文档库 最新最全的文档下载
当前位置:文档库 › 赣县中学高中数学竞赛平面几何第7七讲圆内接四边形和四点共圆

赣县中学高中数学竞赛平面几何第7七讲圆内接四边形和四点共圆

赣县中学高中数学竞赛平面几何第7七讲圆内接四边形和四点共圆
赣县中学高中数学竞赛平面几何第7七讲圆内接四边形和四点共圆

第七讲和圆有关的角、圆内接四边形与四点共圆

一、知识要点:

(一)、和圆有关的角有五种:圆心角、圆周角、圆内角、圆外角、弦切角。

圆周角是这五种角的核心。

1、定理1:圆心角的度数等于它所对的弧的度数,圆周角的度数等于

它所对的弧的度数的一半。

定理2:同圆或等圆中同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。

定理3:直径(或半周)所对的圆周角是直角;圆周角是直角,它所对的弦是直径。

定理4:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

2、圆内角:顶点在圆内的角叫做圆内角(圆心角是其特殊情形);

定理5:圆内角的度数等于它和它的对顶角所对的两条弧度数和的一半。

3、圆外角:顶点在圆外,两边与圆相交的角叫做圆外角;

定理6:圆外角的度数等于它所夹得两弧度数的差的绝对值的一半

4、弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做

弦切角。

弦切角定理:弦切角的度数等于它所夹得弧的圆心角的度数的一

半,弦切角的度数等于它所夹得弧的圆周角的度数。

(二)、圆内接四边形与四点共圆

1、圆内接四边形:在圆内,四边形的四个顶点均在同一个圆上的

四边形叫做圆内接四边形。

性质:(1)、圆内接四边形的对角互补;

(2)、圆内接四边形的任意一个外角等于它的内对角

(就是和它相邻的内角的对角)。

2、判定四点共圆的方法:

①、到一定点等距离的几个点在同一个圆上;

②、同斜边的直角三角形的各顶点共圆;

③、同底同侧张等角的三角形的各顶点共圆;

④、如果一个四边形的一组对角互补,那么它的四个顶点共圆; ⑤、如果一个四边形的一个外角等于它的内对角,那么它的四个

顶点共圆;

⑥、四边形ABCD 的对角线相交于点P ,若

PA ·PC=PB ·PD,则它的

四个顶点共圆;

⑦、四边形ABCD 的一组对边AB 、DC 的延长线相交于点P,若

PA ·PB=PC ·PD,则它的四个顶点共圆。

说明:上述关于七种判定四点共圆的基本方法的命题的逆命题也使成立的。

二、要点分析:

1、在以圆为框架的有关证明三角形全等、相似等问题,常常要用到和圆有关的角。因此熟练地掌握这些角的概念和性质是解决有关圆的问题中极其重要的一环;

2、圆内接四边形和四点共圆之间有着非常密切的联系,这是因为顺次连接

共圆四点就成为圆内接四边形,这里涉及两个基本问题,其一是四点共圆的判定,其二是四点共圆的性质的应用。

证明四点共圆是平面几何中一个重要的证明方法,它和证明三角形全等和相似占有同等重要的地位,实际上,在许多题目的已知条件中,并没有给出圆,有时需要通过证明四点共圆,把实际存在的圆找出来,然后再借助圆的性质得到要证明的结论,因此,证明四点共圆就给研究几何图形的性质,开拓了新的思路。

三、例题讲解:

例1、已知,如图,在等腰ABC ?中,AB=AC,D 为腰AC 的中点,DE 平

分ADB ∠交AB 于E ,⊙ADE 交BD 于N,求证:BN=2AE

例2、如图,折线ACD 是⊙O 的一条折弦,点B 在⊙O 上,且弧AB=弧

BD,B M ⊥AC 于M,求证:AM=MC+CD.(阿基米德折弦定理)

例3、设AD 是ABC ?的高,且D 在BC 边上,若P 是AD 上任意一点,BP 、

CP 分别与AC 、AB 交于E 和F,则FDA EDA ∠=∠ A B C D E

P

F

例4、(1)、西姆松(Simson)定理:

?的外接圆上任意一点P向BC、CA、AB或它的延长从ABC

线引垂线,垂足分别为D、E、F,则D、E、F三点共线。

?的关于P点的西姆松线)(说明:过点D、E、F的直线叫做ABC

A

(2)、西姆松(Simson)定理的逆定理:

?的三边或它们的延长线引垂线,若其垂足为D、从一点P向ABC

?的外接圆上。

E、F在同一直线上,则点P在ABC

第七讲 和圆有关的角、圆内接四边形与四点共圆练习

1、已知,锐角ABC ?内接于⊙O, 36,60=∠=∠BAC ABC ,作O E ⊥AB

交劣弧AB 于点E,连接EC,则OEC ∠=___________

2、已知,在直径7=AB 的圆上有两点M 、N, M 和N 在AB 的同侧,

AM 和BN 交于圆内一点P ,则_________=?+?BN BP AM AP

A B

3、已知,四边形ABCD 内接于圆(AC>AD ),延长AD 到D ’,使AD ’=AC,BD ’

交圆于E,交AC 于C ’且AC ’=AD,

求证:(1)、A

B E ?为等腰三角形;(2)、AD A

C AB ?=2

4、(1)、如图1,在⊙O 中,弦AC 和BD 相交于P 点,求证:PA ·PC=PB ·PD;

(2)、如图2,在⊙O 中,PA 为⊙O 的切线,切点为A,经过点P 的割线

交⊙O 于B 、C 两点,求证:PA 2=P B ·

PC;

P

(3)、如图3,过点P 的两条割线交分别交⊙O 于点A 、B 、C 、D ,

求证:PA ·PB=PC ·

PD

5、在锐角ABC 中,以BC 为直径作圆与BC 边上的高AD 及其延长线交

于M 、N,以AB 为直径作圆与AB 边上的高CE 及其延长线交于P 、Q,求证:M 、N 、P 、Q 四点共圆。 A

B C P

Q

M

N E D

初中数学竞赛——圆4.四点共圆

第1讲 四点共圆 典型例题 一. 基础练习 【例1】 如图,P 为ABC △内一点,D 、E 、F 分别在BC 、CA 、AB 上.已知P 、D 、C 、E 四 点共圆,P 、E 、A 、F 四点共圆,求证:B 、D 、P 、F 四点共圆. 【例2】 如图7-55,在梯形ABCD 中,AD ∥BC ,过B 、C 两点作一圆,AB 、CD 的延长线交该圆于点 E 、 F .求证:A 、D 、E 、F 四点共圆. 【例3】 如图,⊙1O 、⊙2O 相交于A 、B 两点,P 是BA 延长线上一点,割线PCD 交⊙1O 于C 、D , 割线PEF 交⊙2O 于E 、F ,求证:C 、D 、E 、F 四点共圆. P E C B A D F P F D C B A E

【例4】 如图7-56,在△ABC 中,AD =AE ,BE 与CD 交于点P ,DP =EP ,求证:B 、C 、E 、D 四点共 圆. 【例5】 如图,已知ABC △是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF BD ⊥于F ,延长 AF 交BC 于G ,求证:2AB BG BC =?. 【例6】 如图7-63,在ABCD □的对角线上,任取一点P ,过点P 作AB 、CD 的公垂线EG ,又作AD 、 BC 的公垂线FM .求证:EF //GM . 【例7】 如图7-66,四边形ABCD 是⊙O 的内接四边形,DE ⊥AC ,AF ⊥BD ,点E 、F 是垂足.求证: EF //BC . O G F E C D B A

【例8】 如图7-60,已知△ABC ,AB 、AC 的垂直平分线交AC 、AB 的延长线于点F 、E .求证:E 、F 、 C 、B 四点共圆. 【例9】 如图,已知:60ABD ACD ∠=∠=o , 1 902 ADB BDC ∠=∠-∠o .求证:ABC △是等腰三角形. 二. 综合提高 【例10】 如图7-61,在⊙O 中,AB ∥CD ,点P 是AB 的中点,CP 的延长线交⊙O 于点F ,又点E 为弧 BD 上任一点,连EF 交AB 于点G .求证:P 、G 、E 、D 四点共圆. 【例11】 如图7-62,在△ABC 中,∠BAC 为直角,AB =AC ,BM =MC ,过M 、C 任作一圆,与AC 交于 点E ,BE 与圆交于F 点,求证:AF ⊥BE . C D B A

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

初中数学竞赛:共圆点问题

初中数学竞赛:共圆点问题 同在一个圆上的许多点称为共圆点,或者说这些点共圆.证明这些点共圆常常利用以下一些方法思考: (1)要证明若干点共圆,先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角. (2)要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等. (3)如果两线段AB,CD相交于E点,且AE·EB=CE·ED,则A,B,C,D四点共圆. (4)若相交直线PA,PB上各有一点C,D,且PA·PC=PB·PD,则A,B,C,D四点共圆. (5)若四边形一个外角等于其内对角,则四边形的四顶点共圆. (6)要证明若干点共圆,先证其中四点共圆,然后再证其余点都在此圆上. 共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介. 例1 设⊙O1,⊙O2,⊙O3两两外切,Y是⊙O1,⊙O2的切点,R,S分别是⊙O1,⊙O2与⊙O3的切点,连心线O1O2交⊙O1于P,交⊙O2于Q.求证:P,Q,R,S四点共圆.分析如图3-54,连YR,则∠PRY=90°,所以∠PRS为钝角,设法证明∠Q与∠PRS互补,则P,R,S,Q共圆. 证连RY,PR,RS,SQ,并作切线RX,则在四边形PRSQ中, 所以 所以P,Q,R,S四点共圆.

例2 设△ADE内接于圆O,弦BC分别交AD,AE边于F,G, 分析欲证F,D,E,G四点共圆,由于已知条件中交弦较多,因此,用圆幂定理的逆定理,若能证出AF·AD=AG·AE成立,则F,D,E,G必共圆. 径,所以∠FDN=∠FMN=90°, 所以F,D,N,M四点共圆,所以 AD·AF=AN·AM. 同理,AG·AE=AN·AM,所以 AD·AF=AG·AE, 所以F,D,E,G四点共圆. 例3 在锐角△ABC中,BD,CE是它的两条高线,分别过B,C引直线DE的垂线,BF⊥DE于F,CG⊥DE于G,求证:EF=DG(图3-56). 分析由已知,四边形BCGF为直角梯形,FG为一腰,要证EF=DG,易想,若OH为梯形中位线,则OH⊥FG于H,如果证得EH=HD,则FE=DG便是显然的了. 证过BC中点O,作OH⊥DE于H.因为BD⊥AC于D,CE⊥AB于E,所以

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

最新整理初三数学数学竞赛平面几何讲座:四点共圆问题.docx

最新整理初三数学教案数学竞赛平面几何讲座:四点 共圆问题 第四讲四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1“四点共圆”作为证题目的 例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆. 分析:设PQ,MN交于K点,连接AP,AM. 欲证M,N,P,Q四点共圆,须证 MK KN=PK KQ, 即证(MC′-KC′)(MC′+KC′) =(PB′-KB′) (PB′+KB′) 或MC′2-KC′2=PB′2-KB′2.① 不难证明AP=AM,从而有 AB′2+PB′2=AC′2+MC′2. 故MC′2-PB′2=AB′2-AC′2 =(AK2-KB′2)-(AK2-KC′2) =KC′2-KB′2.② 由②即得①,命题得证. 例2.A、B、C三点共线,O点在直线外,

O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. 分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠OO2O1=∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA. 由∠OO2O1=∠OO3O1O,O1,O2,O3共圆. 利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证. 2以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK. 求证:∠DMA=∠CKB. 分析:易知A,B,M,K四点共圆.连接KM, 有∠DAB=∠CMK.∵∠DAB+∠ADC =180°, ∴∠CMK+∠KDC=180°. 故C,D,K,M四点共圆∠CMD=∠DKC. 但已证∠AMB=∠BKA, ∴∠DMA=∠CKB. (2)证线垂直 例4.⊙O过△ABC顶点A,C,且与AB,

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

高二数学讲义四点共圆

高二数学竞赛班二试平面几何讲义 第五讲 四点共圆(一) 班级 姓名 一、知识要点: 1. 判定“四点共圆”的方法: (1)若对角互补,则四点共圆; (2)若线段同一侧的两点对线段的张角相等,则四点共圆; (3)圆的割线定理成立,则四点共圆; (4)圆的相交弦定理成立,则四点共圆; 2. “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 二、例题精析: 例1. 在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK. 求证:∠DMA =∠CKB. (第二届袓冲之杯初中竞赛) A B C D K M ··

例2.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q 四点共圆. (第19届美国数学奥林匹克) 例3.A、B、C三点共线,O点在直线外,O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. (第27届莫斯科数学奥林匹克) A B C K M N P Q B′ C′ A B C O O O O 1 2 3 ? ?

三、精选习题: 1.⊙O1交⊙O2于A,B两点,射线O1A交⊙O2于C点,射线O2A 交⊙O1于D点.求证:点A是△BCD的内心. 2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

中考复习:四点共圆问题

第四讲 四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1 “四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M , N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆. 分析:设PQ ,MN 交于K 点,连接AP ,AM . 欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2 . ① 不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2 =(AK 2-KB ′2)-(AK 2-KC ′2) =KC ′2-KB ′2. ② 由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外, O 1,O 2,O 3分别为△OAB ,△OBC , △OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=2 1∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=2 1∠OO 3A =∠OCA . 由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆. 利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK . 求证:∠DMA =∠CKB . 分析:易知A ,B ,M ,K 四点共圆.连接KM , 有∠DAB =∠CMK .∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC . A B C K M N P Q B ′C ′A B C O O O O 123??A B C D K M ··

赣县中学高中数学竞赛平面几何第9九讲托定理勒密

第九讲托勒密(Ptolemy)定理 一、知识要点: 1、托勒密定理:圆内接凸四边形两组对边乘积之和等于两条对角线之积,即已知,如图, 四边形ABCD为圆内接凸四边形,则有 AB·CD+AD·BC =A C·BD A D B C 托勒密定理的逆定理:如果凸四边形的两组对边的乘积之和等于对角线之积,那么这个 四边形是圆内接四边形。 即:如图,若AB·CD+AD·BC =A C·BD,则A、B、C、D四点共圆。 A D B C 托勒密定理的推广:在任意凸四边形ABCD中,有AB·CD+AD·BC ≥A C·BD,当且仅 当ABCD四点共圆时取等号。 D A B C 二、要点分析: 托勒密定理可以用于线段长的转换,其逆定理可用于证明四点共圆。

三、 例题讲解: 例1、设ABCD 为圆内接正方形,P 为弧DC 上的一点,求证:PA(PA+PC)=PB(PB+PD) P D C A B 例2、如图,设P 、Q 为平行四边形ABCD 的边AB 、AD 上的两点,APQ ?的外接圆交 对角线AC 于R ,求证:A P ·AB+AQ ·AD=AR ·RC D A B C Q P R 例3、已知ABC ?中,C B ∠=∠2,求证:AC 2=AB 2+AB ·BC A B C

例4、如图所示,已知两同心圆O,四边形ABCD 内接于内圆,AB 、BC 、CD 、DA 的延 长线交外圆于A 1、B 1、C 1、D 1,若外圆的半径是内圆的半径的2倍,求证:四边形A 1B 1C 1D 1的周长≥四边形ABCD 的周长的2倍,并确定等号成立的条件。 D 1 例5、已知ABC ?中,AB>AC,A ∠的一个外角平分线交ABC ?的外接圆于点E,过E 作EF ⊥AB,垂足为F (如图),求证:2AF=AB-AC A B C E F

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

四点共圆问题-(数学竞赛)

P 四点共圆问题 四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识 (1) 若干个点与某定点的距离相等,则这些点在一个圆上; (2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆; (4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =g g ,则A B C D 、、、四点共圆; (6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =g g ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。 例1、已知PQRS 是圆内接四边形,0 90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS 例2、给定锐角ABC V ,以AB 为直径的圆与边AB 上的高线' CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线' BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。 例3、在等腰ABC V 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点 Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC V 分析:

高中数学竞赛试题附详细答案

高中数学竞赛试题 一选择题(每题5分,满分60分) 1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2 +bx+c=0有一个正根和一个 负根的( ) (A )必要而不充分条件 (B )充要条件 (C )充分而不必要条件 (D )既不充分也不必要条件 2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。 (A ) 100 5 .03?克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示 大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。 (A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元 4. 已知函数 >0, 则 的值 A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项 6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数 列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n (B) 13-+n n (C) 13+-n n (D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π = x 处取得最小 值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果 A A tan 1tan 1+-= 4+5,那么cot (A +4 π )的值等于 ( ) A -4-5 B 4+5 C - 5 41+ D 5 41+ 9. 已知︱︱=1,︱︱=3,?=0,点C 在∠AOB 内,且∠AOC =30°,设 =m +n (m 、n ∈R ),则 n m 等于

2008年第二十五届全国中学生物理竞赛(江西赛区)获奖名单

第二十五届全国中学生物理竞赛(江西赛区)获奖名单 一等奖(39名) 程宇清江西师范大学附属中学徐昊南昌市第二中学 陈汉斯南昌市第二中学 邹权高安市第二中学 章尹圣原鹰潭市第一中学 黄玉鹰潭市第一中学 邓晖洋江西师范大学附属中学欧阳昆江西省景德镇二中 邓瑞琛新干中学 陈睿南昌市第二中学 张育铭江西师范大学附属中学田寒南昌市第二中学 潘楚中高二上饶市第二中学 刘洋江西省景德镇二中 郑帆南昌市第二中学 董哲炜南昌市第二中学 李文新景德镇昌江一中 潘登高二余江县第一中学 陈少华高三鹰潭市第一中学 陈超逸贵溪市第一中学金鹏高安中学 陈庆鹏新余市第四中学 卢文博景德镇一中 邓尧江西师范大学附属中学袁逸飞新余市第一中学 徐翔南昌市第二中学 刘淘高安中学 饶帆弋阳县第一中学 陈宇阳新余市第一中学 贵溪市第一中学 程扶诚鹰潭市第一中学 凌运豪新余市第一中学 程俊豪余江县第一中学 殷士辉赣州市第一中学 李皈颖大余中学 郭品垚吉安市白鹭洲中学 刘炽成上犹中学 李思达南昌市第十中学 肖言佳赣州市第三中学 二等奖(133名) 胡嘉骅余江县第一中学 李成高安中学 丁俊文瑞金市第一中学 曹达明江西省景德镇一中 吴兵海江西省余江县第一中学胡超江西省新余市第一中学杨青君江西省景德镇二中 丁琦贵溪市第一中学 游弋南昌市第二中学 揭建文上饶县清源中学涂利捷南昌市第十中学 潘悟君江西师范大学附属中学吴芳荣余江县第一中学 张政鹰潭市第一中学 吴文超新干中学 何佳敏金溪县第一中学 陈凯祥江西省景德镇二中 涂坚江西省南昌县莲塘一中肖国炜泰和中学 饶小龙赣州市第三中学

万维明九江市同文中学 夏阳余江县第一中学 刘斯宇江西省宜春中学 易辉江西省宜春中学 张大峰江西省临川第一中学童浩江西省景德镇二中 童一天南昌市第十中学 万基平乐安县第二中学 周义江西师范大学附属中学叶腾琪新余市第一中学 巴伟民景德镇二中 熊文涛高安市第二中学 裘鸿瑞南昌市第十中学 彭俊英鹰潭市第一中学 王志鹏景德镇一中 龙翔萍乡市第三中学 龚书恒江西师范大学附属中学郭文祥南昌市第三中学 李秋明鹰潭市第一中学 林立荣南康中学 黄少帅高安市第二中学 龚杰伟丰城中学 张泉新余市新钢中学 吴殿元高安中学 方韬赣州市第三中学 吴琨赣州市第三中学 陈矿新余市第四中学 单玉璋景德镇二中 戴文彬吉水中学 黄赞永九江第一中学 颜以诺萍乡市湘东中学 邬泽鹏南昌市第二中学 易舜智宜春中学 张琦吉安市白鹭洲中学 汪洋南昌市第十中学 袁之博江西师范大学附属中学朱盛江西师范大学附属中学李汉冲宜春中学 胡志宏江西省高安中学 许贇吉水中学 贵溪市第一中学 殷军军新干中学 黄志善乐安县第二中学 闵红嘉九江第一中学 祝凯华鹰潭市第一中学 傅博新余市第一中学 聂诚标丰城中学 董泽政婺源县天佑中学 胡宇南昌市第十中学 兰凌轩江西师范大学附属中学潘明余江县第一中学 李婧婷余江县第一中学 叶成方石城中学 廖懿吉水中学 张兴捷吉安市白鹭洲中学 廖伟杰玉山县第一中学 姚招泉新干中学 姚懿芸上饶市第二中学 刘洋南昌市第十中学 黄涛黎川县第一中学 金春良余江县第一中学 李莉宜春中学 卢欣杰宜春中学 庄三锋婺源县天佑中学 郭鸣阳瑞金市第一中学 朱世初江西师范大学附属中学陈志坚余江县第一中学 邱昌昊鹰潭市第一中学 黄琰奕鹰潭市第一中学 俞耀文鹰潭市第一中学 杨凯强新余市第一中学 余圣伟景德镇二中

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动获得各重点大学的保送资格。各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限! 课程招生简章:https://www.wendangku.net/doc/5118657754.html,/webhtml/project/liansaigz.shtml 选课中心地址: https://www.wendangku.net/doc/5118657754.html,/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_ 第二章组合专题 一、重要的概念与定理 1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为. 2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数), 记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度 为偶数的顶点称为偶顶点. 3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为. 4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即 并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作 . 2部图又叫做偶图,记为. 5、完全部图:在一个部图中, ,若对任意 均有边连接和,则称图为完全部图,记为. 6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹. 欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图. 哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图. 7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一

高中数学竞赛试题及答案

浙江省高中数学竞赛试题及答案 一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分) 1.集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ?=?,则实数a 取值范围为( ) A. 3a ≥ B. 1a ≤-. C. 1a ≤-或 3a ≥ D. 13a -≤≤ 2.若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 3.已知等比数列{a n }:,31=a 且第一项至第八项的几何平均数为9,则第三项是( ) A. D. 4. 已知复数(,,z x yi x y R i =+∈为虚数单位),且2 8z i =,则z =( ) A.22z i =+ B. 22z i =-- C. 22,z i =-+或22z i =- D. 22,z i =+或22z i =-- 5. 已知直线AB 与抛物线2 4y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上一个动点,若0C 满足 00min{}C A C B CA CB ?=?,则下列一定成立的是( ) 。 A. 0C M AB ⊥ B. 0,C M l ⊥其中l 是抛物线过0C 的切线 C. 00C A C B ⊥ D. 01 2 C M AB = 6. 某程序框图如下,当E =0.96时,则输出的K=( ) A. 20 B. 22 C. 24 D. 25 , 7. 若三位数abc 被7整除,且,,a b c 成公差非零的等差数列,则这样的整数共有( )个。 A.4 B. 6 C. 7 D 8 8. 已知一个立体图形的三视图如下,则该立体的体积为( )。 A.

全国中学生英语能力竞赛(江西赛区)获

2002年全国中学生英语能力竞赛(江西赛区)获奖名单 初中组 一等奖(30名) 刘欢鹰潭市二中彭麟茜南昌铁路一中 李晋南昌外国语学校龚婕南昌外国语学校杨哲玉山实验学校王春南昌市十中 袁俏南昌外国语学校彭翔宇南昌市豫章中学袁牧鹰潭市二中彭诗柳新余铁路中学 樊蓉南昌外国语学校程晓东上饶武口中学 肖雪南昌市八一学校徐滢南昌外国语学校周伊南昌外国语学校廖星南昌外国语学校肖雅娟赣州市七中于诗旻九江外国语学校李岱新余市四中熊欣雅南昌外国语学校陈梦婷南昌外国语学校赵修业南昌外国语学校陈晨南昌外国语学校朱迪南昌外国语学校刘捷南昌外国语学校王晟南昌铁路一中 邱恒南昌豫章中学蔡乔南昌外国语学校乔恂上饶市二中黄浩高安县六中 二等奖(63名) 叶睿南昌市十中蔡玉南昌市二十七中覃璇南昌市十中甘俊聪南昌市十四中 张如阳宜春中学李斯阳南昌大学附中 钟珑菲上犹二中雷沁芫南昌豫章中学 杨玉婷南昌实验中学干灵文南昌育新学校 黄烈超吉安市二中黄琰江西省农科院附中沈默南昌外国语学校吴一叶南昌外国语学校李铮山新余钢铁厂一中江瑶南昌外国语学校李行舟南昌市十中郭巍鹰潭市二中 刘阳加木吉安市白鹭洲中学马征南昌外国语学校蔡旻扬南昌市三中朱励纬上饶市四中 廖琼文赣州市三中段习羽吉安市一中 高师景德镇二中王迪九江市一中

周鹏洪都中学陈璐南昌外国语学校 陈灵杰南昌大学附中李尧南昌市二十八中 肖晓新余市三中余宇偲广丰县永丰中学 徐捷勋南昌外国语学校饶韵洁南昌外国语学校 俞欣滢南昌市二十八中胡蝶南昌市十中 董辰晨婺源中学刘睿娴吉安市一中 李伟吉安市白鹭洲中学黄未晞南昌豫章中学 樊雪南昌县莲塘三中徐雪芳上饶泉波中学 付晓智宜黄县一中付欣南昌市十中 周陆南昌大学附中汪宇佳南昌外国语学校 喻康然南昌外国语学校舒通南昌外国语学校 付有奇南昌外国语学校杨揄熹南昌市十中 俞悦尔婺源中学余亘靖安县三中 曹镠鹰潭市四中江婧贵溪冶炼厂中学 涂悦东乡铜矿中学邓逸凡南昌市十中 易川博南昌外国语学校吴诗祺南昌大学附中 董珂德兴铜矿中学刘玲娟广丰县永丰中学 王琦雯新余钢铁厂一中刘艺斌鹰潭市二中 刘昱贵溪冶炼厂中学 三等奖(100名) 张欣九江市同文中学罗希南昌外国语学校谢逸雄南昌外国语学校邓斯乔南昌市二十八中周路璐南昌市十中魏迟南昌 汪静波婺源中学陈拉明余江县一中 李可赣州市三中张至洁景德镇一中分校刘通南昌大学附中李帆上饶市二中 汪文灿上饶江湾中学温莉新余市三中 丁舒新余市四中占恺娇东乡县二中 郭京万安县二中孙玮明泰和县三中 段质宇万安县二中朱嘉蹊九江市十一中赵哲胤南昌外国语学校顾欣南昌外国语学校罗梦雨南昌市三中胡珍妮南昌大学附中赵明哲南昌外国语学校余瑾上饶江光中学熊静婷德兴铜矿中学袁斯乔分宜县二中 兰瑞高安县四中陈之曦赣州市一中 陈炜景德镇一中分校邹云龙南昌外国语学校杨柳青南昌市十中杨林婧南昌外国语学校徐蕾南昌实验中学于张颖弋阳志敏中学曾丹华德兴市二中王瑶靖安县三中 吴培宁崇仁县二中郭婧赣州市一中 罗勇军宁都县三中刘真真吉安泉江中学蒋月永丰恩江中学夏焕臻泰和县三中 龚杜娟景德镇五中吴邦限九江市一中 周广宇南昌市十中李晶南昌外国语学校

最新九年级数学四点共圆例题讲解

精品文档 九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆的方法很重要。 、、、===OCOB四个点到定点DO 判定四点共圆最基本的方法是圆的定义:如果A的距离相等,即BOAC、、、D四点共圆.,那么ACB OD 由此,我们立即可以得出 1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。 将上述判定推广到一般情况,得: 2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。 3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。 4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。 运用这些判定四点共圆的方法,立即可以推出: 正方形、矩形、等腰梯形的四个顶点共圆。 其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是: 、、、D四点共圆。B =CE·ED,则AC· 1.相交弦定理的逆定理:若两线段AB和CD相交 于E,且AEEB、、、BPD,则APA,且·PB =PC 2.割线定理的逆定理:若相交于点P的两线段PB·PD上各有一点A、C 、D四点共圆。C 3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。 另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。 例题精讲 、、、、、、、、、、F四点共圆,上。已知PPDAC1例:如图,P为△ABC内一点,DEEF分别在BCECAAB、、、

高中数学竞赛典型题目(一)

数学竞赛典型题目(一) 1.(2004美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1. 令S 是一个整数集,具有性质: (1)),,2,1(n i S a i =∈ (2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同 (3)对于S y x ∈,,若S y x ∈+,则S y x ∈- 证明:S 为全体整数的集合。 2.(2004美国数学竞赛)c b a ,,是正实数,证明: 3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+- 3.(2004加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。其中S 中没有两个元素,一个是另一个的倍数。 4.(2004英国数学竞赛)证明:存在一个整数n 满足下列条件: (1)n 的二进制表达式中恰好有2004个1和2004个0; (2)2004能整除n . 5.(2004英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。 6.(2004亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+) ,( 7.(2004亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。 8.(2004亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈?? ????+-是 偶数。 9.(2004亚太地区数学竞赛)z y x ,,是正实数,证明:

赣县中学高中数学竞赛数论第10讲不定方程(中)

第10讲 不定方程(二) 一、知识点介绍 1、 勾股方程:222z y x =+ 这是一个相当特殊的三元二次不定方程,它有鲜明的几何意义,并应用广泛。 这里只讨论勾股方程的正整数解,由方程不难看出如果d y x =),(,则22z d ,从而 z d ,这样可在勾股方程两边约去2d ,所以我们只须讨论1),(=y x 的解,此时易知z y x ,,实际上两两互素,这种z y x ,,两两互素的正整数解),,(z y x 称为勾股方程的本原解,也称为本原勾股数。下面给出勾股方程的全部本原解: 定理1:方程222z y x =+满足1),(=y x ,2y 的全部正整数解),,(z y x 可表示为: 2222,2,b a z ab y b a x +==-=,其中b a ,是满足b a b a ,,0>>一奇一偶 且1),(=b a 的任意整数。 2、 佩尔(Pell )方程:122=-dy x ,其中+∈N d ,且不是完全平方数…………① 定理2:方程①有无穷多组正整数解,则①的全部正整数解由 +∈??? ????-++=-++=N n y d x y d x d y y d x y d x x n n n n n n ,])()[(21])()[(2111111111给出 通常称),(11y x 正整数解),(y x 中的最小解。

二、例题讲解 例1、解下列不定方程(1)、18777143=-y x ; (2)、2537107=+y x 例2、设z y x ,,是222z y x =+的正整数解, 证明:(1)、x 3,y 3至少有一个成立;(2)、x 5,y 5,z 5至少有一个成立。 例3、求出方程172 2=-y x 的所有正整数解。

相关文档
相关文档 最新文档