文档库 最新最全的文档下载
当前位置:文档库 › 电动车再生制动控制方式

电动车再生制动控制方式

电动车再生制动控制方式
电动车再生制动控制方式

电动车再生制动控制方式

摘要:电动汽车是今后汽车的发展趋势,而再生制动技术是电动汽车增加续驶里程的重要手段,这其中再生制动的控制方式又是直接影响续驶里程的关键因素,本文对电动汽车再生制动的控制方式进行了讨论,提出了控制方式应与汽车的行驶工况相适应的控制方法。

关键词:电动汽车再生制动控制方式

汽车工业的发展,极大地促进了人类文明的进步和和世界经济的发展,随着石油价格的高企以及众多燃油汽车尾气排放所造成空气污染的日益加剧,汽车的环境问题已经成为影响当今人类社会生存的严峻问题。目前,环保高效的电动汽车越来越受到重视,我国刚公布的电动车发展纲要中,预计十年后我国电动车产量将达到几百万辆,可以说既节能又环保的电动汽车已成为现代汽车的发展趋势。现代电动汽车经过数十年的发展,其各项标准己经基本达到了人们用车的要求,但是却迟迟不能占据市场,最主要的原因就是现在的电动汽车的续驶里程不能满足人们的要求。如何增加电动汽车的续驶里程是电动汽车发展的一个极其关键的问题,这其中电动汽车采用再生制动技术,进行能量回收以增加续驶里程是一个重要手段。根据日本本田公司研究数据,对电动汽车能量进行有效回收利用,可使汽车在市区发电工况下增加行驶里程26%左右。

制动是汽车三大基本功能(行驶、转向和制动)之一,它直接关系到

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

一种再生制动控制电路的设计

一种再生制动控制电路的设计 一种再生制动控制电路的设计 摘要:给出一种泵升电压控制电路的设计方法,将能量再生回馈到电网。同时给出了主电路、控制电路、主要参数的计算方法及相关波形。 关键词:能量回馈;再生制动;同步控制 1引言 一般情况下,伺服系统主电路结构如图1所示。能量是由电网经整流器、滤波器、逆变器等传输到电动机的。当电动机工作于发电状态,即电动机快速制动或者带位势负载时,能量的传输需要反向,能量将在滤波电容上累积,产生泵升电压,如果泵升电压过高,会威胁系统的安全。控制泵升电压最简单的方法是:泵升电压产生后,在直流母线之间接通一个能耗电阻,将能量释放。如果电动机制动频繁或长期带位势负载运行,则能量浪费严重;同时,由于电阻发热,导致环境温度升高,将会影响系统的可靠性。本文设计的这个电路,可以很好地解决这一问题。 2系统工作原理概述 将图1中的三相不控整流器换为可控变流器,并在三相电源输入端串入三个高频扼流电抗器,用以抑制可能产生的双向(电网 伺服系统)电磁干扰,以及在变流器工作于逆变状态时,起到等效直流电抗器的作用,如图2所示。 当电动机工作在电动状态时,可控变流器的大功率开关器件S1~S6全部处于关断状态,而6个续流二极管构成三相不控桥式整流器,工作状况同图1。 当电动机工作在发电状态时,则逆变器工作于整流状态,而可控变流器工作于逆变状态,使电动机工作在再生制动状态。这时滤波电容贮能,直流母线电压升高,在超过电网线电压值后,二极管D1~D6反向阻断;当直流母线电压继续升高,超过设定的上限允许值UdH时,变流器开始工作,将直流母线上的能量逆变回馈电网。此时,高频扼流电抗器将平衡直流母线电压和电网线电压之间的差值,以保证逆变状态的 图2回馈变流器主电路 图1一般伺服系统主电路结构

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

纯电动汽车再生制动系统的建模与仿真_张亚军

第32卷 第15期2010年8月 武 汉 理 工 大 学 学 报 JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vo l.32 N o.15 A ug.2010 DOI:10.3963/j.issn.1671-4431.2010.15.022 纯电动汽车再生制动系统的建模与仿真 张亚军,杨盼盼 (长安大学电子与控制工程学院,西安710064) 摘 要: 为提高纯电动汽车的再生制动能量回收率,通过分析制动系统的工作原理,建立了纯电动汽车制动力分配的数学模型,并根据制动强度和储能元件荷电状态的大小,设计了基于模糊逻辑的制动力分配控制策略,以实现制动能量的高效回收利用。结合典型道路循环工况,利用电动汽车仿真软件ADV ISOR2002对制动力分配的模糊控制策略进行了整车运行仿真验证。结果表明,该制动力分配控制策略改善了制动能量回收率,有利于合理利用其有限的能量延长电动汽车的续驶里程。 关键词: 纯电动汽车; 再生制动系统; 制动力分配; 控制策略中图分类号: U 469.72 文献标识码: A 文章编号:1671-4431(2010)15-0090-05 Modeling and S imulation of Regenerative Braking System for Pure Electric Vehicle Z H ANG Ya -j un,YANG Pan -p an (School of Electronic and Contr ol Engineer ing ,Chang .an U niversity,Xi .an 710064,China) Abstract: In or der to enhance the recycling efficiency of reg enerative braking energy for pure electr ic vehicles (PEV ),the br aking system model of P EV is proposed on the basis of analyzing the braking oper at ion principle.T og ether with t he br aking severity and the state of charge (SOC)of energ y storage element,a nov el contro l strateg y of braking force distribution based o n fuzzy log ic is desig ned,which can realize the high efficiency recycling of braking energ y.T he simulat ion of the fuzzy control strategy for br aking force distribution is carried out in typical driving cycle by the electric vehicle simulatio n software A DVI -SOR 2002.T he simulation results show that t he braking force distribution co ntrol strategy can improve the recy cling efficiency of regenerative br aking energ y,and prolong PEV .s driv ing rang e by rational use of the limited energy. Key words: pure electr ic vehicle; regenerativ e braking system; br aking force distribution; control str ategy 收稿日期:2010-02-04.作者简介:张亚军(1982-),男,硕士生.E -mail:zyajun2010@163.co m 电动汽车作为一种新型的交通工具,以其清洁无污染、驱动能量源多样化、能量效率高等优点成为现代汽车的发展趋势[1]。但其续驶里程不足成为阻碍电动汽车商品化的瓶颈,因此,提高电动汽车续驶里程是亟待解决的一个关键问题。再生制动是电动汽车的特有技术,其功能是在保证电动汽车行驶稳定性的前提下,将电动汽车制动时的一部分机械能经再生制动系统转换为电能存储到储能单元中[2] 。因此再生制动对 降低电动汽车的能耗,延长续驶里程,提高其经济性能有重要的作用。文献[3,4]基于制动安全性要求,通过对电动汽车再生制动系统中保留摩擦制动的必要性展开研究,提出了一种新的再生制动控制策略,所提出的控制策略可通过检测电动汽车制动强度的大小,将电动汽车制动时总制动力需求在驱动轮与从动轮之间分配。文献[5]分析了在制动稳定性条件下,电动汽车再生制动系统制动能量回收能力,并从动力学角度建立了驱动轮电气制动力和摩擦制动力制动份额随制动强度变化的模型。但上述文献在分析电动汽车再生制动

再生制动系统简介

再生制动系统简介 1 再生制动的定义 再生制动,是指车辆减速或制动时,将其一部分动能转化为其他形式的能量储存起来以备驱动时使用的过程。制动能量再生系统先将车辆制动或减速时的一部分机械能(动能)经再生系统转换(或转移)成其他形式的能量(旋转动能,液压能,化学能等),并储存于储能器中,同时产生一定的负荷阻力使车辆减速制动;当车辆再次启动或加速时,再生系统又将储存在储能器中的能量转化为车辆行驶时需要的动能(驱动力)。 图1-1 能量再生系统原理简图 在纯电动车或混合动力电动汽车上,只有驱动轴上的制动能量可以沿着与之相连接的驱动系统传送至储能装置,另一部分的制动能量将由非驱动轴上车轮通过摩擦制动而以热的形式散失掉。即使是驱动轴上的制动能量也不能够被完全回收,进行制动能量回收时还受到很多因素的限制,例如电池充电功率的限制,回收功率不能超过电池当前的最大充电功率;电机发电能力的限制,电机制动产生的最大制动转矩不能超过当时转速和功率下电机发电能力,车速较高时电机再生制动扭矩就不能满足大强度制动要求;驱动系布置结构的限制,若电机位置在变速器前,汽车换挡时,从车轮到电机的动力传递被切断,电机不能进行再生制动。 2 国内外研究现状 2.1 国外研究现状 国外对混合动力汽车再生制动的研究已经开展了几十年,研究领域主要集中在以下几个方面: (1) 再生制动过程中整车制动综合建模与仿真; (2) 制动能量分配和再生制动、摩擦制动与ABS 的综合协调控制; (3) 再生制动过程中储能系统、电机/发电机和CVT 的性能及控制方法。 国外对再生制动领域的研究已具有了一定的基础,20 世纪90 年代全球掀起混合动力汽车研究热潮以后,国外在混合动力汽车再生制动系统的研究上取得了比较快的进展。特别是各大汽车公司,已经在量产的混合动力汽车上普遍采用该系统,大大提高了整车的能量利用效率,降低了整车油耗,延长了整车续驶里程。

列车再生制动方法条件

条件 再生反馈电压必须高于直流牵引电网电压 再生制动能量可被本列车的辅助设备吸收利用,也可提供相邻列车使用 再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。 (2)飞轮储能型 采用飞轮储能方式的吸收装置由储能飞轮电机、IGBT斩波器、直流快速断路器、电动隔离开关、传感器和控制模块等组成。该装置直接接在变电所正负母线间或接触网和回流轨间,其核心技术是利用核物理工业的物质分离衍生技术而制造的飞轮,该装置设置在真空壳体内,飞轮经过特殊材料和加工工艺制成的轴支撑在底部结构上。

近几年,英国UPT电力公司生产的成熟运营的飞轮储能型产品,在香港电力系统、香港巴士公司、英国、纽约部分地铁均有应用。国内北京大学某实验室有类似的小功率产品研制,但飞轮的机械参数难以达到国外的水平,无法在工程中投入使用。该产品的优点:有效利用了再生制动能量,节能效益好;并可取消(或减少)车载制动电阻,降低车辆自重,提高列车动力性能;直接接在接触网或变电所正负直流母线间,再生电能直接在直流系统内转换,对交流供电系统不会造成影响。该产品的缺点:飞轮是高速转动的机械产品,对制造工艺要求很高,需采用真空环境和特殊轴类制造技术,成本较高。使用寿命是否能满足要求,维护维修是否方便,另外国内无成熟技术和产品等都成为制约其推广的因素。 (3)超级电容储能 以已经投入运行的北京地铁5号线为例简单说明超级电容储能的应用。 当具有再生制动能力的车辆在变电站能量存储系统附近释放能量时,牵引网网压上升,能量存储系统的调节器可探测到这种情况,并将牵引网系统中暂时多余的能量存储到电容器中,使牵引网网压保持在限定范围内。若车辆在变电站能量存储系统附近起动或加速,牵引网网压下降,此时,能量存储系统的调节器将能量从存储系统输送回牵引网系统中,保持牵引网网压稳定。在直流牵引网的空载状态下,能量存储系统从牵引系统吸收一部分能量,通过这种方式可以帮助车辆起动。

QCT电动汽车再生制动系统测试和评价方法征求意见稿

QC/T《电动汽车再生制动系统测试和评价方法》 征求意见稿-编制说明 (一)工作简况(包括任务来源、主要工作过程、主要参加单位和工作组成员及其所做的工作等: 制动能量回收作为电动汽车提高能源利用效率的重要技术之一,是体现电动汽车优势和特点的重要技术,是决定多种形式电动汽车能耗经济性、整车安全性的一项共性关键技术。2012年国家发布了《节能与新能源汽车产业发展规划(2012—2020年)》,电动汽车将在未来得到长足发展,在此背景下,“制动能量回收”这一基础节能技术也将会得到大力发展和推广应用。为促进电动汽车技术发展,在2013年底,“再生制动系统测试和评价方法”的行业标准由全国汽车标准化技术委员会电动车辆分委会立项(计划号:2013 - 2106T - QC),开展制定研究。 2013年11月19日,在标准研究计划下达后,全国汽车标准化技术委员会电动车辆分委会电动汽车整车标准工作组在第四次工作会议上启动了《电动汽车再生制动能量回收系统测试和评价方法》的研究和起草工作。 2014年7月29日,电动汽车整车标准工作组换届会议暨第一次工作会议上,标准起草人就《电动汽车再生制动系统测试和评价方法》标准的“背景”、“国内外研究现状”、“制动回收系统评价指标的确定”、“测试评价方法制定”、“试车验证试验”等方面进行介绍,与会专家就测量精度和方法等方面展开讨论,形成标准第一版草案并发到工作组征求意见。 2015年7月23日,结合前期工作组意见反馈情况,起草人完善了标准草案,在本次会议上再次就标准制定的背景、技术内容和计算方法进行汇报,工作组内部达成一致意见。 2015年8月至今,在工作组内部进行了数轮讨论和意见征求,形成标准征求意见稿。 (二)标准编制原则和主要内容(如技术指标、参数、公式、性能要求、试验方法、检验规则等)的论据,解决的主要问题,修订标准时应列出与原标准的主要差异和水平对比: (1)编制原则 本标准主要根据已有课题研究成果、参考美国加州技术支持文件“轻型电动汽车Ⅲ温室气体非试验循环规定”(“LEV Ⅲ GREENHOUSE GAS NON-TEST CYCLE PROVISIONS”)中关于电动汽车制动能量回收方面的部分技术内容,以及国内现有的电动汽车标准法规GB/T 19596《电动汽车术语》、GB/T《18386电动汽车能量消耗率和续驶里程试验方法》、GB《7258机动车运行安全技术条件》、GB《21670乘用车制动系统技术要求及试验方法》中的相关技术内容进行了修改及丰富。 标准编制过程充分调研了国内外相关标准的情况,对制动系统原理、测试方法和评价指标进行了深入对比研究和试验验证,工作组内企业对修订内容进行多次征求意见,并在会上

电动汽车下坡过程再生制动控制策略研究

Research on Regenerative Braking Control Strategy for Downhill Course of Electric Vehicle Abstract Facing the current severe energy crisis and environmental pollution problem,pure electric vehicle,as a new modern transportation tool,is highly sought after by all vehicle companies for its zero emissions,pollution-free and no need to rely on traditional energy sources.However,influenced by the research technology of power battery,the unsatisfactory driving range of pure electric vehicle has seriously affecting its large-scale promotion.Therefore,extending the driving mileage is the key problem to be solved for the current pure electric vehicle.The technology of regenerative braking can transform the kinetic energy of the vehicle when it is braking to electric energy stored in power battery to increase the SOC of battery,so as to extend the driving range of vehicle.Considering the influence of geographical factors and development trend in China,it is of great significance to research the regenerative braking control technology based on downhill sections for the development of pure electric vehicles. The subject of a precursor of pure electric vehicle as the research object,combined with the research status at home and abroad,through the estimation of brake and road slope angle of the vehicle when driving a vehicle at the front and rear axle construction strategy of braking force distribution and regenerative braking control,the vehicle braking process and the braking stability and braking safety under the premise,increase the regenerative braking energy recovery.The main contents of this paper are as follows: (1)A road slope angle estimation algorithm based on vehicle CAN bus is designed and implemented.First of all,the vehicle driving equation is analyzed and deduced.Then, the CAN bus data and vehicle intrinsic attribute parameters are extracted or set up in the ASM model.Finally,the slope angle is filtered by RLS algorithm. (2)Design and implement a dynamic optimal allocation algorithm for front and rear axle braking force in braking process of pure electric vehicles based on different braking strengths and different road slope angles.First of all on the slopes of vehicle front and rear axle braking force analysis,and then put forward the ideal braking force distribution,the proportion of fixed proportion and the proportion of three kinds of variable distribution,

再生制动系统介绍

再生制动技术 在涡流制动技术中,制动能量直接变成了热量,这未免有些浪费,所以对于广泛利用电力驱动的新能源车型来说,如果能有一种能回收制动能量的制动方式,就再好不过了,这就是下面要介绍到的再生制动技术。再生制动的基本原理是将车辆驱动电机的工作状态变成一台发电机,然后将车辆减速或者下坡的动能转变成其他能量,在储能装置(电池、大型电容或者飞轮)中储存起来,供车辆行驶之用的方式。 装备再生制动系统的电动车制动系结构示意图 由上图可以看出,当驾驶员踩下制动踏板后,电动泵使制动液增压产生所需的制动力,制动控制与电机控制协同工作,确定电动汽车上的再生制动力矩和前后轮上的液压制动力。再生制动时,再生制动系统控制回收制动能量,并且反充到蓄电池中。在高速或者长下坡行驶时,再生制动可以成为主要的制动方式,只有在电制动力不足以实现足够的制动效果或者低速将车辆完全停止的情况时,液压制动才开始发挥效力。当然,对于普通的电动车或者混合动力车型,其电池容量都是有限的,如果电池充满了,再生制动此时也不会发挥太大作用了。 即便是这样大尺寸大容量的电池组,其电池容量也是有限的,因此再生制动并不能完全取代机械制动系统而独立存在

再生制动的技术难点有两个,一是如何在再生制动和机械摩擦制动之间分配所需的总制动力,以回收尽可能多的车辆动能;二是如何在前后轮轴上分配总制动力,以实现稳定的制动状态。通常,再生制动只对驱动轴有效。为回收尽可能多的动能,必须控制电机产生特定量的制动力,同时,应控制机械制动系统满足由驾驶员给出的制动力需求。在制动力和能量回收间实现最佳的均衡,这才是再生制动系统设计成功的标志。 对于普遍装备CAN-BUS总线的现代车辆来说,再生制动控制模块和ABS系统ECU间可以实现通信和数据交换,再生制动和机械制动 系统间实现均衡相对要容易一些。 如果是四轮都采用轮毂电机驱动的新能源车,四轮间的驱动力、制动力和能量回收的分配都较为均衡,能更好地处理制动力和制动能量回收两者间的关系由于制动的稳定性不但关系到车辆的安全性,同时也与乘客乘坐的舒适度息息相关(负加速度是导致晕车的重要因素之一),因此应用再生制动系统的车辆需要进行更多的路试和软件模拟,以保证它的整套制动系统能够安全、平稳而不失舒适性地工作,这对车辆的设计和匹配能力可以说是一个有力的考量。

制动工况对对电动汽车制动回收能量影响的分析

制动工况对电动汽车制动能量回收影响分析 摘要:为提高再生制动能量回收效果,本文从制动工况角度出发,分析了制动工况对再生制动能量回收效果的影响。制动工况包括制动初速度和制动强度两个因素,通过在Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE),分析两者对制动能量回收效果的影响关系,得到两者对能量回收的贡献率,为驾驶员制动提供指导依据。 关键词:电动汽车;再生制动;制动强度;制动初速度;工况分析; 前 言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1 制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -? ),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2 仿真模型与验证 2.1 理想再生制动力分配策略

纯电动汽车新技术

研究生课程考核论文 (适用于课程论文、提交报告) 科目:发动机现代技术概论教师:周恩序 姓名:尤敏学号:20140713221 专业:车辆工程领域类别:(专业硕士)上课时间:2014 年9 月至2014 年11 月 考生成 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

电动汽车轮毂电机技术 【摘要】随着社会的快速发展,汽车领域所面临的能源紧缺和环境污染两大问题受到了高度重视,电动汽车的开发和应用已经成为研究热点。由于布局更为灵活,不需要复杂的机械传动系统,轮毂电机越来越受到人们的关注。再生制动系统在电动汽车的能量利用和续航里程等方面有着重要的作用,是电动汽车领域的一项关键的节能技术,再生制动系统的研究对电动汽车的应用有着重要的意义。超级电容可以进行短时大电流充放电,而且充放电循环次数可达上万次,故能很好的解决电动汽车制动能量回收的问题。 【关键词】电动汽车;轮毂电机;再生制动;超级电容 1.研究背景 随着石油等不可再生资源的日渐减少,大气环境越来越差,电动汽车以其低污染、低能耗等优势为各个国家及各大汽车厂商所青睐。然而电动汽车现在主要面临的问题有:续驶里程短、充电时间长等。所以动力电池技术、驱动电机技术和电子控制系统技术为电动汽车目前面临的主要技术问题。轮毂电机驱动电动汽车以其结构简单、能量利用率高等优点成为汽车发展的新宠儿。汽车在制动过程中车辆的动能一直没有被很好的利用,大都被转换为热量耗散掉了。特别是在市区等复杂的城市工况下,红绿灯较多,车速较低,制动频繁,制动能量回收的意义显得尤为明显。目前车辆的制动能量回收技术主要有飞轮储能制动能量回收、液压储能制动能量回收和电化学能储能制动能量回收等。而电化学储能制动能量回收因为其能量主要以电能的形式流动,构造简单,控制方便,具有很好的发展前途。电动汽车中的蓄电池与驱动电机结构为电化学储能制动能量回收提供了方便。超级电容作为一种全新的储能元件的出现,具有十分重要的意义。超级电容有着蓄电池所不具备的优点。超级电容的充放电速率要比电池快的多,功率密度要比蓄电池大得多。利用超级电容可以迅速的回收制动过程中产生的能量。 2.轮毂电机技术 轮毂电机驱动电动汽车因为独特的特点,越来越受到人们的关注,许多汽车企业已经将其列为公司发展规划当中。由此可见,轮毂电机技术正逐步被人们所重视。有人预言:未来电动汽车的发展趋势将是轮毂电机直接驱动汽车。这主要是因为轮毂电机直接驱动技术有着以下的优点:

相关文档
相关文档 最新文档