文档库 最新最全的文档下载
当前位置:文档库 › 高级中学数学竞赛题之平面几何

高级中学数学竞赛题之平面几何

高级中学数学竞赛题之平面几何
高级中学数学竞赛题之平面几何

第一讲 注意添加平行线证题

在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.

添加平行线证题,一般有如下四种情况. 1 为了改变角的位置

大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用

这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.

例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .

在△DBP =∠AQC 中,显然

∠DBP =∠AQC ,∠DPB =∠C .

由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP .

则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC .

这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.

例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .

由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC .

∥=

A

D

B

P Q

图1

P

E D G A B F

C

图2

显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE .

有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE .

这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处

利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.

例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂

线,M 、N 、Q 为垂足.求证:PM +PN =PQ .

证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG .

由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,

PD EP =FD EF =GD

CG

,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ .

这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.

3 为了线段比的转化

由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.

例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、

A

N

E B Q

K

G C

D M F

P 图3

AM 2于P 、Q 、N 1、N 2.试证:

AP AB +AQ

AC

=11AN AM +22AN AM .

证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E .

由BM 1=CM 2,可知BE +CE =M 1E +M 2E ,易知

AP AB =DE BE ,AQ AC =DE

CE

,

11AN AM =DE E M 1,22AN AM =DE E M 2. 则AP AB +AQ AC =DE

CE

BE +=DE E M E M 21+=11AN AM +2

2AN AM . 所以,

AP AB +AQ

AC

=11AN AM +22AN AM .

这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.

例5 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA . 证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M .

显然,

AN BD =KA KD =AM

DC

. 有BD ·AM =DC ·AN . (1)

由BD AP =FB AF =BC AM ,有 AP =BC

AM BD ·. (2) 由DC AQ =EC AE =BC

AN

,有 AQ =BC AN DC ·. (3)

对比(1)、(2)、(3)有

AP =AQ .

显然AD 为PQ 的中垂线,故AD 平分∠PDQ . 所以,∠FDA =∠EDA .

这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.

A P

E

D

C M 2M 1B

Q

N 1

N 2

图4图5

M

P A Q N

F

B

D

C

E

K

4 为了线段相等的传递

当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.

例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=

4

1

(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME . 由BD =DC ,可知ED =DN .有 △BED ≌△CND .

于是,BE =NC .

显然,MD 为EN 的中垂线.有

EM =MN . 由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠

MBE =90°.

∠ABC +∠ACB =∠ABC +∠EBC =90°. 于是,∠BAC =90°.

所以,AD 2=2

21??

?

??BC =41(AB 2+AC 2).

这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7 如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,

FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .

证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知

DB 2=FB 2=AB ·HB ,

AD 2=AE 2=AG ·AB .

二式相减,得 DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).

于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD . 显然,EG ∥CD ∥FH . 故CD 平分EF .

图6

A

N

C

D

E

B

M

A

G

D O H B

F

C E

图7

这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩. 经过一点的若干直线称为一组直线束.

一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等. 如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有

BN DM =AN AM =NC ME ,即 BN DM

=NC

ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .

利用平行线的这一性质,解决某些线段相等的问题会很漂亮.

例8 如图9,

ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长 线交EF 于G .求证:EG =GF .

证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF ,可知MN ∥BD .易知

S △BEF =S △DEF .

有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .

例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K ,求证:AK 平分BC .

证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、

OE 、OF .

由OD ⊥BC ,可知OK ⊥PQ .

由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有 ∠FOQ =∠FKQ .

图8

A

D

B

N C

E

M 图9

A

B

M E N D C G

O

图10

由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有 ∠EOP =∠EKP . 显然,∠FKQ =∠EKP ,可知 ∠FOQ =∠EOP .

由OF =OE ,可知 Rt △OFQ ≌Rt △OEP . 则OQ =OP . 于是,OK 为PQ 的中垂线,故 QK =KP . 所以,AK 平分BC .

综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.

练习题

1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长

CD 交直线NM 于F .求证:∠BEN =∠CFN .

(提示:设P 为AC 的中点,易证PM =PN .)

2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)

3. 六边开ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形

ABCDEF 的面积.

(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与

EMQD 面积相等.答:120cm 2)

4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .

(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:

2

11

k

) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:

DE AD =FB

CF

.

(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)

6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:

a 1+

b 1=c

1. (提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点

E 、

F .)

7. 分别以△ABC 的边AC 和BC 为一边在△ABC 外作正方形ACDE 和CBFG ,点P 是EF 的中点.求证:P 点到边AB 的距离是AB 的一半.

8. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线

DA 、DE 于点H 、G .求证:FH =HG .

(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)

9. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .

(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)

第二讲 巧添辅助 妙解竞赛题

在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1 挖掘隐含的辅助圆解题

有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆

例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点

A

B

G

C

D F

E

图1

且∠BED =2∠CED =∠A .求证:BD =2CD .

分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线, 但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F , 则可得EB =EF ,从而获取.

证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .

又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .

作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =

2

1

∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆

例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1, 对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D

四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.

解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.

设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ). 解得AD =x =23-2,BC =

2

1

BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12. 又S ABCD =S △ABD +S △BCD =

233. 故sin ∠AOB =26

3

615 . A

B

C

D

P

O 图2

A

B

P

Q

D

H

C

例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证: △ABC 的面积S =

4

3

AP ·BD . 分析:因S △ABC =

43BC 2=4

3AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与

AH 交点).

证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .

从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =

43AC ·BC =4

3AP ·BD . 2 构造相关的辅助圆解题

有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关

的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆

例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即 可找到AC 与p 、q 的关系.

解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.

A E

D

C

B

图4

∵AB ∥CD ,

∴BC =AE . 从而,BC =AE =q .

在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -

=224q p -.

2.2 联想直径的性质构造辅助圆

例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.

分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上 侧,从而可确定动点A 的范围,进而确定AD 的取值范围.

解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、

C (4,0).分别以BC 、DA 为直径作⊙

D 、⊙

E ,则两圆与抛物线均交于两点P (1-22,1)

、Q (1+22,1).

可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆

例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .

分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,

∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN .

图5

E

A N

C

D B

F

M 12

34

5图6

以AM长为半径作⊙A,交AB于F,交BA的延长线于E.则AE=AF=AN.

由割线定理有

BM·BN=BF·BE=(AB+AE)(AB-AF)=(AB+AN)(AB-AN) =AB2-AN2,

即AB2-AN2=BM·BN.

例7如图7,ABCD是⊙O的内接四边形,延长AB和DC相交于E,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切⊙O于P、Q.求证:EP2+FQ2=EF2.

分析:因EP和FQ是⊙O的切线,由结论联想到切割线定理,构造辅助圆使EP、FQ向EF转化.

证明:如图7,作△BCE的外接圆交EF于G,连结CG.

因∠FDC=∠ABC=∠CGE,故F、D、C、G四点共圆.

由切割线定理,有

EF2=(EG+GF)·EF=EG·EF+GF·EF=EC·ED+FC·FB

=EC·ED+FC·FB=EP2+FQ2,

即EP2+FQ2=EF2.

2.4 联想托勒密定理构造辅助圆

例8如图8,△ABC与△A'B'C'的三边分别为a、b、c与a'、b'、c',且∠B=∠B',∠A+∠A=180°.试证:aa'=bb'+cc'. 分析:因∠B=∠B',∠A+∠A'=180°,由结论联想到托勒密定理, 构造圆内接四边形加以证明.

证明:作△ABC的外接圆,过C作CD∥AB交圆于D,连结AD和BD, 如图9所示. ∵∠A+∠A'=180°=∠A+∠D,

∠BCD=∠B=∠B'

,

(1)(2)

图8

A

B C

A'

B'C' c

a

b

a'

c'b'

A

B

C

D

a

b

b

c

图9

∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有

DC B A ''=CB C B ''=DB

C A '

', 即 DC c '=a

a '=DB

b '. 故DC =''a a

c ,DB =''

a a

b .

又AB ∥DC ,可知BD =AC =b ,BC =AD =a .

从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·

''a ac +b ·'

'a ab . 故aa '=bb '+cc '. 练习题

1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则

AC AB =DC

BD

. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而

AC AB =DE

BD

=DC

BD

.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠

BAC =∠CAD =∠DAE .

(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)

3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =2

1

∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是

ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .

F D

A

B

E

C

图10

求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点

G 、H .则CG =AH ,由割线定理可证得结论.)

5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D , 且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE . (提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上, 得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.

(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =

AN ·AM .)

7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:

a b -b

a

=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)

第三讲 点共线、线共点

在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。 1. 点共线的证明

点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥4)点共线可转化为三点共线。

C 图11

例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平

行四边形AECD ,BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。 证 连AK ,DG ,HB 。

由题意,AD EC KG ,知四边形AKGD 是平行四边形,于

是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形,其对角线AB ,

KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。

例2 如图所示,菱形ABCD 中,∠A =120

O 为△ABC 外接圆,M 为其上

一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。

证 如图,连AC ,DF ,DE 。

因为M

O 上,则∠AMC =60°=∠ABC =∠ACB ,

有△AMC ∽△ACF ,得

CD

CF

CA CF MA MC =

=。 又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得 AE

AD

AE AC MA MC =

=。 所以

AE

AD

CD CF =,又∠BAD =∠BCD =120°,知△CFD ∽△ADE 。所以∠ADE =∠DFB 。因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F ,E ,D 三点共线。

例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与

BC

A C

D E

F

H K

G

的延长线交于点Q 。由Q 作该圆的两条切线QE 和QF ,切点分别为E ,

F 。求证:P ,E ,F 三点共线。 证 如图。

连接PQ ,并在PQ 上取一点M ,使得B ,C ,M ,P 四点共圆, 连CM ,PF 。设PF 与圆的另一交点为E ’,并作QG 丄PF ,垂足为G 。 易如

QE 2=QM ·QP =QC ·QB ①

∠PMC =∠ABC =∠PDQ 。

从而C ,D ,Q ,M 四点共圆,于是

PM ·PQ =PC ·PD ②

由①,②得 PM ·PQ +QM ·PQ =PC ·PD +QC ·QB , 即PQ 2=QC ·QB +PC ·PD 。

易知PD ·PC =PE ’·PF ,又QF 2=QC ·QB ,有

PE ’·PF +QF 2=PD ·PC +QC ·AB =PQ 2,

即PE ’·PF =PQ 2-QF 2。又

PQ 2-QF 2=PG 2-GF 2=(PG +GF )·(PG -GF )=PF ·(PG -GF ), 从而PE ’=PG -GF =PG -GE ’,即GF =GE ’,故E ’与E 重合。所以P ,

E ,

F 三点共线。

例4 以圆O 外一点P ,引圆的两条切线PA ,PB ,A ,B 为切点。割线PCD 交

圆O 于C ,D 。又由B 作CD 的平行线交圆O 于E 。若F 为CD 中点,求证:A ,F ,E 三点共线。

证 如图,连AF ,EF ,OA ,OB ,OP ,BF ,OF ,延长FC 交BE 于G 。

C E

(E ')A

B

D

F M

Q G

易如OA 丄AP ,OB 丄BP ,

OF 丄CP ,所以P ,A ,F ,O ,B 五点共圆, 有∠AFP =∠AOP =∠POB = ∠PFB 。

又因CD ∥BE ,所以有∠PFB =∠FBE ,∠EFD =∠FEB , 而FOG 为BE 的垂直平分线,故EF =FB ,∠FEB =∠EBF , 所以∠AFP =∠EFD ,A ,F ,E 三点共线。

2. 线共点的证明

证明线共点可用有关定理(如三角形的3条高线交于一点),或证明第3条直线通过另外两条直线的交点,也可转化成点共线的问题给予证明。

例5 以△ABC 的两边AB ,AC 向外作正方形ABDE ,ACFG 。△ABC 的高为AH 。

求证:AH ,BF ,CD 交于一点。

证 如图。延长HA 到M ,使AM =BC 。连CM ,BM 。

设CM 与BF 交于点K 。 在△ACM 和△BCF 中,

AC =CF ,AM =BC , ∠MAC +∠HAC =180°, ∠HAC +∠HCA =90°,

并且∠BCF =90°+∠HCA ,

因此∠BCF +∠HAC =180° ∠MAC =∠BCF 。 从而△MAC ≌△BCF ,∠ACM =∠CFB 。

所以∠MKF =∠KCF +∠KFC =∠KCF +∠MCF =90°,

M

E

D

B

H

C

F

K G

A

即 BF 丄MC 。

同理CD 丄MB 。AH ,BF ,CD 为△MBC 的3条高线,故AH ,BF ,CD 三线交于一点。

例6 设P 为△ABC 内一点,∠APB -∠ACB =∠APC -∠ABC 。又设D ,E 分别

是△APB 及△APC 的内心。证明:AP ,BD ,CE 交于一点。 证 如图,过P 向三边作垂线,垂足分别为R ,S ,T 。

连RS ,ST ,RT ,设BD 交AP 于M ,CE 交AP 于N 。

易知P ,R ,A ,S ;P ,T ,B ,R ;

P ,S ,C ,T 分别四点共圆,则

∠APB -∠ACB =∠PAC +∠PBC =∠PRS +∠PRT =∠SRT 。 同理,∠APC -∠ABC =∠RST ,

由条件知∠SRT =∠RST ,所以RT =ST 。 又RT =PBsinB ,ST =PCsinC ,

所以PBsinB =PCsinC ,那么

AC

PC

AB PB =

。 由角平分线定理知 MP AM

PB AB PC AC NP AN =

==。 故M ,N 重合,即AP ,BD ,CE 交于一点。 例7

O 1

O 2外切于P 点,QR 为两圆的公切线,其中Q ,R

分别为O 1

O 2上的切点,过Q 且垂直于QO 2的直线与过R 且垂直于RO 1的直线交于点I ,IN 垂直于O 1O 2,垂足为N ,IN 与QR 交于点M 。证明:PM ,

RO 1,QO 2三条直线交于一点。

证 如图,设RO 1与QO 2交于点O , 连MO ,PO 。

因为∠O 1QM =∠O 1NM =90°,所以Q ,O 1,N ,M 四点共圆,有∠QMI =∠QO 1O 2。

而∠IQO 2=90°=∠RQO 1,所以∠IQM =∠O 2QO 1,

故△QIM ∽△QO 2O 1,得 MI

O O QM QO 2

11= 同理可证

MI

O O RM RO 212=。因此 21

RO QO MR QM = ① 因为QO 1∥RO 2,所以有

2

1

1RO QO OR O O = ② 由①,②得MO ∥QO 1。 又由于O 1P =O 1Q ,PO 2=RO 2, 所以

2

1211PO P

O RO Q O OR O O ==, 即OP ∥RO 2。从而MO ∥QO 1∥RO 2∥OP ,故M ,O ,P 三点共线,所以

PM ,RO 1,QO 2三条直线相交于同一点。

3. 塞瓦定理、梅涅劳斯定理及其应用 定理1 (塞瓦(Ceva)定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点。若AP ,BQ ,CR 相交于一点M ,则

1=??RB

AR

QA CQ PC BP 。 证 如图,由三角形面积的性质,有

O 1O 2

N

P

I

Q R

M

O C

BMC AMC S S RB AR ??=, AMC AMB S S PC BP ??=, AMB

BMC

S S QA CQ ??=. 以上三式相乘,得1=??RB

AR

QA CQ PC BP .

定理2 (定理1的逆定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 上的点。若1=??RB

AR

QA CQ PC BP ,则AP ,BQ ,CR 交于一点。

证 如图,设AP 与BQ 交于M ,连CM ,交AB 于R ’。

由定理1有

1''=??B R AR QA CQ PC BP . 而1=??RB

AR

QA CQ PC BP ,所以 RB

AR

B R AR =

''. 于是R ’与R 重合,故AP ,BQ ,CR 交于一点。

定理3 (梅涅劳斯(Menelaus)定理):

一条不经过△ABC 任一顶点的直线和三角形三边BC ,CA ,AB (或它们的延长线)分别交于P ,Q ,R ,则

1=??RB

AR

QA CQ PC BP 证 如图,由三角形面积的性质,有

BRP ARP S S RB AR ??=, CPR BRP S S PC BP ??=, ARP

CRP

S S QA CQ ??=. 将以上三式相乘,得1=??RB

AR

QA CQ PC BP .

定理4 (定理3的逆定理):

设P ,Q ,R 分别是△ABC 的三边BC ,CA ,AB 或它们延长线上的3点。若

A

R Q B P

1=??RB

AR

QA CQ PC BP , 则P ,Q ,R 三点共线。

定理4与定理2的证明方法类似。

塞瓦定理和梅涅劳斯定理在证明三线共点和三点共线以及与之有关的题目中有着广泛的应用。

例8 如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,

BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC =∠EAC 。 证 如图,连接BD 交AC 于H ,

过点C 作AB 的平行线交AG 的延长线于I ,过点C 作AD 的平行线交AE 的延长线于J 。

对△BCD 用塞瓦定理,可得

1=??EC

DE

HD BH GB CG ① 因为AH 是∠BAD 的角平分线,

由角平分线定理知 AD AB

HD BH =

。 代入①式得 1=??EC

DE

AD AB GB CG ②

因为CI ∥AB ,CJ ∥AD ,则AB CI GB CG =,CJ

AD

EC DE =

。 代入②式得 1=??CJ AD

AD AB AB CI .

从而CI =CJ 。又由于

∠ACI =180°-∠BAC =180°-∠DAC =∠ACJ , 所以△ACI ≌△ACJ ,故∠IAC =∠JAC ,即∠GAC =∠EAC .

例9 ABCD 是一个平行四边形,E 是AB 上的一点,F 为CD 上的一点。AF 交

ED 于G ,EC 交FB 于H 。连接线段GH 并延长交AD 于L ,交BC 于M 。

H C

A

D

B

G

I

J

E

F

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学竞赛试题附详细答案

高中数学竞赛试题 一选择题(每题5分,满分60分) 1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2 +bx+c=0有一个正根和一个 负根的( ) (A )必要而不充分条件 (B )充要条件 (C )充分而不必要条件 (D )既不充分也不必要条件 2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。 (A ) 100 5 .03?克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示 大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。 (A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元 4. 已知函数 >0, 则 的值 A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项 6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数 列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n (B) 13-+n n (C) 13+-n n (D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π = x 处取得最小 值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果 A A tan 1tan 1+-= 4+5,那么cot (A +4 π )的值等于 ( ) A -4-5 B 4+5 C - 5 41+ D 5 41+ 9. 已知︱︱=1,︱︱=3,?=0,点C 在∠AOB 内,且∠AOC =30°,设 =m +n (m 、n ∈R ),则 n m 等于

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD ⌒上任意一点.求证:PA PC PB 为定值. 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分DB ⌒ D.随C 点的移动而移动 【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线 的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形; (2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度; (3)求证:CD 2+3CH 2是定值. P A B C D A P B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标; (2)连接MG ,BC ,求证:MG ∥BC ; (3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时, PF OF 的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (图1) (图2) 【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值. 【能力训练】 1.如图,点A ,B 是双曲线x y 3 上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则B O A C E H G D A

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动获得各重点大学的保送资格。各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限! 课程招生简章:https://www.wendangku.net/doc/906948450.html,/webhtml/project/liansaigz.shtml 选课中心地址: https://www.wendangku.net/doc/906948450.html,/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_ 第二章组合专题 一、重要的概念与定理 1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为. 2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数), 记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度 为偶数的顶点称为偶顶点. 3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为. 4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即 并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作 . 2部图又叫做偶图,记为. 5、完全部图:在一个部图中, ,若对任意 均有边连接和,则称图为完全部图,记为. 6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹. 欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图. 哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图. 7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一

初中数学竞赛第二十三讲平面几何的定值与最值问题(含解答)

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”. 【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积)

解析 由三角形面积S=12 absinC 和正弦定理sin c C =2R, ∴c=2RsinC. ∴ abc S =2sin c C =4sin sin R C C =4R 是定值. 点评 通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2 如图,已知⊙O 的半径 为⊙O 上一点,过A 作一半径为r=3的⊙O ′, 问OO ′何时最长?最长值是多少?OO ′何时最短?最短值是多少? 解析 当O ′落在OA 的连线段上(即⊙A 与线段OA 的交点B 时)OO ′最短,且最短长度为 当O ′落在OA 的延长线上(即⊙O 与OA 的延长线交点C 时)OO ′最长,且最长的长度为 点评 ⊙O ′是一个动圆,满足条件的⊙O ′有无数个,但由 于⊙O ′过A 点,所以⊙O ′的圆心O ′在以A 为圆心半径为3的⊙A 上. 【好题妙解】 佳题新题品味 例1 如图,已知P 为定角O 的角平分线上的定点,过O 、P?两点任作一圆与角的两边分别交于A 、B 两点. 求证:OA+OB 是定值. 证明 连结AP 、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.?另记x 1=OA,x 2=OB. 对△POA 应用余弦定理, 得x 12+OP 2-2OP ·cos ∠AOP ·x 1=r 2. 故x 1为方程x 2-2OP ·cos 1 2 ∠AOB ·x+(O P 2-r 2)=0的根,同理x 2亦为其根. 因此x 1,x 2为此方程的两根,由韦达定理,得x 1+x 2=2OP(1 2 ∠AOB)是定值.

高中数学竞赛试题及答案

浙江省高中数学竞赛试题及答案 一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分) 1.集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ?=?,则实数a 取值范围为( ) A. 3a ≥ B. 1a ≤-. C. 1a ≤-或 3a ≥ D. 13a -≤≤ 2.若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 3.已知等比数列{a n }:,31=a 且第一项至第八项的几何平均数为9,则第三项是( ) A. D. 4. 已知复数(,,z x yi x y R i =+∈为虚数单位),且2 8z i =,则z =( ) A.22z i =+ B. 22z i =-- C. 22,z i =-+或22z i =- D. 22,z i =+或22z i =-- 5. 已知直线AB 与抛物线2 4y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上一个动点,若0C 满足 00min{}C A C B CA CB ?=?,则下列一定成立的是( ) 。 A. 0C M AB ⊥ B. 0,C M l ⊥其中l 是抛物线过0C 的切线 C. 00C A C B ⊥ D. 01 2 C M AB = 6. 某程序框图如下,当E =0.96时,则输出的K=( ) A. 20 B. 22 C. 24 D. 25 , 7. 若三位数abc 被7整除,且,,a b c 成公差非零的等差数列,则这样的整数共有( )个。 A.4 B. 6 C. 7 D 8 8. 已知一个立体图形的三视图如下,则该立体的体积为( )。 A.

平面几何中的几个著名定理

平面几何中的几个著名定理 文章来源:全国初中数学竞赛辅导作者:孙瑞清 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ ∽△BXP得 同理

将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

高中数学竞赛典型题目(一)

数学竞赛典型题目(一) 1.(2004美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1. 令S 是一个整数集,具有性质: (1)),,2,1(n i S a i =∈ (2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同 (3)对于S y x ∈,,若S y x ∈+,则S y x ∈- 证明:S 为全体整数的集合。 2.(2004美国数学竞赛)c b a ,,是正实数,证明: 3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+- 3.(2004加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。其中S 中没有两个元素,一个是另一个的倍数。 4.(2004英国数学竞赛)证明:存在一个整数n 满足下列条件: (1)n 的二进制表达式中恰好有2004个1和2004个0; (2)2004能整除n . 5.(2004英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。 6.(2004亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+) ,( 7.(2004亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。 8.(2004亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈?? ????+-是 偶数。 9.(2004亚太地区数学竞赛)z y x ,,是正实数,证明:

相关文档
相关文档 最新文档