文档库 最新最全的文档下载
当前位置:文档库 › 涂层硬质合金刀具磨损机理的研究

涂层硬质合金刀具磨损机理的研究

涂层硬质合金刀具磨损机理的研究
涂层硬质合金刀具磨损机理的研究

收稿日期:2005年3月

涂层硬质合金刀具磨损机理的研究

贾庆莲 乔彦峰

中国科学院长春光学精密机械与物理研究所

摘 要:通过高速切削试验,观察了涂层刀片的磨损过程,描述了其磨损形态,分析了涂层刀片磨损率不同的原因,提出了涂层硬质合金刀具的磨损机理模型以及涂层硬质合金刀具的磨损类型。

关键词:T i N 涂层, 硬质合金刀具, 磨损机理, 高速切削

S tudy on Wearing Mechanism of C oated C emented C arbide Tool

Jia Qinglian Qiao Yanfeng

Abstract:Based on experiments of hi gh speed cutting,the wear process and wear appearance of the coated cemented carbide tools are studied.T he causes of different quanti ties of wear in the experiments are analyzed.T he model of wear mechanism of the coated cemented carbide tools and the wear styles of the coated cemented carbide tools such as di ffuse wear,plastic distortion wear and fatigue flake are presented.

Keywords:TiN coating, cemented carbide tools, wearing mechanism, high -speed cutting

1 引言

用化学气相沉积法(CVD 法)在WC 基硬质合金表面涂覆一薄层高硬度的难熔金属化合物(如TiC 、TiN),所制备的涂层硬质合金具有高耐磨性的表层

和足够韧性的基体。在高速切削条件下,涂层硬质合金刀具的切削性能较佳,其原因之一是由于刀具表面的涂层材料向基体材料一方的/渗透0作用,使刀具上涂层材料已磨穿区的抗扩散磨损能力提高;原因之二是由于刀具刃口涂层材料被磨损的滞后性,即在继续切削过程中,刃口涂层材料起到了有效的机械支承作用,提高了涂层刀片的耐磨性。一般情况下,涂层硬质合金的低速切削性能较差,这是因为在低速切削条件下,涂层的磨损会以磨损率很高的脆性疲劳剥落磨损为主。 2 高速切削试验

试验中以TiC 涂层硬质合金刀片在无级变速车床上加工材料为38Cr Ni3Mo VA 的工件,切削用量为:

f =012m m/r,a p =2mm,v =70~300m/min 。由试验可知,在较高切削速度范围内,涂层刀片的磨损过程大致可划分为三个阶段(见图1)。

(1)初磨阶段

自切削开始至刀具表面涂层材料被磨穿前的这个阶段称为初磨阶段。由于涂层刀片表面存在残余拉应力,其表面不平度约为2~4L m,在刀具)切屑(或工件)间的强烈摩擦下,表面涂层材料沿切屑流

动(或主运动)方向发生塑性滑移。其后果必导致前、后刀面的涂层材料发生塑性断裂,即塑性疲劳剥落磨损,前、后刀面的涂层在图1a 所示R 、F 处被磨穿。

图1 磨损特征

(2)正常磨损阶段

大量观察表明,在正常磨损阶段,前、后刀面涂层磨穿区均离刃口一定距离(见图1b)。也就是说,刀片刃口的涂层完整性尚好。为便于分析,将前、后刀面磨损面划分为六个区(见表1)。

表1 磨损区域划分

区域

特征

?前刀面近主刃处未磨穿区ò前刀面已磨穿区

ó前刀面远离主刃处未磨穿区?后刀面近主刃处未磨穿区?后刀面已磨穿区

?

后刀面远离主刃处未磨穿区

据观察,已被磨穿的ò、?区磨损面呈均匀的晶粒状,未磨穿的前刀面?、ó区,后刀面?、?区均呈/脊沟0状浅擦痕,深度为1~3L m,其方向平行于切屑流动方向(或主运动方向)。据分析,可以认为磨

损面上的脊沟是涂层材料沿切屑流动方向的塑性滑移所形成。

(3)终磨阶段

经过一定时间后,刀具刃口上的涂层材料终因塑性疲劳而被剥落。大量观察表明,一旦刃口处涂层材料的完整性被破坏(见图1c),涂层刀片便迅速丧失切削能力。

在切削试验中,随着时间的推移,刀片处于不同的磨损阶段,其磨损形态、磨损机理及磨损速率均随之变化。图2

所示即为一种刀片磨损模型。

图2 磨损模型

3 试验结果分析

311 扩散磨损

(1)未磨穿区的扩散磨损率很低

涂层刀片切削后,用电子探针对任意八个刀片未磨穿区表面进行微区分析,得到W 、Ti 、Co 等元素的浓度沿刀)屑界面上的线分布情况(见表2和图3)。

图3a 为尚未切削的新涂层刀片W 、Ti 、C o 等元素的浓度变化情况。刀片表面富钛区显然是TiC 涂层材料;基体(YW3)内部的W 、Ti 、Co 元素浓度分布均匀;在涂层材料和基体材料的结合面附近存在着1~2L m 厚的相互扩散层,这个扩散层在涂层工艺过程中已经形成。

图3b 是已经切削过的刀片W 、Ti 、Co 等元素的浓度变化情况。界面处的富钛区是TiC 涂层材料,表明该刀片尚未被磨穿。与图3a 所示新涂层刀片相比,富钛区内W 、Co 元素浓度增大,由此可以判断,基体材料中的W 、Co 元素正穿过涂层向工件(切

屑)扩散。电子探针对任意八个刀片未磨穿区表面进行微区分析的结果证明了W 、Ta 、Nb 、C o 元素向外扩散的普遍性。由图3b 还可发现,刀)屑界面附近(约2L m 左右)的Ti 元素浓度略有下降,这是因为涂层材料TiC 也正向工件一方扩散和溶解。

表2 涂层未磨穿区微区元素分析

切削条件v ,f ,a p ,t 刀片涂层对应区域

(见表1)

Ti W Co Nb Ta 200,0.2,2,20TiN ?99.4150.3310.0130.2320.009200,0.2,2,6TiC ?98.071 1.3680.3610.1620.032200,0.2,2,6TiC ó98.3980.9980.4030.1350.066200,0.2,2,20TiN ó95.921 3.1200.9200.0300.009200,0.2,2,20TiC ?96.132 2.368 1.1320.1530.215200,0.2,2,6TiN ?95.689 2.357 1.8560.0630.035200,0.2,2,20TiC ?98.8630.8750.1780.0120.070200,0.2,2,20

TiN

?

97.933

1.767

0.134

0.085

0.081

由上述试验分析可知,涂层刀片表面涂层未磨穿区确实存在扩散磨损,但该区的扩散磨损率是微不足道的。其原因有以下三点:

1与WC 相比,TiC 、TiN 的形成自由能$G 较低。因而涂层表面的化合物(TiC 或TiN)状态稳定,不易分解,因而限制了Ti 元素的扩散;

o在1250e 高温时,TiC 化合物在Fe 中的溶解度只是WC 的1/14,因而,与WC 相比,TiC 整体溶入工件材料中去的速率是极低的;

?处于高温作用下的基体材料(WC 、Co 等)虽有向涂层外扩散的趋势,但由于表面层的扩散屏障作用,阻碍了WC 、C o 的扩散。

(2)磨穿区以扩散磨损为主

当磨损面上的涂层被磨穿后,基体材料暴露在界面上。这时的扩散磨损作用机理已与一般硬质合金的扩散磨损作用机理并无大的区别。在刀)屑界

面附近约3~5L m 范围内,刀具材料中的Ti 含量高于原基体中的Ti 含量。为了进行比较,在相同的切削条件下,分别对涂层磨穿区及非涂层基体刀片(YW3)相对应的磨损部位进行微区分析,结果表明,TiC 涂层刀片的Ti/W 比值普遍高于YW3刀片(见表3)。这种磨损区表面Ti 含量略高的现象称为涂层材料向基体材料在化学成分上的/渗透0作用。据研究,WC 在立方碳化物TiC 中的溶解度高达70%,形成复杂固溶体(Ti 、W)C 。随着含Ti 量的增大,(Ti 、W)C 固溶体随之增多。由于其固溶强化作用,

(Ti 、W)C 的高温强度、高温硬度均比WC 有所提高;(Ti 、W)C 在工件材料中的溶解度是WC 的1/14。由此可知,涂层的/渗透0作用调整了磨穿区基体材料的化学成分比例,提高了磨穿区基体材料的抗扩散磨损能力。这就是为什么在涂层材料被早期磨穿后,

涂层刀片仍具有较高耐磨性的原因之一。

(a)新涂层刀片(

TiC)

(b)切削后涂层未磨穿区

图3 W 、Ti 、C 元素在刀)屑界面上的线分布表3 涂层已磨穿区与YW3刀片的Ti/W 比值

切削条件(v ,f ,a p ,t )

Ti C 涂层YW3测试位置

200,0.2,2,20.2730.101?200,0.2,2,4.50.1480.125?200,0.2,2,20.2130.077ò200,0.2,2,2

0.236

0.095

ò

312 塑性变形磨损

涂层刀片刃口附近的工作条件与非涂层刀片无本质差别:该处的切削温度不是最高,与工件间的相对速度较低。同时由于切削刃刃口钝圆半径远比涂层厚度大,故后刀面上涂层首先被磨穿部分应在离开刃口向下约011mm 的F 处(见图1)。由于涂层刀片的切削刃在涂镀前经过钝化,处于三向压应力状态,从而大大提高了刀具材料的塑性,因此此时该处的工作条件(受力状态、温度及相对速度)和材料状态均有利于其抗磨损能力的提高。

试验中观察到,涂层刀片的刃口完整性与刀具失效密切相关,即一旦涂层刀片的刃口完整性被破坏,刀片就进入终磨阶段(见图1c)。分析认为,完整的刃口为前、后刀面涂层已磨穿区的继续磨损起

到了有效的/支承0保护作用,从而延缓了前、后刀面涂层已磨穿区的扩展。这种/支承0作用和前述的/渗透0作用是涂层材料被磨穿后涂层刀片仍具有较高耐磨性的两个主要原因。

由于涂层材料的热膨胀系数高于基体材料,在高温作用下,沿涂层厚度方向上的热膨胀量大于基体材料;又由于涂层材料的高温硬度高于基体材料,故在切削过程中,前刀面上的?、ó区,后刀面上的?、?区分别起到了机械支承作用,保护了已磨穿的ò、?区;而未磨穿的?、ó、?、?区则承受着塑性变形磨损。

在切削过程中,因热胀量较小而稍呈洼状的ò、?磨穿区完全被切屑底部的熔融状工件材料所填

平。用电子探针沿切屑流动方向扫描发现,ò区Fe 元素扫描线出现峰值,?、ó区则以Ti 元素为主。此时,ò、?区受到涂层材料的两次/渗透0作用(涂层工艺过程中和涂层未磨穿时),已暴露的基体材料以复杂固溶液体(Ti 、W)C+Co 组成,故在高速切削条件下,涂层刀片的耐磨性大大提高。

313 疲劳剥落磨损

在高速切削条件下,由于切削温度较高,刀具材料塑性有所提高,涂层表面承受塑性变形,产生塑性

滑移,致使涂层内部形成许多裂纹。由于涂层材料的热胀量大于基体材料,因此涂层表面必然会出现早期剥落,以释放残余应力。但其磨损面形态很光滑,在剥落块边界无明显台阶。在切削初期,涂层材料内裂纹密度高达015根/微米,由于高速切削时切削力平稳,材料塑性较好,涂层内裂纹非常稳定地度过了正常磨损阶段(或者说,此时裂纹的扩展速率极慢)。随着切削过程的继续,当刀具材料达到塑性疲劳极限时,刀具刃口处、甚至整个磨损面上的涂层很快疲劳剥落,涂层刀片的切削寿命终止。 4 结论

(1)在高速切削条件下,涂层硬质合金刀具的表面涂层在切削早期就被磨穿;刀具的正常工作是处于涂层已局部被磨穿的情况下进行的;此时,刀具涂层磨穿区的磨损以扩散磨损为主,未磨穿区以塑性变形磨损为主。

(2)由于表面涂层对基体材料的渗透作用以及涂层未磨穿区对磨穿区的支承作用,致使涂层硬质合金刀具的磨损率很低;在相同的切削条件下,与未涂层刀片相比,涂层刀片的后刀面磨损耐用度可提高2~4倍,抗月牙洼磨损能力可提高5~10倍。

(3)由于WC 在立方碳化物TiC 中的溶解度较高,形成的复杂固溶体(Ti 、W)C 有助于提高涂层刀片磨穿区的抗扩散磨损能力,因而基体材料除具备足够韧性外,以选择WC 基硬质合金为宜;涂层材料除具备较高硬度及稳定的化学性能外,由于未磨穿区的涂层材料以塑性变形磨损为主,因而涂层材料以选择剪切强度S s 较高者为宜。

(4)由于涂层刀片磨损过程中刃口的机械支承作用能提高其耐磨性,从而强调了涂层前刀片刃口钝化处理工序的必要性。

参考文献

1 薛玉娥,林香祝,陈仁悟.氮化钛涂层的磨损特性.稀有金属材料与工程,1990(2):42~46

2 庄大明,刘家浚,朱宝亮.TiN 薄膜的应力状态对摩擦学性能的影响.摩擦学学报,1996,16(4):312~321

3 周泽华.金属切削原理.上海:上海科技出版社,1989

4 韩荣第,周 明.金属切削原理与刀具.哈尔滨工业大学出版社,1998

第一作者:贾庆莲,助理研究员,中国科学院长春光学精密机械与物理研究所,130031长春市

*国家自然科学基金资助项目(项目编号:50275088,50475133)收稿日期:2005年3月

陶瓷拉丝模的受力分析及其结构设计*

杨学锋 邓建新 姚淑卿

山东大学

摘 要:根据拉拔力的计算结果分析了陶瓷拉丝模工作时的受力状态,得到陶瓷拉丝模在拉拔加工过程中工作区和定径区的应力分布情况;基于分析结果对陶瓷拉丝模进行结构设计,得到与陶瓷材料匹配的合理的拉丝模结构。

关键词:拉丝模, 应力, 陶瓷, 结构设计

Force Analysis and Structural Design for Ceramic Wire Drawing Die

Yang Xuefeng Deng Jianxin Yao Shuqing

Abstract:According to the calculation of the drawing force,the stress state of the ceramic wire drawing die during working process was analyzed and the stress distribution at working section and fixed diameter section of the die were studied.The structure of the ceramic wire drawing die was also designed based on the analyzed results and the rational die structure matching with ceram -ic material was gained.

Keywords:wire drawing die, stress, ceramic, structural design

1 引言

拉丝模作为线材拉拔行业中各种金属线材生产企业(如电线电缆厂、钢丝厂、焊条焊丝厂等)使用的一种非常重要的易耗模具,广泛用于拉拔棒材、线材、丝材、管材等直线型难加工工件,适于加工钢铁、铜、钨、钼等金属和合金材料。由于拉丝模的成本消耗通常占到拉丝加工总费用的1/2以上,因此,如何降低拉丝模成本、提高其工作寿命是金属线材生产企业迫切需要解决的问题。

从国外的研究结果看,陶瓷材料已广泛应用于模具领域,日本、美国、法国等国家已拥有多项相关专利。尽管目前我国对陶瓷拉丝模的应用尚处于起步阶段,但随着制造技术的不断发展和研究工作的继续深入,相信陶瓷作为一种性能良好的拉丝模材

料,将会越来越广泛地应用于拉丝工业。 2 拉拔力的计算

计算拉拔力时要考虑到作用于棒材上的各种因素。常用的拉拔力计算公式都是在一定的假设基础上用理论方法导出的,即假设金属在拉丝模中塑性流动时,横断面平均的主应力R 1和R 2与金属的屈服极限R s 具有如下的关系[1,7,8]:

R 1-R 2=R s

上式是近似正确的。目前的研究还未从理论上对[(R 1-R 2)-R s ]这一差值作出评价。由于在计算公式中还有一个近似值)))摩擦系数,因此这一差值不可能用试验方法评定(所谓的试验方法就是测量拉拔力并将其值与根据公式计算出来的值加以比较)。由于这个原因,最合适的方法是用理论)试验的方法来制定拉拔力的计算公式。

刀具在加工过程中的磨损以及应对策略【干货】

刀具在加工过程中的磨损以及应对策略 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 刀具磨损是切削加工中基本的问题之一。了解刀具磨损的情况和原因,可以帮助刀具制造商以及用户延长数控刀具寿命。现在的数控刀具都会采用涂层技术(包括采用新的合金元素),这进一步有效的延长了刀具的使用寿命,同时可以显著提高生产率。 一、刀具磨损机理介绍 在金属切削加工中,产生的热量和摩擦是能量的表现形式。由很高的表面负荷以及切屑沿刀具前刀面高速滑移而产生的热量和摩擦,使刀具处于一种极具挑战性的加工环境中。 切削力的大小往往会上下波动,主要取决于不同的加工条件(如工件材料中存在硬质成份,或进行断续切削)。因此,为了在切削高温下保持其强度,要求刀具具有一些基本特性,包括极好的韧性、耐磨性和高硬度。

尽管刀具/工件界面处的切削温度是决定几乎所有刀具材料磨损率的关键要素,但要确定计算切削温度所需的参数值却十分困难。不过,切削试验的测量结果可以为一些经验性的方法奠定基础。 通常可以假定,在切削中产生的能量被转化为热量,而通常这些热量的80%都被切屑带走(这一比例的变化取决于几个要素——尤其是切削速度)。其余大约20%的热量则传入刀具之中。即使在切削硬度不太高的钢件时,刀具温度也可能会超过550℃,这是高速钢在硬度不降低的前提下能够承受的高温度。用聚晶立方氮化硼(PCBN)刀具切削淬硬钢时,刀具和切屑的温度通常将超过1000℃。 二、刀具磨损与刀具寿命 刀具磨损通常包括以下几种类型:①后刀面磨损;②刻划磨损;③月牙洼磨损;④切削刃磨钝;⑤切削刃崩刃;⑥切削刃裂纹;⑦灾难性失效。 对于刀具寿命,并没有被普遍接受的统一定义,通常取决于不同的工件和刀具材料,以及不同的切削工艺。定量分析刀具寿命终止点的一种方式是设定一个可以接受的后刀面磨损极限值(用VB或VBmax表示)。刀具寿命可用预期刀具寿命的泰勒公式表示,即VcTn=C,该公式的一种更常用的形式为VcTn×Dxfy=C式中,Vc为切削速度;T为刀具寿命;D为切削深度;f为进给率;x和y由实验确定;n和C是根据实验或已发表的技术资料确定的常数,它们表示刀具材料、工件和进给率的特性。

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金刀具涂层

硬质合金刀具的涂层技术 [ 摘要]切削刀具表面涂层技术是近几十年应市场需求发展起来 的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命, 使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。主 要介绍涂层硬质合金刀具涂层材料的特点、要求,涂层制备技术,分 析化学气相沉积法(CVD)、物理气相沉积法(PVD),单、复合涂层 制备方法及优缺点。 [关键字] 硬质合金涂层刀具;化学气相沉积法;物理气相沉积法; 现状及发展 引言 现代化的金属切削加工要求刀具具有高切削速度、高进给速度、 高可靠性、长寿命、高精度和良好的切削控制性。因此, 高水平、稳 定的刀具涂层技术越来越受到机械加工企业的青睐。。涂层技术是提 高切削效率, 降低加工成本的有效途径。刀具基体与硬质薄膜表层相 结合, 由于基体保持了良好的韧性和较高的强度, 硬质薄膜表层又 具有高耐磨性和低摩擦因数, 从而使刀具的性能显著提高, 而且, 随着涂层技术设备的日趋集成化、模块化和智能化, 涂层费用已比初 期下降1/2~ 2/3, 涂层刀具在刀具总量中所占的比例将会越来越大。 表面涂层硬质合金在基体硬质合金上, 用(CVD)化学气相沉积, 或(PVD)物理气相沉积等方法, 涂覆耐磨的TiC、TiN、Al2O3等薄 层, 形成表面涂层硬质合金。涂层硬质合金刀片均为可转位形式, 刚

机夹方法装夹在刀杆或刀体上使用。具有以下优点: 1) 表面涂层材 料具有很高的硬度和耐磨性, 故与未涂层刀片相比, 涂层硬质合金 可采用较高的切削速度, 或能在同样的切削速度下大幅度地提高刀 具耐用度。2)涂层材料与被加工材料之间的摩擦系数较小, 故切削力有一定减小, 比未涂层刀片约降低 5%左右。润滑薄膜具有良好的固 相润滑性能, 可有效地改善加工质量, 也适合于干式切削加工。3) 用涂层刀片加工, 已加工表面质量较好。 4) 涂层技术作为刀具制造的最终工序, 对刀具精度几乎没有影响, 并可进行重复涂层工艺。5)由于综合性能好, 涂层刀片有较好的通用性。一种牌号的刀片经常有较宽的适用范围。涂层切削刀具所带来的益处: 可大幅度提高切削刀具寿命; 有效地提高切削加工效率; 明显提高被加工工件的表面质量; 有效地减少刀具材料的消耗,降低加工成本; 减少冷却液的使用, 降低成本, 利于环境保护。 1 涂层材料的发展现状与趋势 1.1 涂层材料的特点 涂层的特点是涂层薄膜与刀具基体相结合, 提高刀具的耐磨性 而不降低基体的韧性, 从而降低刀具与工件的摩擦因数, 延长刀具 的使用寿命。此外, 由于涂层自身的热传导系数比刀具基体和加工材料低得多, 可以有效减少摩擦所产生的热量, 形成热屏蔽, 改变热 量的散失途经, 从而降低刀具与工件、刀具与切屑之间的热冲击和力冲击, 有效地改善了刀具的使用性能。 刀具涂层所起的作用表现为: 1) 在刀具与被切削材料之间形成

硬质合金车刀几何角度选择原则

●硬质合金车刀合理前角、后角的参考值 (1)前角的选择 增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。 选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下: 1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。 2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。 3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。 (2)后角的选择 增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。实验证明,合理的后角主要取决于切削厚度。其选择原则如下: 1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。加工脆性材料时,切削力集中在刃口附近,应取较小的后角。 2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。 3)当工艺系统刚性较差,容易出现振动时,应适当减小后角。在一般条件下,为了提高刀具耐用度,可增大后角,但为了降低重磨费用,对重磨刀具可适当减小后角。 为了使制造、刃磨方便,一般副后角等于主后角。下表1给出了硬质合金车刀合理后角的参考值。 表1 硬质合金车刀合理前角、后角的参考值

常见切削刀具材料的磨损现象及原因分析

常见切削刀具材料的磨损现象及原因分析 1引言 从20世纪80年代开始,由于数控机床的主轴、进给系统等功能部件设计制造技术的突破,数控机床的主轴转速和进给速度均大幅度提高,在现代制造技术全面进步的推动下,切削加工技术开始进入高速切削的新阶段。目前,高速切削已在模具、航空、汽车等制造业领域得到了大量应用,产生了显著的经济效益,并正向其它应用领域拓展。高速切削加工对刀具提出了一系列新的要求。研究表明,高速切削时,造成刀具损坏的主要原因是在切削力和切削温度作用下因机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等的引起的磨损和破损。因此,对高速切削刀具材料最主要的性能要求是耐热性、耐磨性、化学稳定性、抗热震性以及抗涂层破裂性能等。陶瓷、CBN、PCD、金属陶瓷等刀具材料具有良好的耐热性和耐磨性,当其韧性得到改善后,非常适合用于高速切削。先进涂层技术的发展进一步改善了刀具材料的性能。目前,新型涂层材料和涂层工艺的开发方兴未艾,预示着涂层刀具在高速切削领域将有巨大发展潜力和广阔应用前景。 本文对高速切削加工时陶瓷刀具、立方氮化硼刀具、金刚石刀具、金属陶瓷刀具和涂层刀具的磨损机理进行了综合评述,对刀具的磨损形态和磨损寿命进行了分析,这些研究将有益于实际生产加工中对高速切削刀具的合理选用与磨损控制。 2高速切削刀具的磨损形态 高速切削时,刀具的主要磨损形态为后刀面磨损、微崩刃、边界磨损、片状剥落、前刀面月牙洼磨损、塑性变形等。 后刀面磨损是高速切削刀具最经常发生的磨损形式,可看作是刀具的正常磨损。后刀面磨损带宽度的加大会使刀具丧失切削性能,在高速切削时常采用后刀面上均匀磨损区宽度VB值作为刀具的磨损极限。 微崩刃是在刀具切削刃上产生的微小缺口,常发生在断续高速切削时,通过选用韧性好的刀具材料、减小进给量、改变刀具主偏角以增加稳定性等措施,均可减小微崩刃的发生概率。通常只要将刀具微崩刃的大小控制在磨损限度以内,刀具仍可继续切削。

刀具涂层有哪些-刀具涂层种类大全

刀具涂层有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方 法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼 等超硬材料刀片上)而制备的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩 散和化学反应,从而减少了基体的磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳 定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍 以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。 现状 涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中 使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、 成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 类别 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚 石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀 片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以 上),可减少刀片的崩刃及破损,扩大应用范围。 新型涂层技术

Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。 涂层方法 生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD 相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。涂层材料 涂层材料须具有硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求。显然,单一的涂层材料很难满足上述各项要求。所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

PVD涂层硬质合金刀具材料分类分组对照表

表4-4,五国十厂PVD 涂层硬质合金刀具材料分类分组对照表 注:上表摘自各公司样本和刊物,没有取得各公司的认可。 作 业 ISO 分类 分组代号 株洲 钻石 自贡 764 山特 维克 肯纳 公司 伊斯卡 公司 三菱 公司 东芝 公司 住友 公司 山高 公司 黛杰 公司 车 削 P P01 JC5003 P10 YBM252 KC5010 KC5510 1C507 VP10MF CP200 JC5003 P20 YBM252 GC1020 GC4125 GC1025 1C507 1C570 1C308 1C908 VP15TF VP20MF CP250 JC5015 P30 1C354 1C308 1C908 1C328 1C3028 VP15TF VP20MF GH330 AH120 CP500 JC5015 P40 GC1020 GC2145 1C328 1C3028 1C354 AH120 CP500 M M01 EH510Z M10 YBG202 GC1005 GC1025 KC5010 KC5510 1C507 1C907 VP10MF EH510Z CP200 JC5003 M20 YBG202 YBG302 YBM351 GC1020 GC1025 GC4125 1C507 1C907 1C1028 VP15TF VP20MF GH330 EH520Z CP200 CP500 JC5015 M30 YBG202 YBG302 YBM351 GC1020 GC2035 KC5025 KC5525 KC710 1C328 1C3028 1C1028 VP15TF VP20MF AH120 CP500 JC5015 M40 YBG302 YBM351 GC2145 1C328 1C3028 K K01 AH110 EH10Z JC5003 K10 KC5010 KC5510 1C507 1C907 GH110 AH110 EH10Z EH20Z CP200 JC5003 JC5015 K20 GC1020 1C308 1C908 VP15TF AH120 EH20Z CP200 CP250 JC5015 K30 GC4125 1C328 1C3028 1C1028 VP15TF CP500 S S01 VP05RT AH110 JC5003 S10 YBG102 GC1005 GC1025 KC5410 KC5010 KC5510 VP05RT VP10RT AH120 EH510Z CP200 CP250 CP500 JC5015 S20 YBG202 GC4125 KC5025 KC5525 VP10RT VP15TF EH20Z EH520Z CP250 CP500 S30 YBG202 VP15TF 铣 削 P P01 JC5003 P10 YBG202 KC792M KC715M ACZ310 JC5003 JC5030 P15 YBG202 YBG302 P20 YBG202 YBG302 GC1025 KC522M KC525M 1C950 1C908 VP15TF ACZ310 ASZ330 F25M JC5015 JC5030 JC5040 P25 YBG202 YBG302 P30 YBG302 YBG402 YBM351 KC725M 1C250 VP15TF VP30RT GH330 AH330 AH120 AH740 ACZ330 ACZ350 F25M F30M JC5015 JC5040 P40 YBG302 YBG402 YBM351 KC735M 1C328 1C928 VP30RT AH120 ACZ350 F40M T60M JC5040 P50 YBG402 YBM351

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

刀具磨损原因及减少磨损的方法介绍

刀具磨损原因及减少磨损的方法介绍 提前了解刀具为什么会磨损,可以帮助刀具的使用者延长刀具寿命。此外,现在的刀具涂层技术(包括采用新的合金元素)提供了进一步延长刀具寿命的有效手段,同时可以显著提高生产率。下面成都量具刃具——成都川府工具有限公司为大家介绍刀具磨损及应对之策 刀具磨损机理 在金属切削加工中,产生的热量和摩擦是能量的表现形式。由很高的表面负荷以及切屑沿刀具前刀面高速滑移而产生的热量和摩擦,使刀具处于一种极具挑战性的加工环境中。 切削力的大小往往会上下波动,主要取决于不同的加工条件(如工件材料中存在硬质成份,或进行断续切削)。因此,为了在切削高温下保持其强度,要求刀具具有一些基本特性,包括极好的韧性、耐磨性和高硬度。 尽管刀具/工件界面处的切削温度是决定几乎所有刀具材料磨损率的关键要素,但要确定计算切削温度所需的参数值却十分困难。不过,切削试验的测量结果可以为一些经验性的方法奠定基础。 通常可以假定,在切削中产生的能量被转化为热量,而通常这些热量的80%都被切屑带走(这一比例的变化取决于几个要素——尤其是切削速度)。其余大约20%的热量则传入刀具之中。即使在切削硬度不太高的钢件时,刀具温度也可能会超过550℃,这是高速钢在硬度不降低的前提下能够承受的最高温度。用聚晶立方氮化硼(PCBN)刀具切削淬硬钢时,刀具和切屑的温度通常将超过1000℃。 刀具磨损与刀具寿命 刀具磨损通常包括以下几种类型:①后刀面磨损;②刻划磨损;③月牙洼磨损;④切削刃磨钝;⑤切削刃崩刃;⑥切削刃裂纹;⑦灾难性失效。 对于刀具寿命,并没有被普遍接受的统一定义,通常取决于不同的工件和刀具材料,以及不同的切削工艺。定量分析刀具寿命终止点的一种方式是设定一个可以接受的最大后刀面磨损极限值(用VB或VBmax表示)。刀具寿命可用预期刀具寿命的泰勒公式表示,即 VcTn=C 该公式的一种更常用的形式为 VcTn×Dxfy=C 式中,Vc为切削速度;T为刀具寿命;D为切削深度;f为进给率;x和y由实验确定;n和C是根据实验或已发表的技术资料确定的常数,它们表示刀具材料、工件和进给率的特性。 不断发展的最佳刀具基体、涂层和切削刃制备技术对于限制刀具磨损和抵抗切削高温至关重要。这些要素,加上在可转位刀片上采用的断屑槽和转角圆弧半径,决定了每种刀具对

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

硬质材料之硬质合金与硬质合金涂层

h 硬丽 硬质合金 謬第 硬质合金涂 第一! -

硬质材料包括硬质合金f并包括组成硬质合金的碳化磚粉、碳化起.碳化帆、碳化错、碳化钛这些硬质粉末”以及金刚石(C)f PcD (多晶钻),cBN (立方氮化硼)f和Si3N4 氮化硅。 PcD (多晶钻)是一种使用金刚石微粒和化学粘合剂混合之后,在高温高压环境下沉积为相干结构的人造材料。 cBN (立方氮化硼)是来自PcBN的多晶体。PcBN是一种由cBN微 粒和陶瓷或金属触媒粘合剂在高温高压下沉积而成的聚合体。 Si3 N4氮化硅是一种具有高抗碎性能的陶瓷材料。 硬质合金和碳-氮化合物一尽管高速钢对于如钻孔. 拉削这样的应用仍然非常重要■但大多数的金属切削都是通过

硬质合金工具完成的。对于那些非常难于加工的材料,硬质合金现在正逐渐由碳氮化合物、陶瓷制品和超硬材料所替代。渗碳的(或烧结的)硬质合金和碳氮化合物,被世界上大多数一致认为是硬金属, 是一系列通过粉末;台金技术制成的非常硬的.耐火. 耐磨的合金。微小的硬质合金或者氮化物颗粒在处于烧结題液体时被金属粘结剂”胶结"o个体硬金属的成分和属性与那些黄铜和高速钢是不同的。所有的硬金属都是金属陶瓷,是由陶瓷颗粒和金属粘结剂化合而成。 第一节硬质合金 ? “碳化磚”是非常硬的硬质合金颗粒,特别是碳化锯在 工能力。早期 富铁基质的出现 的硬质合金在用于工业用途时过于脆弱■但是不久发现将

碳化锯粉末与大约10%的金属,如铁、银或钻,允许压坯在大约1500°CT 烧结,在这个过程中生成的产品具有低孔隙率、非常高的硬度,而且相当大的强度。这些性质的组合使得材料理想的适合用来作为切削金属的加工刀具。 ?硬质合金的变化是由铜焊接硬质合金嵌入变成夹具嵌入,以及涂敷技术的迅速发展。 硬质合金刀具材料的制法: 一种是经过压锻和烧结至精确的形状和尺寸。 另外的一个进步是高温真空固态渗粘法(HIP)的应用。此方法实际上允许通过高压下的惰性气体将硬质合金中所有的残余孔隙度都挤出来>应用的温度大约是烧结温度。通过此方法刚度、抗裂强度和抗

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

涂层硬质合金刀具磨损机理的研究

收稿日期:2005年3月 涂层硬质合金刀具磨损机理的研究 贾庆莲 乔彦峰 中国科学院长春光学精密机械与物理研究所 摘 要:通过高速切削试验,观察了涂层刀片的磨损过程,描述了其磨损形态,分析了涂层刀片磨损率不同的原因,提出了涂层硬质合金刀具的磨损机理模型以及涂层硬质合金刀具的磨损类型。 关键词:T i N 涂层, 硬质合金刀具, 磨损机理, 高速切削 S tudy on Wearing Mechanism of C oated C emented C arbide Tool Jia Qinglian Qiao Yanfeng Abstract:Based on experiments of hi gh speed cutting,the wear process and wear appearance of the coated cemented carbide tools are studied.T he causes of different quanti ties of wear in the experiments are analyzed.T he model of wear mechanism of the coated cemented carbide tools and the wear styles of the coated cemented carbide tools such as di ffuse wear,plastic distortion wear and fatigue flake are presented. Keywords:TiN coating, cemented carbide tools, wearing mechanism, high -speed cutting 1 引言 用化学气相沉积法(CVD 法)在WC 基硬质合金表面涂覆一薄层高硬度的难熔金属化合物(如TiC 、TiN),所制备的涂层硬质合金具有高耐磨性的表层 和足够韧性的基体。在高速切削条件下,涂层硬质合金刀具的切削性能较佳,其原因之一是由于刀具表面的涂层材料向基体材料一方的/渗透0作用,使刀具上涂层材料已磨穿区的抗扩散磨损能力提高;原因之二是由于刀具刃口涂层材料被磨损的滞后性,即在继续切削过程中,刃口涂层材料起到了有效的机械支承作用,提高了涂层刀片的耐磨性。一般情况下,涂层硬质合金的低速切削性能较差,这是因为在低速切削条件下,涂层的磨损会以磨损率很高的脆性疲劳剥落磨损为主。 2 高速切削试验 试验中以TiC 涂层硬质合金刀片在无级变速车床上加工材料为38Cr Ni3Mo VA 的工件,切削用量为: f =012m m/r,a p =2mm,v =70~300m/min 。由试验可知,在较高切削速度范围内,涂层刀片的磨损过程大致可划分为三个阶段(见图1)。 (1)初磨阶段 自切削开始至刀具表面涂层材料被磨穿前的这个阶段称为初磨阶段。由于涂层刀片表面存在残余拉应力,其表面不平度约为2~4L m,在刀具)切屑(或工件)间的强烈摩擦下,表面涂层材料沿切屑流 动(或主运动)方向发生塑性滑移。其后果必导致前、后刀面的涂层材料发生塑性断裂,即塑性疲劳剥落磨损,前、后刀面的涂层在图1a 所示R 、F 处被磨穿。 图1 磨损特征 (2)正常磨损阶段 大量观察表明,在正常磨损阶段,前、后刀面涂层磨穿区均离刃口一定距离(见图1b)。也就是说,刀片刃口的涂层完整性尚好。为便于分析,将前、后刀面磨损面划分为六个区(见表1)。 表1 磨损区域划分 区域 特征 ?前刀面近主刃处未磨穿区ò前刀面已磨穿区 ó前刀面远离主刃处未磨穿区?后刀面近主刃处未磨穿区?后刀面已磨穿区 ? 后刀面远离主刃处未磨穿区 据观察,已被磨穿的ò、?区磨损面呈均匀的晶粒状,未磨穿的前刀面?、ó区,后刀面?、?区均呈/脊沟0状浅擦痕,深度为1~3L m,其方向平行于切屑流动方向(或主运动方向)。据分析,可以认为磨 损面上的脊沟是涂层材料沿切屑流动方向的塑性滑移所形成。

金刚石刀具的磨损机理

金刚石刀具的磨损机理 引言:由于金刚石材料的高硬度和各向同性使其磨损非常缓慢。是一种理想的刀具材料。为了充分发挥PCD刀具的切削性能,世界各国先后投入大量人力物力对PCD刀具进行研究。 1、金刚石刀具的磨损形态 金刚石刀具的磨损形态常见于前刀面磨损、后刀面磨损和刃口崩裂。 1、金刚石刀具的磨损机理 金刚石刀具的磨损机理比较复杂,可分为宏观磨损与微观磨损。前者以机械磨损为主,后者以热化学磨损为主。宏观磨损的基本规律如图,早期磨损迅速,正常磨损十分缓慢。通过高倍显微镜观察,刃口质量越差及锯齿度越大,早期磨损就越明显。这是因为金刚石刀刃圆弧采用机械方法研磨时,实际得到的是不规则折线如图,在切削力作用下,单位折线上压力迅速增大,导致刀刃磨损加快。另一个原因是,当金刚石刀具的刃磨压力过大或刃磨速度过高,及温度超过某一临界值时,金刚石刀具表面就会发生氧化与石墨化,使金刚石刀具表面的硬度降低,形成硬度软化层。在切削力作用下,软化层迅速磨损。由此可见,金刚石刀具刃磨质量的高低会严重影响它的使用寿命与尺寸精度的一致性。 当宏观磨损处于正常磨损阶段,金刚石刀具的磨损十分缓慢,实践证明,在金刚石的结晶方向上的磨损更是缓慢。随着切削时间的延长,刀具仍有几十至几百纳米的磨损,这就是微观磨损。通过高倍显微镜长期观察以及用光谱与衍射分析后,金刚石刀具的微观磨损原因可能有以下3个: 1随着切削时间的不断延长,切削区域能量不断积聚,温度不断升高,当达到热化学反应温度时,就会在刀具表面形成新的变质层。变质层大多是强度甚差的氧化物与碳化物,不断形成,不断随切屑消失,逐渐形成磨损表面。

2金刚石晶体在切削力特别是承受交变脉冲载荷持续作用下,一个又一个C原子获得足够的能量后从晶格中逸出,造成晶体缺陷,原子间引力减弱,在外力作用下晶格之间发生剪切与剥落,逐渐形成晶格层面的磨损,达到一定数量的晶格层面磨损后就会逐渐形成刀具的磨损表面。 3金刚石刀具在高速切削有色金属及其合金时,在长时间的高温高压作用下,当金刚石晶体与工件的金属晶格达到分子甚至原子之间距离时,引起原子之间相互渗透。改变了金刚石晶体的表面成分,使得金刚石刀具表面的硬度与耐磨性降低,这种现象称为金刚石的溶解。金刚石刀具的磨损程度与磨损速度则取决于金刚石原子在有色金属或在其它非金属材料原子中的溶解率。实践证明,金刚 石刀具在切削不同的材料时,有不同的溶解率,也就是说金刚石刀具在不同切削条件下切削不同的工件材料,磨损速度与程度是不相同的,溶解率越大,金刚石刀具磨损就越快。 2、金刚石刀具的化学磨损 微切削加工用来制作具有光学表面质量的零件,目前只限于少数材料。属于这一类的材料主要有高纯度铜、无硅铝合金和含磷量约为12%的非电流析出镍。工业上很重要的铁基材料则由于单晶金刚石刀具的严重磨损而无法加工。解决这一问题主要有三种可能的途径,也就是说,通过改进切削加工工艺、刀具材料和被加工材料。金刚石刀具沉积硬质材料涂层则属于改进刀具材料。涂层应能阻止金刚石与被加工材料的直接接触。 为了确定适宜的硬质材料涂层,首先应研究切削加工过程中刀具与工件之间存在的界面的相互作用。切削加工Fe、Ni、Cr、Ti等(门捷列夫元素周期表第-族过渡金属)金属材料时,金刚石刀具则出现严重的化学磨损。解释化学磨损的一种假设是过渡金属中存在非配对d电子。过渡金属倾向于通过其d轨道与碳的p轨道

硬质合金刀具基础知识

硬质合金刀具材料基础知识浏览: 文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和

相关文档
相关文档 最新文档