文档库 最新最全的文档下载
当前位置:文档库 › 液相外延和分子束外延

液相外延和分子束外延

液相外延和分子束外延
液相外延和分子束外延

液相外延

液相外延【liquid phase epitaxy】由溶液中析出固相物质并沉积在衬底上生成单晶薄层的方法。液相外延由尼尔松于1963年发明,成为化合物半导体单晶薄层的主要生长方法,被广泛的用于电子器件的生产上。薄层材料和衬底材料相同的称为同质外延,反之称为异质外延。液相外延可分为倾斜法、垂直法和滑舟法三种,其中倾斜法是在生长开始前,使石英管内的石英容器向某一方向倾斜,并将溶液和衬底分别放在容器内的两端;垂直法是在生长开始前,将溶液放在石墨坩锅中,而将衬底放在位于溶液上方的衬底架上;滑舟法是指外延生长过程在具有多个溶液槽的滑动石墨舟内进行。在外延生长过程中,可以通过四种方法进行溶液冷却:平衡法、突冷法、过冷法和两相法。

与其他外延方法相比;它具有如下的优点:1)生长设备比较简单,;2)有较高的生长速率;3)掺杂剂选择范围广;4)晶体完整性好,外延层位错密度较衬底低;5)晶体纯度高,生长系统中没有剧毒和强腐蚀性的原料及产物,操作安全、简便等。

LPE的不足在于,当外延层与衬底晶格常数差大于1%时,不能进行很好的生长。其次,由于分凝系数的不同,除生长很薄的外延层外,在生长方向上控制掺杂和多元化合物组合均匀性遇到困难。再者LPE的外延层表面一般不如气相外延好。

分子束外延

Molecular Beam Epitaxy

内容

分子束外延的英文缩写为MBE,这是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。该技术的优点是:使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子阱微结构材料。

特点

(1)生长速率极慢,大约1um/小时,相当于每秒生长一个单原子层,因此有利于实现精确控制厚度、结构与成分和形成陡峭的异质结构等。实际上是一种原子级的加工技术,因此MBE特别适于生长超晶格材料。(2)外延生长的温度低,因此降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层的自掺杂扩散影响。(3)由于生

长是在超高真空中进行的,衬底表面经过处理可成为完全清洁的,在外延过程中可避免沾污,因而能生长出质量极好的外延层。在分子束外延装置中,一般还附有用以检测表面结构、成分和真空残余气体的仪器,可以随时监控外延层的成分和结构的完整性,有利于科学研究.(4)MBE是一个动力学过程,即将入射的中性粒子(原子或分子)一个一个地堆积在衬底上进行生长,而不是一个热力学过程,所以它可以生长按照普通热平衡生长方法难以生长的薄膜。(5)MBE是一个超高真空的物理沉积过程,既不需要考虑中间化学反应,又不受质量传输的影响,并且利用快门可以对生长和中断进行瞬时控制。因此,膜的组分和掺杂浓度可随源的变化而迅速调整。

分子束外延

分子束外延(英文名称;Molecular Beam Epitaxy) 1、定义:分子束外延是一种新的晶体生长技术,简记为MBE。其 方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内)。由分别加热到相应温度形成蒸汽,经小孔准直后形成分子束或原 子束直接喷射到上述衬底上,同时控制分子束对衬底的扫描, 就可以生长出极薄的(可薄至单原子层水平)单晶体和几种物质交替的超晶格结构。 2、研究对象:分子束外延主要研究的是不同结构或不同材料的晶 体和超晶格的生长。 3、MBE的一般结构: 目前最典型的MBE系统是由进样室、预备分析室、和外延生长室串连而成。 进样室:进样室用于换取样品,是整个设备和外界联系的通道,也可同时放入多个衬底片。 预备分析室:对衬底片进行除气处理,对样品进行表面成分、电子结构和杂质污染等分析。通常在这个真空室配置AES、SIMIS、XPS、UPS等分析仪器。 外延生长室:是MBE系统中最重要的一个真空工作室,用于样品的分子束外延生长。配置有分子束源、样品架、电离记、高能电子衍射仪和四极质谱仪等部件。

监测分子束流有以下几种: ●(1)石英晶体常用于监测束流,束流屏蔽和冷却适当,可得满 意结果。但噪音影响稳定性。几个 m后,石英晶体便失去了线性。调换频繁,主系统经常充气,这不利于工作。 ●(2)小型离子表,测分子束流压,而不是测分子束流通量。由 于系统部件上的淀积而使其偏离标准。 ●(3)低能电子束,横穿分子束,利用所探测物种的电子激发荧 光。原子被激发并很快衰退到基态产生UV荧光,光学聚焦后荧光密度正比于束流密度。可做硅源的反馈控制。不足之处:切断电子束,大部分红外荧光和背景辐射也会使信噪比恶化到不稳定的程度。它只测原子类,不能测分子类物质。 生长室结构:

外延工艺的研究

毕业论文 外延工艺的研究 系电子信息工程系 专业微电子技术姓名张班级微电学号1003318 指导教师张职称讲师设计时间2012.9.19-2013.1.4

外延工艺的研究 目录 摘要............................................................................................................................................................ - 3 - 关键词........................................................................................................................................................ - 3 - 第一章引言............................................................................................................................................ - 4 - 第二章外延工艺概念.............................................................................................................................. - 5 - 2.1 什么是外延................................................................................................................................. - 5 - 2.2 外延的分类................................................................................................................................. - 6 - 2.2.1 气相外延. (6) 2.2.2 液相外延.......................................................................................................................... - 6 - 2.2.3 固相外延.......................................................................................................................... - 6 - 2.2.4 分子束外延...................................................................................................................... - 6 - 2.3 外延片的应用............................................................................................................................. - 7 - 第三章外延片的制备............................................................................................................................ - 7 - 第四章外延片质量测试.......................................................................................................................... - 8 - 第五章外延的发展趋势........................................................................................................................ - 10 -结语 (12) 参考文献.................................................................................................................................................. - 12 -

分子束外延技术(MBE)的原理及其制备先进材料的研究进展

分子束外延技术(MBE)的原理 及其制备先进材料的研究进展 XX (XXXX大学材料学院,西安710000) 摘要:分子束外延(MBE)是50年代用真空蒸发技术制备半导体薄膜材料发展而来的,是为了满足在电子器件工艺中越来越高的要求.MBE是一个动力学过程,而不是一个热力学过程.与其它外延薄膜生长技术相比,MBE具有许多特点,如生长速率低、衬底温度较低等.在超薄层材料外延生长技术方面,MBE的问世使原子、分子数量级厚度的外延生长得以实现,开拓了能带工程这一新的半导体领域.半导体材料科学的发展对于半导体物理学和信息科学起着积极的推动作用.MBE是制备新型器件较为有用的方法,但是有其缺点.未来的发展趋势是结合其他生长技术不断改进MBE,如MBE与VPE并用、气态源分子束外延(GSMBE)、激光分子束外延(LaserMBE)等. 关键词:分子束外延;薄膜;生长技术;半导体 The principle of Molecular Beam Epitaxy (MBE) and the research progress in the preparation of advanced materials XX (Department of Materials,XXX,Xian 710000) Abstract:Molecular Beam Epitaxywas developed forthe preparation of semiconductor thin film materials by vacuumevaporationtechnique in the 50's,which aims to meet the requirements ofthe electronic devices in the process of higher and higher.MBE is a dynamic process, not a thermodynamic process.MBE has many characteristics whencomparing with other epitaxial thin film growth techniques , such as low growth rate, low substrate temperature and so on.The advent of MBE letthe thicknessof order of magnitudeof atomic, molecular of epitaxial growth be achieved in ultrathin layer epitaxial growth technique, that has opened upBand Engineering,anew field of semiconductors.The development of semiconductor materials science plays an active role in the development of semiconductor physics and information science.MBE is a more useful way to prepare new devices, but there areshortcomings.In the future,the development trend is to continuous improving MBE with the combination of other growth techniques,such as combining MBE with VPE,Gas Source Molecular Beam Epitaxy,Laser Molecular Beam Epitaxy etc. Key words:Molecular Beam Epitaxy;thin film;growth techniques;semiconductor

半导体照明技术作业答案

某光源发出波长为460nm 的单色光,辐射功率为100W ,用Y 值表示其光通量,计算其色度坐标X 、Y 、Z 、x 、y 。 解:由教材表1-3查得460nm 单色光的三色视觉值分别为0.2908X =,0.0600Y =, 1.6692Z =,则对100W P =,有 4356831000.2908 1.98610lm 6831000.0600 4.09810lm 683100 1.6692 1.14010lm m m m X K PX Y K PY Z K PZ ==××=×==××=×==××=× 以及 )()0.144 0.030x X X Y Z y Y X Y Z =++==++=

1. GaP绿色LED的发光机理是什么,当氮掺杂浓度增加时,光谱有什么变化,为什么?GaP红色LED的发光机理是什么,发光峰值波长是多少? 答:GaP绿色LED的发光机理是在GaP间接跃迁型半导体中掺入等电子陷阱杂质N,代替P原子的N原子可以俘获电子,又靠该电子的电荷俘获空穴,形成束缚激子,激子复合发光。当氮掺杂浓度增加时,总光通量增加,主波长向长波移动,这是因为此时有大量的氮对形成新的等电子陷阱,氮对束缚激子发光峰增加,且向长波移动。 GaP红色LED的发光机理是在GaP晶体中掺入ZnO对等电子陷阱,其发光峰值波长为700nm的红光。 2. 液相外延生长的原理是什么?一般分为哪两种方法,这两种方法的区别在哪里? 答:液相外延生长过程的基础是在液体溶剂中溶质的溶解度随温度降低而减少,而且冷却与单晶相接触的初始饱和溶液时能够引起外延沉积,在衬底上生长一个薄的外延层。 液相外延生长一般分为降温法和温度梯度法两种。降温法的瞬态生长中,溶液与衬底组成的体系在均处于同一温度,并一同降温(在衬底与溶液接触时的时间和温度上,以及接触后是继续降温还是保持温度上,不同的技术有不同的处理)。而温度梯度法则是当体系达到稳定状态后,整个体系的温度再不改变,而是在溶液表面和溶液-衬底界面间建立稳定的温度梯度和浓度梯度。 3. 为何AlGaInP材料不能使用通常的气相外延和液相外延技术来制造? 答:在尝试用液相外延生长AlGaInP时,由于AlP和InP的热力学稳定性的不同,液相外延的组分控制十分困难。而当使用氢化物或氯化物气相外延时,会形成稳定的AlCl化合物,会在气相外延时阻碍含Al磷化物的成功生长。因此AlGaInP 材料不能使用通常的气相外延和液相外延技术来制造。

激光分子束外延系统LMBE

激光分子束外延系统(LMBE) 1主要技术参数与要求 (1) 主腔体: 1. 腔体材料采用优质304不锈钢,全金属密封连接,腔体直径16英寸 (圆柱形设计); 2. 观察窗采取保护措施(加装含铅玻璃)以防止辐射,腔体预留仪器升 级窗口; 3. 真空系统采用德国普发分子泵(Hipace700),分子泵需配有数据接 口以实现软件控制,抽速为650L/s,并配合使用爱德华涡旋式干泵(dry pump,减少返油污染),抽速5.4 m3/hr,本底极限真空度优于5×10-9mbar (烘烤后)。分子泵与腔体之间采用软连接(配有Damper),以减小分子泵震动对RHEED的影响。 4. 主腔体配备两套不同的真空计,一套组合pirani/Bayard-Alpert(真空 计类型)真空计,量程5×10-10 mbar 到1 bar,用于测量真空度; ★5. 另外配置一套精确的Baratron(真空计类型)真空计,量程10-4到 1 mbar,专门用于精确控制生长时的工艺压力。 (2) 快速进样室: 1. 进样室配备单独的分子泵(普发Hipace80),可软件控制,抽速为 70L/s,配前级隔膜泵,本底真空优于5×10-5 mbar; 2. 能够通过磁力杆方便地传递样品以及靶材,与主腔体之间采用 DN100CF插板阀隔离; 2. 配备Pirani/capacitive(真空计类型)真空计,量程5×10-5 mbar 到 1bar; 3. 进样室配有观察窗; (3) 加热系统: 1. 电阻式加热器,最高加热温度900°C,温度稳定性 1°C,容纳样品尺 寸1英寸,对于1英寸的加热区域温度均匀性为3%; ★2.加热器为插拔式设计,即整个加热器(包括加热丝)可通过磁力杆

液相外延和分子束外延

液相外延 液相外延【liquid phase epitaxy】由溶液中析出固相物质并沉积在衬底上生成单晶薄层的方法。液相外延由尼尔松于1963年发明,成为化合物半导体单晶薄层的主要生长方法,被广泛的用于电子器件的生产上。薄层材料和衬底材料相同的称为同质外延,反之称为异质外延。液相外延可分为倾斜法、垂直法和滑舟法三种,其中倾斜法是在生长开始前,使石英管内的石英容器向某一方向倾斜,并将溶液和衬底分别放在容器内的两端;垂直法是在生长开始前,将溶液放在石墨坩锅中,而将衬底放在位于溶液上方的衬底架上;滑舟法是指外延生长过程在具有多个溶液槽的滑动石墨舟内进行。在外延生长过程中,可以通过四种方法进行溶液冷却:平衡法、突冷法、过冷法和两相法。 与其他外延方法相比;它具有如下的优点:1)生长设备比较简单,;2)有较高的生长速率;3)掺杂剂选择范围广;4)晶体完整性好,外延层位错密度较衬底低;5)晶体纯度高,生长系统中没有剧毒和强腐蚀性的原料及产物,操作安全、简便等。 LPE的不足在于,当外延层与衬底晶格常数差大于1%时,不能进行很好的生长。其次,由于分凝系数的不同,除生长很薄的外延层外,在生长方向上控制掺杂和多元化合物组合均匀性遇到困难。再者LPE的外延层表面一般不如气相外延好。 分子束外延 Molecular Beam Epitaxy 内容 分子束外延的英文缩写为MBE,这是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。该技术的优点是:使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子阱微结构材料。 特点 (1)生长速率极慢,大约1um/小时,相当于每秒生长一个单原子层,因此有利于实现精确控制厚度、结构与成分和形成陡峭的异质结构等。实际上是一种原子级的加工技术,因此MBE特别适于生长超晶格材料。(2)外延生长的温度低,因此降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层的自掺杂扩散影响。(3)由于生

异质结发展现状及原理

异质结发展现状及原理 pn结是组成集成电路的主要细胞。50年代pn结晶体管的发明和其后的发展奠定了这一划时代的技术革命的基础。pn结是在一块半导体单晶中用掺杂的办法做成两个导电类型不同的部分。一般pn结的两边是用同一种材料做成的(例如锗、硅及砷化镓等),所以称之为“同质结”。如果把两种不同的半导体材料做成一块单晶,就称之为“异质结“。结两边的导电类型由掺杂来控制,掺杂类型相同的为“同型异质结”。掺杂类型不同的称为“异型异质结”。另外,异质结又可分为突变型异质结和缓变型异质结,当前人们研究较多的是突变型异质结。 1 异质结器件的发展过程 pn结是组成集成电路的主要细胞,50年代pn结晶体管的发明及其后的发展奠定了现代电子技术和信息革命的基础。 1947年12月,肖克莱、巴丁和布拉顿三人发明点接触晶体管。1956年三人因为发明晶体管对科学所做的杰出贡献,共同获得了科学技术界的最高荣誉——诺贝尔物理学奖。 1949年肖克莱提出pn结理论,以此研究pn结的物理性质和晶体管的放大作用,这就是著名的晶体管放大效应。由于技术条件的限制,当时未能制成pn结型晶体管,直到1950年才试制出第一个pn结型晶体管。这种晶体管成功地克服了点接触型晶体管不稳定、噪声大、信号放大倍数小的缺点。 1957年,克罗默指出有导电类型相反的两种半导体材料制成异质结,比同质结具有更高的注入效率。 1962年,Anderson提出了异质结的理论模型,他理想的假定两种半导体材料具有相同的晶体结构,晶格常数和热膨胀系数,基本说明了电流输运过程。 1968年美国的贝尔实验室和苏联的约飞研究所都宣布做成了双异质结激光器。 1968年美国的贝尔实验室和RCA公司以及苏联的约飞研究所都宣布做成了GaAs—AlxGal—。As双异质结激光器l;人5).他们选择了晶格失配很小的多元合金区溶体做异质结对. 在70年代里,异质结的生长工艺技术取得了十分巨大的进展.液相夕随(LPE)、气相外延(VPE)、金属有机化学气相沉积(MO—CVD)和分子束外延(MBE)

碲镉汞分子束外延材料生长工序简介

碲镉汞分子束外延材料生长工序简介 碲镉汞(HgCdTe)分子束外延(MBE)材料即在分子束外延系统中生长的HgCdTe薄膜材料。全世界商用的分子束外延系统有多个公司的多种型号,但基本配置大同小异。这里介绍法国Riber公司的RIBER 32P 3英寸分子束外延系统,该套系统主要由一个预处理室、一个过渡室、一个生长室组成。预处理室用于完成衬底的进样和预先除气;过渡室用于样品的传递或暂存;在生长室中则主要完成样品的高温脱氧、缓冲层的生长和HgCdTe薄膜材料的外延。进样室和过渡室采用溅射离子泵,真空度可以达到10-10Torr。由于Hg材料的特殊性质,生长室的真空靠低温泵和冷阱来维持,外延生长时真空度保持在10-9Torr 的水平。 生长室的装置如图1所示,主要包括束源炉、液氮冷却系统、衬底加热装置、真空检测系统以及束源炉和衬底的温度监测控制系统。样品架具有旋转机构,以保证外延材料组分和厚度的均匀性,其中心位置装有非接触式测温热电偶,另外在样品架的对面装有红外辐射测温仪用的窗口。在生长过程中主要依靠热电偶和红外测温仪进行精确的衬底温度测量。样品的装片方式采用3英寸无In衬底架,由于衬底为红外透明材料,测温仪受到衬底加热器的热辐射干扰,无法获得衬底材料表面的真实温度,这时介于样品和加热器之间的热电偶测量信号将发挥重要的温度测量和指导温度控制的作用。生长所用的主要源材料为高纯的Hg(7N),Te (7N),CdTe(7N)。超高真空环境结合高纯源材料,保障 2 了其他材料杂质含量较少,避免了引入不必要的杂质掺杂。 图1 生长室装置示意图

HgCdTe外延材料的生长工艺 分子束外延生长工艺按时间顺序可以主要分为三个部分:衬底的预处理,装片工艺,HgCdTe生长条件的控制,后道工艺和材料评价。每一部分又由许多道更小的工序步骤组成。 ●衬底处理工艺 一般包括衬底的选片、抛光、清洗、腐蚀等环节,根据衬底材料的不同其处理方式也有一定区别。如Si衬底材料:Si衬底由于其反应性较强,与空气中的气体作用会在衬底表面产生杂质,从而将阻止正常的单晶生长并成为外延层内缺陷的主要起因。因此外延生长前,必须经过高温脱氧将衬底表面吸附的原子级杂质去除干净,才能继续外延生长。Si表面的原子级杂质主要是氧化层和碳化层,Lander 和Morrison报道了当Si衬底加热至800 ~1000℃时氧化层可完全去除,而去除碳化层的温度却要高达1200℃以上。这样的高温将引起杂质的互扩散,改变Si衬底中的掺杂浓度,除此之外还将增加晶体缺陷如位错和层错,在衬底中产生滑移线,而且RIBER 32P MBE的衬底加热能力有限,如何通过衬底前道清洁处理工艺把Si脱氧温度降到900℃以下,是首先要解决的问题。以Ishizaka方法为基础,通过改变人工氧化层生长方法以及HF腐蚀时间,降低脱氧温度的合适衬底制备工艺:(1)有机清洗,去油脂(2)化学方法对Si进行多次循环的氧化、去氧化,以完全去除Si表面的碳化层和氧化层(3)Cl原子进行Si表面钝化,防止Si与空气中的O、C原子发生反应(4)干燥后进行进样前的衬底筛选检验。 ●装片工艺 衬底的装片模式现在主要采用无In装片方式,即将3英寸衬底直接装配在无In钼环上。其装片方式,由图2可见,衬底在衬底架内自由放置,依赖于背后加热器的辐射加热,无热应力问题,并可保证衬底材料的横向温度均匀性。 图2 衬底的加热和旋转示意图

液相外延实验讲义

液相外延实验 外延生长是半导体材料和器件制造的重要工艺。从饱和溶液中在单晶衬底上生长外延层的方法称液相外延(Liquid Phase Epitaxy,LPE)。例如,GaAs外延层就可从以Ga为溶剂、As为溶质的饱和溶液中生长出来。液相外延方法是在1963年由纳尔逊(Nelson)提出的。与其他外延技术相比,液相外延有以下优点: 1.生长设备比较简单; 2.生长速率快; 3.外延材料纯度比较高; 4.掺杂剂选择范围较广泛; 5.外延层的位错密度通常比它赖以生长的衬底要低; 6.成分和厚度都可以比较精确的控制,重复性好; 7.操作安全,没有汽相外延中反应气体和反应产物所造成的高毒、易燃、易爆和强腐蚀等危险。 液相外延技术的出现,对于化合物半导体材料和器件的发展起了重要的推动作用。目前这一技术已广泛用于生长GaAs、GaAlAs、GaP、InP、GaInAsP等半导体材料和制作发光二极管、激光二极管、太阳能电池、微波器件等。 液相外延的最大缺点是当外延层与衬底的晶格失配大于1%时生长发生困难。其次,由于生长速率较快,难以得到纳米厚度的外延材料。此外,外延层的表面形貌一般不如汽相外延的好。 一、实验目的: 1.了解液相外延生长技术的基本原理和设备构成; 2.学会使用液相外延生长装置制备适用于光电子器件制作的多层化合物半导体材料; 二、实验仪器: 1.TG332-A型微量天平。用于生长源称量,使用说明书见附件1; 2.由UJ31型低电势直流电位差计、AC15/1型直流复射式检流计、标准电池和甲电池以及铂铑热电偶组成的测温装置,用以生长温度监测;

3.J WC-10型精密液相外延系统,由以下主要部分组成: 1)可编程精密自动温控仪; 2)轨道滑动炉体及支撑架; 3)石英生长室(反应管); 4)水平滑动石墨生长舟和石英舟托; 5)不锈钢密封接口和推动装置; 6)有机玻璃操作箱及支撑架; 7)机械真空泵; 8)氢气管路及控制阀; 9)B G-5型氢气净化仪。 整套系统配置示意图如图1所示,使用说明书见附件2。 三、液相外延生长原理和生长方法 (一)生长原理 液相外延生长的基础是溶质在液态溶剂内的溶解度随温度降低而减少。因此一个饱和溶液,在它与单晶衬底接触后被冷却时,如条件适宜,就会有溶质析出,析出的溶质就外延生长在衬底上。这里所述的外延,是指在晶体结构和晶格常数与生长层足够相似的单晶衬底上生长,使相干的晶格结构得以延续。如果衬底和外延层是由相同的材料组成的称为同质外延,反之称异质外延。在GaAs衬底上生长Ga1-x Al x As外延层就是异质外

分子束外延

分子束外延是一种新的晶体生长技术,简记为MBE。其方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内)。由分别加热到相应温度的各元素喷射出的分子流能在上述衬底上生长出极薄的(可薄至单原子层水平)单晶体和几种物质交替的超晶格结构。分子束外延主要研究的是不同结构或不同材料的晶体和超晶格的生长。该法生长温度低,能严格控制外延层的层厚组分和掺杂浓度,但系统复杂,生长速度慢,生长面积也受到一定限制。 分子束外延是50年代用真空蒸发技术制备半导体薄膜材料发展而来的。随着超高真空技术的发展而日趋完善,由于分子束外延技术的发展开拓了一系列崭新的超晶格器件,扩展了半导体科学的新领域,进一步说明了半导体材料的发展对半导体物理和半导体器件的影响。分子束外延的优点就是能够制备超薄层的半导体材料;外延材料表面形貌好,而且面积较大均匀性较好;可以制成不同掺杂剂或不同成份的多层结构;外延生长的温度较低,有利于提高外延层的纯度和完整性;利用各种元素的粘附系数的差别,可制成化学配比较好的化合物半导体薄膜 分子束外延(Molecular Beam Epitaxy)技术是在真空沉积法和1968年阿尔瑟(Arthur)对镓砷原子与GaAs表面相互作用的反应动力学研究的基础上,由美国贝尔实验室的卓以和在70年代初开创的。它推动了以超薄层微结构材料为基础的新一代半导体科学技术的发展。分子束外延(MBE)是一种灵活的外延薄膜技术,可以表述为在超高真空环境中通过把热蒸发产生的原子或分子束投射到具有一定取向、一定温度的清洁衬底上而生成高质量的薄膜材料或各种所需结构。晶体生长受分子束相互作用的动力学过程支配,而异于常规的化学气相淀积(VPE)和液相外延(LPE)中的准热力学平衡。随着MBE技术的发展,出现了迁移增强外延技术(MEE)和气源分子束外延(GS-MEE)技术,近年来又出现了激光分子束外延技术。 作为国防创新实验室的重要部门,材器中心现拥有两台MBE设备,分别为RIBER 32P和RIBER EPINEAT,均用于碲镉汞(HgCdTe)材料的制备。RIBER 32P作为早期研究型的设备在材器中心已经运行十多年,从早期在ZnCdTe衬底到后来在异质衬底(GaAs、Si、Ge) 上均做过很多Ⅱ-Ⅵ材料外延研究工作,参与了很多工程项目。RIBER EPINEAT作为生产型设备,自2004年引进材料组以来目前主要

有机分子束外延技术与研究进展

第20卷 第4期 物 理 学 进 展Vol.20,No.4 2000年10月PRO GRESS IN PH YSICS Oct.,2000文章编号:1000Ο0542(2000)04Ο0395Ο12 收稿日期:2000Ο05Ο24;修改日期:2000Ο07Ο17 基金项目:国家自然科学基金和中国科学院“九五” 重大基础研究基金的资助有机分子束外延技术与研究进展 周淑琴 刘云圻 邱文丰 朱道本 (中国科学院化学研究所有机固体室,北京 100080) 摘 要: 本文介绍了超高真空分子束外延生长有机薄膜的技术及其研究进展,讨论了外延材料的纯化过程和杂质对外延薄膜结构的影响;从理论和实验观点评论了薄膜的生长性质和膜的有序结构。超高真空有机分子束外延技术是一种多用途的高技术,可以生长有机、无机、有机/无机混和的薄膜结构。这种薄膜结构是未来光学和电子器件有希望应用的新一类工程材料。 关键词:  有机分子束外延;超高真空;有机薄膜;分子器件中图分类号: 484.1 文献标识码: A 0 引 言 薄膜科学始终是一门发展迅速、内容丰富、极其有意义的独立学科。随着分子电子学的发展,薄膜技术特别是有序薄膜技术,在微观电子学和纳米电子学方面深受重视。在过去的十年,超薄的有机分子薄膜和具有特殊光、电、磁功能的多层结构膜的研究有了惊人的进展。完成这种有序超薄有机膜的一个重要方法之一是分子束外延生长技术。这种技术的主要特点是使用超高真空(U HV )技术。如果化合物的纯度很高,结构完整,那么就能够很好的控制单分子有机膜的外延生长[1~3]。多年来,这种有机单分子膜的控制是采用众所周知的LB 膜沉积技术[4]。近年来,一种分子自组装技术也能完成单分子膜的制备[5]。但这两种薄膜技术,都要求对成膜分子进行化学修饰,使其带有特定的基团,从而限制了分子材料的研究范围。超薄有机分子薄膜真空生长技术也称为有机分子束沉积(OMBD )技术,或有机分子外延(OMB E )技术,它的优点在于无需对材料进行修饰,外延层的厚度可控,基片及环境的清洁度可达到原子级,在沉积超薄膜的过程中能够原位实时地监控膜的结构生长情况。OMB E 技术为了解超薄有机膜系统的基础结构和光、电、磁性质提供了全新的可行性操作。 超薄有机分子薄膜在分子电子学或纳米电子学领域具有广泛的实际应用前景,目前,

分子束外延 (MBE) 技术---基质加热器

MBE 组件 完全按照操作标准加工,旨在提供高度可靠、灵活的性能。Veeco 提供了一套完整的 MBE 系统组件,包括专为 MBE 工艺开发的先进的加热器、电源、设备控制器、布线和软件包。 1. 基质加热器 适用于特定温度和生长环境 Veeco 提供适用于特定应用领域、专为特定温度和生长环境条件而制造的基底加热器。标准设计使用 PBN 扩散器板和高级线丝,可提供优异的跨区一致性并降低了能耗。 ? 优异的热均匀性 ? 低能耗 ? 清洁操作 ? 提供多丝材料 ? 适合于特定应用领域的设计和材料 ? 延长了氧和氨环境下的寿命 ? 提供双丝加热器 ? 适用于所有标准 MBE 系统 2. MBE 线性移动快门 动作更快、寿命更长 借助 Veeco 线性移动快门可替代整体快门来控制分子束外延 (MBE) 系统中的射束流量,从而实现更快的动作。该快门带阻尼设计,实现了更长的使用寿命(>1 百万次),活动部件由波纹管密封并由气压驱动,而且轴受到保护可防止气动启动器阻塞。 ? 可靠、耐用、动作快速(50 ms 即可打开或关闭),因此可替代整体快门来控制 MBE 系统中的射束流量 ? 带阻尼设计的快门受到的冲击与振动降低 - 设计使用寿命 >1 百万次 ? 活动部件由波纹管密封并由气压驱动 ? 轴受到轴壳保护,可防止凝结的蒸发物阻塞启动器 ? 气动启动器可避免干扰 RHEED 或其他敏感设备 ? 适用于所有标准 MBE 系统 3. 气体源交付系统 用于 Veeco MBE 气体源精确控制 Veeco 的气体源传送系统 (GSDS) 提供对气体的精确控制、互锁和监测惰性气体、有害气体和/或可燃气体。Molly ? ECS1 生长控制软件可轻松与您的现有系统实现集成。 提供各种组合选项以符合您的需求及预算。所有组合均附带每条管路的手动气管切断阀、气体过滤净化器、质量流量控制器和气动控制运行排气阀。 ? 对 Veeco MBE 气体源实现高效、安全的气体控制 ? 便捷的操作和监测流程 ? 三种模型配置以满足特定应用和预算

相关文档
相关文档 最新文档