[设计说明] 1、学生通过练习题(1)可加深对向量加法概念的理解。另外,可由此引出向量加法的三角形法则。2、通过对比的方式让学生了解向量的加法既可以按照平行四边形法则进行,也可以按照三角形法则进行。在向量加法运算中,通过向量的平移使两个向量首尾相接,可使用三角形法则。

4、应用举例(约10分钟)

(1)已知平面内有三个非零向量、、,它们的模都相等,并且两两的夹角都是120°,求证:++=;(2)在平面内能否构造三个非零向量、、,使++=;(3)能否说出(2)的实际模型?

[设计说明] 题(1)是基本的例题;题(2)是题(1)的拓展;题(3)能体现数学来源于实际又应用于实际的思想。

5、研究讨论(约5分钟)已知、是非零向量,则| + |与| |+| |有什么关系?

[设计说明] 设置这一研讨题可以将本节课与上节课的知识联系起来,并进一步渗透分类的思想。

6、小结归纳:(约4分钟)

让学生自主回顾和归纳本节的内容。

[设计说明]1、向量加法的意义;2、理解实际问题数学化的思想,增强数学的应用意识;3、理解分类讨论等数学思想,培养类比、迁移等能力[学情预设] 要求学生不仅对知识体系进行归纳,还要对本节课中所体现的数学思想方法及数学能力进行总结有一定的难度。

7、作业布置:(约1分钟)练习册P.21的6、10、19。

[设计说明]1、巩固所学的内容。2、对所学内容的检测、反馈与及时补充不足。

七.教学反思

在本节课中我采用“探究----讨论”教学法。“探究----研讨”教学法是美国哈佛大学教育专家兰本达所倡导的。“探究----研讨”教学法把教学过程分为两个步骤:第一步骤是“探究”。我所设计的问题引入、概念形成及概念深化都是采用探究的方法,将有关材料有层次地提供给学生,让学生独立地支配它,进而探索,研究它。学生通过对这些“有结构”的材料进行探究,获得对向量加法的感性认识和形成各自对向量加法概念的了解。第二步骤是“研讨”,即在探究的基础上,组织学生研讨自己在探究中的发现,通过互相交流、启发、补充、争论,使学生对向量加法的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念。这节课主要是教给学生“动手做,动脑想;多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

向量的加减法运算及其几何意义

课题 向量的加减法运算及其几何意义 知识点一:向量的基本概念: (一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行, 要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

平面向量数量积教学反思

平面向量数量积教学反思 平面向量数量积教学反思 一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。 二、我的体会:通过本节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。 (2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。 (3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。(4)课堂语言还需要进一步提炼。在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。 以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。 1 / 1

平面向量易错题解析汇报

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若A B D C =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a bb c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,为基底,则平面内的任一向量a 可表示为 (),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

向量数量积的概念

第八章 向量的数量积与三角恒等变换 8.1 向量的数量积 8.1.1 向量数量积的概念 【课程标准】 了解向量数量积的概念,了解与数量积有关的投影,夹角,模的几何意义并能进行简单运算。 【核心素养】 逻辑推理,数学运算。 【导学流程】 一、基础感知 1.两个向量的夹角 给定两个非零向量,a b r r ,在平面内任选一点O ,作,OA a OB b ==u u u r r u u u r r ,则称[0,] π内的AOB ∠为向量a r 与向量b r 的 ,记作 。如图8-1-2,向量a r 与b r 的夹角为4 π ,即,a b <>=r r ;向量a r 与c r 的夹角为2 π ,则,a c <>=r r ;向量a r 与d u r 的夹角为 ,即,a d <>=r u r ;向量a r 与e r 的 夹角为 ,即,a e <>=r r . 练一练:已知等边三角形ABC ,D 为BC 的中点,求: ,,,,,,,AB AC BC AC BC CA DA BC <><><><>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 根据向量夹角的定义可知: ,a b ≤<>≤r r . ,a b <>=r r . 当,2 a b π <>=r r 时,称向量a r 与向量b r ,记作 . 规定:零向量与任意向量垂直.

2.向量数量积的定义 一般地,当a r 与b r 都是非零向量时,称||||cos ,a b a b <>r r r r 为向量a r 与b r 的 .(也称为 ),记作 ,即 .由定义可 知,两个非零向量a r 与b r 的数量积是一个 . 两个非零向量的数量积即可以是 ,也可以是 ,还可以是 . 向量的数量积有如下性质: (1) (2) 当a r 与b r 至少有一个是零向量时,称它们的数量积为 ,即 . a r 与 b r 垂直的充要条件是 ,即 . 练一练:(1)已知5,4,,120a b a b ===?r r r r ,求a b ?r r ; (2)已知3,2,3a b a b ==?=r r r r ,求,a b <>r r . 由(2)可看出,如果,a b r r 都是非零向量,则cos ,a b <>=r r . 3.向量的投影与向量数量积的几何意义. 如图8-1-4所示,设非零向量AB a =u u u r r ,过,A B 分别作直线l 的垂线,垂 足分别为,A B '',则称向量A B ''u u u u r 为向量a r 在直线l 上的 或 .给 定平面上的一个非零向量b r ,设b r 所在的直线为l ,则a r 在直线l 上的投影称为a r 在向量b r 上的 .如图8-1-5中,向量a r 在b r 上的投影为 .

向量减法及其几何意义

§2.2.2 向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间 可以相互转化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 授课类型:新授课 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则向量加法的运算 定律: 例:在四边形中,=++BA BA CB . 解:CD AD BA CB BA BA CB =++=++ 二、 提出课题:向量的减法 1.用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b .强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图 较繁,但最后作图可统一. O A B a B’ b -b b a + (- b ) a b A B D C O a b B a b a -b

向量减法运算及其几何意义教学设计.doc

向量减法运算及其几何意义教学设计 教学课题简介 学科数学教学题目向量减法运算及其几何意义教材普通高中课程标准实验教科书(必修4) 一、教学目标 1、知识与技能知道相反向量的定义;理解记住向量减法法则及其几何意义;能够用向量减法法 则及其几何意义求两向量的差. 2、过程与方法通过回顾向量运算与实数运算之间的联系分析归纳相反向量的的定义和向量的减 法运算;通过联系向量加法的作图方法观察并归纳向量减法的作图方法和要点, 体会向量减法的几何意义. 3、情感态度与 价值观通过阐述向量减法与数量减法的联系,培养学生类比的数学思想方法;由向量减法向加法的转化,让学生懂得从已知到未知这一转化思想;由作图了解向量减法的几何意义,培养学生作图能力,并从中体会数形结合的数学思想. 二、教学重点和难点 1.重点:向量减法法则及其几何意义. 2.难点:向量减法法则及其作图方法;向量减法几何意义的应用. 三、教学方法:互动探究式授课 通过引导让学生自主探究,合作交流,体验学习过程中涉及的转化和数形结合的数学思想,类比、观察、分析、归纳等数学方法. 四、教学使用工具 多媒体教学 五、课堂教学过程设计 (一)内容引入 类比数量加法的意义,我们联系实际了解了向量加法,并学习了向量加法法则和作图方法,那么你能否同样与数量减法相比较得到向量减法法则和其几何意义呢?这就是本节课将要探讨和学 习的主要内容. (二)、师生交流温故知新 1 回顾、类比、得新知——相反向量 问题1你是否还记得刚进初中时学习有理数减法时的减法法则?你能否由此联系思考向量减法的减法法则呢? 我们知道,在数量中,减去一个数等于加上这个数的相反数,如果向量减法可以相应的也转化为向量的的加法,那么向量减法对于我们而言就不再是问题了!向量的减法法则,类比一下,可以

《向量的加法运算及其几何意义》教学设计

《向量的加法运算及其几何意义》教学设计 教学目标: 1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:AC BC AB =+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ (4)船速为AB ,水速为BC ,则两速度和:AC BC AB =+ A B C C A B A B C A B C

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。 好了,搞清楚平面向量的上述内容之后,下面我们就看下针对这方面内容的具体的

《向量的加法运算及其几何意义》教案

2.2.1向量加法运算及其几何意义 知识目标: 1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的 和,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向 量加法运算的交换律和结合律,并会用它们进行向量计算, 渗透类比的数学方法; 教学重点与难点: 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 教学过程 一、复习引入 问题1:向量的定义以及相等向量的定义是什么? 1、什么叫向量? 2、长度为零的向量叫做。零向量的方向具有性。 3、长度等于一个单位的向量叫做。 4、方向相同或相反的非零向量叫做,也叫。 5、长度相等且方向相同的向量叫做。 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量

可以在不改变它的方向和大小的前提下,移到任何位置 问题2:数能进行运算,向量是否也能进行运算呢? 二、探究新知 活动一 元旦假期将到,某人计划外出去三亚旅游,从重 庆(记作A )到昆明(记作B ),再从B 到三亚(记作 C ),这两次的位移和可以用哪个向量表示? 形成概念: 1. 向量加法的定义 求两个向量和的运算,叫做向量的加法。 2. 向量加法的法则 (1) 向量加法的三角形法则 如图3,已知非零向量a 、b ,在平面内任取一点A,作=a ,=b ,则向量叫做a 与b 的和,记作a +b ,即a +b =+=.这种求向量和的方法叫做向量加法的三角形法则 (2) 向量加法的平行四边形法则 如图4,以同一点O 为起点的两个已知向量a 、b 为 邻边作平行四边形,则以O 为起点的对角线就是a 与b 的和.把这种求向量和的方法叫做向量加法的平行四边形法则. 问题4: 对于零向量与任一向量的加法,结果又是怎样的呢? 对于零向量与任意向量a ,我们规定:a +0=0+a =a . 总结: 三角形法则 : 图 4

平面向量系列之几何意义法

平面向量系列 几何意义法解题 一、 平面向量的几何意义 ? 平面向量既有坐标表示,也有几何表示(即有向线段表示),利用平面向量的几何意义解题,在解决某些数学问题时往往能起到避繁就简的效果。 ? 首指向尾首尾相连,?+ ? 指向被减向量共起点,?- ? b a b t a b t a ⊥?-=+|||| ? 即矩形形对角线相等的平行四边,?-=+|||| ? 即菱形 四边形对角线互相垂直的平行,?=-+0))(( 二、例题精析 例1、(2017,崂山区校级期末改编)已知,是非零向量,则下列条件中,夹角等于0 120的是( ) A 、||||-=+ B 、 ||||||-== C 、||||||+== D 、 ||2||||=-=+ 【解析】:由题知b a ,是非零向量,则||||b a b a -=+表示对角线相等的平行四边形,即为矩形,故b a ,夹角为090;而|||||a |b a b -==表示b a ,所在的边与其中一条对角线长度相等,故构成的三角形为等边三角形,故b a ,夹角为060;|||||a |b a b +==表示b a ,所在的边与其中一条对角线长度相等,故构成的三角形为等边三角形,画出图形可知,b a ,夹角为060的补角,即为0120;||2||||a b a b a =-=+表示对角形相等的矩形,且对角线长度等于某一边长的2倍,b a ,夹角为090。故选C 。 例2、(2017,金台区期末改编)已知O 为三角形ABC 所在平面内一点,满足 |,2|||-+=-则ABC ?一定是( ) A 、等腰直角三角形 B 、直角三角形 C 、等腰三角形 D 、等边三角形 【解析】:|,2|||-+=-||||||+=-+-=?,即对角线相等,对角线相等的平行四边形是矩形,所以ABC ?一定是直角三角形,选B 。

向量的减法及其几何意义

2.2.2 向量的减法运算及其几何意义 一、学习目标: 1. 通过实例,掌握向量减法的运算,并理解其几何意义; 2. 能运用向量减法的几何意义解决一些问题. 二、重难点 : 1. 重点:向量减法的三角形法则及其应用; 2. 难点:对向量的减法定义的理解. 三、知识回顾: 1、向量加法的法则: 。 2、向量加法的运算定律: 。 四、探究新知: 1.用“相反向量”定义向量的减法 (1)“相反向量”的定义: 。 (2) 规定:零向量的相反向量仍是 . --=a a ( ). 任一向量与它的相反向量的和是 +- =0a a () 如果a 、b 互为相反向量,则=-,=-,+0a b b a a b = (3)向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法. (4).用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b x a +=,则x 叫做a 与b 的差,记作 。 2.向量的减法的三角形法则: 特点:共起点,连终点,方向指向被减向量. 五、典例分析:

例1、已知向量a 、b 、c 、d ,求作向量a b -、c d -. 练习:已知向量,求作向量。 例2.化简:(AB →-CD →)-(AC →-BD → ). ,a b a b -

练习:化简:(1)AB →-CB →-DC →+DE →+F A → ; 例3、平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量、. 变式一:当a ,b 满足什么条件时,+a b 与a b -垂直? 变式二:当a ,b 满足什么条件时,|+a b | = |a b -|? 变式三:+a b 与a b -可能是相等向量吗?

向量的加法及其几何意义

向量的加法及其几何意义 一、教材分析 高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标 根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为: 1、理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律。 2、理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识。 3、培养类比、迁移、分类、归纳等能力。 4、进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

《平面向量的数量积》的课后反思

《平面向量的数量积》的课后反思 简单回顾《平面向量的数量积》这节课,首先我通过力对物体所做的功的物理模型引入数量积这一概念的,之后剖析概念,通过小组讨论,让学生分析定义应注意的问题,特别强调数量积的结果不是一个向量,而是一个数量。通过练习,进一步熟悉巩固向量的数量积的定义,这个小题目的是提醒学生要注意,两个非零向量的夹角问题要通过平移使这两个向量共起点。接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识,而且为后面证明平面向量的数量积的分配律铺垫。数量积的运算律是数量积概念的延伸,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。为了让学生完成这个探究活动,我引导学生从平面向量的数量积的几何意义入手问题,师生共同完成证明过程。 通过这节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程 高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的

愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式 (2)鼓励学生自主探索、自主学习 教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径 (3)用教材教,而不是教教材 向量的数量积这一节新课标规定在2课时内完成2.3“平面向量的数量积”3小节的教学内容,为了贯彻新课标的精神,体现新课程理念,我们做了如下的调整:把“两个向量的夹角”这个概念放到2.1.1“向量的概念”中讲,把向量在轴上的正射影这个概念放到2.2 “向量的分解与向量的坐标运算”,平面向量的数量积的定义及平面向量的数量积的运算律到第一课时,把平面向量的数量积的性质及平面向量的数量积坐标运算与度量公式放到第二课时。

《向量加法运算及其几何意义》教学设计

《向量加法运算及其几何意义》教学设计 一、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(版))。第二章2.2平面向量的线性运算的第一节“向量加法运算及其几何意义”(89--94页)。《向量》这一章是前一轮教材中新增的内容。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标

向量的减法运算及其几何意义

向量的减法运算及其几何意义 向量的减法运算及其几何意义向量的减法运算及其几何意义教学目标: 1.了解相反向量的概念; 2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量. 教具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、复习:向量加法的法则:三角形法则与平行四边形法则 向量加法的运算定律: 例:在四边形中, . 解: 二、提出课题:向量的减法

1.用“相反向量”定义向量的减法 (1)“相反向量”的定义:与a长度相同、方向相反的向量.记作a (2)规定:零向量的相反向量仍是零向量. ( a) = a. 任一向量与它的相反向量的和是零向量.a + ( a) = 0 如果a、b互为相反向量,则a = b,b = a,a + b = 0 (3)向量减法的定义:向量a加上的b相反向量,叫做a与b的差. 即:a b = a + ( b) 求两个向量差的运算叫做向量的减法. 2用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a b 3求作差向量:已知向量a、b,求作向量 ∵(a b) + b = a + ( b) + b = a + 0 = a 作法:在平面内取一点o, 作= a,= b 则= a b 即a b可以表示为从向量b的终点指向向量a的终点的向量. 注意:1 表示a b.强调:差向量“箭头”指向被减数 2 用“相反向量”定义法作差向量,a b = a + ( b) 显然,此法作图较繁,但最后作图可统一. 2.探究:

向量加法运算及其几何意义(教学设计)(精选、)

2.2.1向量加法运算及其几何意义(教学设计) [教学目标] 一、知识与能力: 1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量; 2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算; 二、过程与方法: 1.经历向量加法三角形法则和平行四边形法则的归纳过程; 2.体会数形结合的数学思想方法. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. [教学重点] 向量加法定义的理解;向量加法的运算律. [教学难点] 向量加法的意义 一、复习回顾,新课导入 1.物理学中,两次位移, OA AB的结果与位移OB是相同的。 2.物理学中,作用于物体同一点的两个不共线的合力如何求得? 3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。 二、师生互动,新课讲解 1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB BC AC += 求两个向量和的运算,叫做向量的加法. 这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。 以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a 例1(课本P81例1)已知向量a,b,用两种方法(三角形和平行四边形法则)求作向量a+b。 作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b. 作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。 变式训练1:当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系? 2.归纳: 1.两个向量的和仍是一个向量。 2.当a,b不共线时,a+b的方向与a、b都不同向,且|a+b|<|a|+|b|. 3.当a与b共线时, (1)若a与b同向,则a+b的方向与a、b同向,且|a+b|=|a|+|b|. (2)若a与b反向,当|a|>|b|时,a+b的方向与a相同,且|a+b|=|a|-|b|;当|a|<|b|时,a+b的方向与b相同,且|a+b|=|b|-|a|. 3. 向量加法的运算律 探究:数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c),任意向量a,b的加法是否也满足交换律和结合律? 要求学生画图进行探索. (1)如图作ABCD,使AB=a,AD=b,则BC=b,DC=a,

《平面向量的数量积》教学设计及反思教学提纲

《平面向量的数量积》教学设计及反思 交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。 一、总体设想: 本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。 二、教学目标: 1.了解向量的数量积的抽象根源。 2.了解平面的数量积的概念、向量的夹角 3.数量积与向量投影的关系及数量积的几何意义 4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算 三、重、难点: 【重点】1.平面向量数量积的概念和性质 2.平面向量数量积的运算律的探究和应用

【难点】平面向量数量积的应用 四、课时安排: 2课时 五、教学方案及其设计意图: 1.平面向量数量积的物理背景 平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ ? F,这里的θ是矢量F和s的夹角,也即是两个 =s cos ? 向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。 2.平面向量数量积(内积)的定义 已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a?b,即有a?b = |a||b|cosθ,(0≤θ≤π). 并规定0与任何向量的数量积为0. 零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a?b = |a||b|cosθ无法得到,因此另外进行了规定。 3. 两个非零向量夹角的概念 已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案 教学目标: 1、 掌握向量的加法运算,并理解其几何意义; 2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为,水速为,则两速度和: AC =+ 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. A B C A B C A B C

数量积的几何意义

每日一题[254] 数量积的几何意义 2015年9月30日 meiyun 数海拾贝 向量的数量积运算有明确的几何意义,合理利用几何意义可以有效减少计算.特别是在探索对于与动点相关的数量积的最值问题中的最值点位置时,往往可以起到一矢中的的效果. 2014年高考数学浙江卷(文科)第9题: 设为两个非零向量,的夹角,已知对任意实数,的最小值为,则下列说法正确的有______.① 若确定,则唯一确定; ② 若确定,则唯一确定;③ 若确定,则唯一确定; ④ 若确定,则唯一确定.正确答案是 ②. 解 取,,则在直线上运动,有 ,如图已知条件 θa →b → t +t ∣∣ ∣b →a →∣∣∣1θ∣∣a →∣∣θ∣∣∣b →∣∣ ∣∣∣a →∣∣θ∣∣∣b →∣∣ ∣θ=OB ?→??b →=BA ?→??a →ta →BA +t =b →a →OA ?→ ??∣→ ∣

等价于点到直线的距离为,即 由此知只有 ② 正确. ④ 是比较容易错选的结果,事实上可能有两个互补的角同时满足条件. 下面给出一道练习(2013年浙江高考理7,有不影响本质的修改):设,是边上一定点,满足,且对于边上任一点,恒有,则的形状为 ______. 答案 等腰三角形 提示 本题的条件可以翻译为:点在边上运动,当时,有最小值. 过点作于点,则 容易知道当点为的中点时,有最小值.于是知时,恰为的中点,所以.更多例题参见 每日一题[227] 向量的几何意义. ?t ∈R ,=1+t ∣∣ ∣b →a →∣∣∣min O BA 1?sin θ=1.∣∣a →∣∣ △ABC P 0AB B =AB P 014AB P ???PB ?→??PC ?→??B P 0?→???C P 0?→???△ABC P AB P =P 0?PB ?→??PC ?→??C CH ⊥AB H ?=?,PB ?→??PC ?→??PB ?→??PH ?→ ??P BH ?PB ?→??PH ?→ ??B =AB P 014 P 0BH AC =BC

平面向量的几何意义及线性运算

龙文教育一对一个性化辅导教案

课前练习 如图所示为函数)2 , 0)(sin(2)(f π?π ω?ω≤≤>+=x x 的部分图像,A,B 两点之间的距离 为5,且f (1)=0,则f(-1)=( ) 函数)3 2sin(y π + =x 的图像经下列怎样的平移后所得的图像关于)0,12 - (π 中心对称( ) 要得到函数)4 2 ( cos y π- =x 的图像,只需将函数2 sin y x =的图像上所有点( ) 如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE 为5m ,AB 为1.5m (即小明的眼睛距地面的距离),那么这棵树高是( ) 知识点一:向量的几何表示 有向线段:带有方向的线段叫有向线段 有向线段三要素:起点、方向、长度

向量可以用有向线段表示,向量AB的大小,也就是向量AB的长度(或称模),记作AB;零向量:长度为0的向量,记作0 单位向量:长度等于1个单位的向量 书写注意:如果是大写字母就写成“AB”,从头指向尾;如果是小写字母就只用一个字母“a”注意:向量是由方向有长度,必备两个条件,少一都不算是向量 例:下列关于向量的命题,正确的是() 变:下列说法中,正确的个数有() A、0个 B、1个 C、2个 D、3个 知识点二:相等向量与共线向量的区别 相等向量:长度相等且方向相同的向量; 字母表示:a=b 平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行 共线向量:向量之间是平行的(斜率的绝对值相同),方向可以相同可以相反,长度可以相等也可以不等 说明: 1)向量a与b相等,记作a=b; 2)零向量与零向量相等; 3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关 ........... 4)平行向量可以在同一直线上,要区别于两平行线的位置关系; 5)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.

相关文档
相关文档 最新文档