文档库 最新最全的文档下载
当前位置:文档库 › 海伦公式证明

海伦公式证明

海伦公式证明

精品文档

。 1欢迎下载

证明: 在任意三角形ABC 中,不妨规定A 为最大的角

作边BC 边上的高AD ,则AD 一定在三角形内部,设AD=h, BD=d, CD=e p=a+b+c 2

则有:

d 2+h 2=c 2 ①

e 2+h 2=b 2 ②

d=a-e ③

① - ② 得:

d 2-

e 2=c 2-b 2

把③代入,得

(a-e)2-e 2=c 2-b 2

a 2+e 2-2ae-e 2=c 2-

b 2

e=a 2+b 2?c 22a

由②可得:

h=√b 2?(a 2+b 2?c 22a )2

则S △ABC =12ah=√14a 2[b 2?(a 2+b 2?c 22a )2]=√14[a 2b 2?(a 2+b 2?c 22)2](这个就是秦九韶公式)

=√(12ab)2?(a 2+b 2?c 24)2=√(ab 2+a 2+b 2?c 24)( ab 2?a 2+b 2?c 24)

=√a 2+b 2+2ab?c 24×?a 2?b 2+2ab+c 24=√(a+b)

2?c 24×c 2?(a?b)24=√a+b+c 2×a+b?c 2×c+a?b 2×c?a+b 2

=√a+b+c 2×(a+b+c 2?c)×(a+b+c 2?b)×(a+b+c 2?a)

=√p(p ?a)(p ?b)(p ?c)

证毕

泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。 关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用

绪论 随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到 n 阶的导数,由这些导数构成一个n 次多项式 () 2 0000000()()() ()()()()(),1! 2! ! n n n f x f x f x T x f x x x x x x x n '''=+ -+ -++ - 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有 0()()(()),n n f x T x x x ο=+- 即() 2 00000000()() ()()()()()()(()).2! ! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+ -++ -+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

19泰勒公式在证明不等式中的几个应用

泰勒公式在证明不等式中的几个应用 摘 要:泰勒公式作为一种重要的数学工具,无论对科研还是在证明、计算等方面,它都起着很重要的作用。特别在高等数学畴,灵活运用泰勒公式,对不等式问题进行分析、构造、转化、放缩等是解决不等式证明问题的常用方法与思想。本文主要通过对各类典型不等式证明问题的分析处理,归纳了用泰勒公式来证明有关定积分不等式问题、含有初等函数与幂函数的不等式和一般不等式问题,以及泰勒公式在一元函数、二元函数不等式中的推广、证明与应用. 关键词:泰勒公式;偏导数;不等式 引言 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒公式能很好的 集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.文献[3-6]介绍了运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 1 泰勒公式知识的回顾: 定理1[1] 设函数()f x 在点0x 处的某邻域具有1n +阶导数,则对该邻域异于0x 的任意点 x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0' f x 0(x -x )+ ()0f''x 2!02 (x -x )+???+ ()()0n f x n! 0n (x -x )+()n R x , 其中()n R x =() (1)(1)! n f n ξ++称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x + ()02!f''2x +???+()()0! n f n n x +0()n x . 2 泰勒公式在证明不等式中的应用 不等式是高等数学和近代数学分析的重要容之一,它反映了各变量之间很重要的一种关系即他们之间的大小关系。不等式的容也极其丰富,证明方法很多,而泰勒公式在证明不等式问题中起着举足轻重的作用。 2.1 泰勒公式在证明有关定积分不等式问题的应用 对于被积函数具有二阶或二阶以上连续可导,且又知最高阶数符号的命题.通过作辅助

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

泰勒公式的证明及应用 开题报告

题目泰勒公式的证明及推广应用 一、选题背景和意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、 乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。 通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个 领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。 除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。 二、国内外研究现状、发展动态 本人以1999—2010十一年为时间范围,以“泰勒公式”、“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章,发现国内外对泰勒公式的其研究进展主要分配在以下领域: 一、带不同型余项泰勒公式的证明; 二、泰勒公式的应用举例。 三、研究内容及可行性分析 在高等数学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习高等数学的关键一环。本论文将主要研究泰勒公式的证明及其在其他方面的应用。 本文将通过对泰勒公式的探讨,给出了泰勒公式在其它方面的应用,,显现出泰勒公式的应用之广泛。希望其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导。 接下来我将分两方面的应用来阐述本次论文的主要内容。 一、带不同型余项泰勒公式的证明: 本次证明将涉及到三种不同余项的泰勒公式的证明,即: 1.带皮亚诺余项的泰勒公式; 2.带拉格朗日余项的泰勒公式; 3.带积分型余项的泰勒公式; 二、泰勒公式的应用: 本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用; 在函数极限运算中,不定式极限的计算始终为我们所注意,因为这是比较困难的一类问题。计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。但对于有些未定式极限问题若采用泰勒公式求解,会更简单明了。我将在论文中就例题进行探讨。 2、泰勒公式在判定级数及广义积分敛散性中的应用;

海伦公式的推导和应用

海伦公式 海伦公式又译作希伦公式、海龙公式、公式、海伦-秦九韶公式,传说是古代的国王希伦(,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注1:Metrica(《度量论》)手抄本中用s作为半周长,所以 S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。 —————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的着作Metrica(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] ):2证明( 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国着名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上

用向量法证明海伦公式

用向量法证明海伦公式 杜云 (六盘水师范学院数学系;贵州六盘水553004) 摘要:从数与形的角度对向量进行再认识,通过应用向量方法证明海伦公式,更进一步阐明了向量是沟通代数与几何的天然桥梁,是一个重要的数学模型,它能为解决问题提供新的方法和视角。 关键词:向量;几何;海伦公式;数形结合 中图分类号:G421文献标识码:A 文章编号:1671-055X (2009)03-0063-03 To prove Heron's Formula with the Vector DU Yun (Mathematics Department of Liupanshui Nornal College;Liupanshui,553004,China) Abstract:Recognized the vector from algebra and geometry and by proving Heron's Formula further expounds ,If shows thar the vector is a natural bridge between algebra and geometry,and it is an important mathematics style,and also provides the new method and view to solve the problems. Key words :vector ;geometry;Heron's Formula;combination between algebra and geometry 收稿日期:2009-03-03 作者简介:杜云(1982-),男,贵州盘县人,助教,研究方向:高等代数与解析几何。 第21卷第3期 2009年6月六盘水师范高等专科学校学报Journal of Liupanshui Teachers College Vol.21NO.3June 2009 63--

泰勒公式证明必须看word资料11页

泰勒公式(提高班) 授课题目: §3.3泰勒公式 教学目的与要求: 1.掌握函数在指定点的泰勒公式; 2.了解泰勒公式在求极限及证明命题中的应用. 教学重点与难点: 重点:几个常用函数的泰勒公式 难点:泰勒公式的证明 讲授内容: 对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达.由于用多项式表示的函数,只要对自变量进行有限次加、减、乘三种算术运算,便能求出它的函数值来,因此我们经常用多项式来近似表达函数。 在微分的应用中已经知道,当x很小时,有如下的近似等式: ≈1,x e x+ x ln(. 1 +) x≈ 这些都是用一次多项式来近似表达函数的例子.显然.在0 x处这些— = 次多项式及其一阶导数的值,分别等于被近似表达的函数及其导数的相应值.

但是这种近似表达式还存在着不足之处:首先是精确度不高,它所产生的误差仅是关于x 的高阶无穷小;其次是用它来作近似计算时,不能具体估算出误差大小.因此,对于精确度要求较高且需要估计误差的时候,就必须用高次多项式来近似表达函数,同时给出误差公式. 于是提出如下的问题:设函数)(x f 在含有0x 的开区间内具有直到 (1+n )阶导数,试找出一个关于(0x x -)的n 次多项式 n n n x x a x x a x x a a x p )()()()(0202010-++-+-+=Λ (1) 来近似表达)(x f ,要求)(x p n 与)(x f 之差是比n x x )(0-高阶的无穷小,并给出误差)()(x p x f n -的具体表达式. 下面我们来讨论这个问题.假设)(x p n 在0x 处的函数值及它的直到n 阶导数在0x 处的值依次与)(0x f ,)(0x f ',)(,0)(x f n Λ相等,即满足 )()(00x f x p n =,)()(00x f x p n '=', )()(00x f x p n ''='',)(,0)()(x f p n n n =Λ, 按这些等式来确定多项式(1)的系数n a a a a Λ,,,210.为此,对(1)式求各 阶导数,然后分别代人以上等式,得 )(00x f a =,)(101x f a '=?,)(!202x f a ''=,)(!,0)(x f a n n n =Λ , 即得 )(00x f a =,)(01x f a '=,)(!2102x f a ''=,)(! 1,0)(x f n a n n =Λ. (2)

高中数学必修3海伦公式的证明方法

高中数学必修3海伦公式的证明方法 海伦公式的证明⑴ 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c 的对角分别为A、B、C,则余弦定理为[1] cosC=(a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b- c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 海伦公式的证明⑵ 中国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角

形,要找出它来并非易事。所以他们想到了三角形的三条边。如果 这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来 求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜 求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方, 送到上面得到的那个。相减后余数被4除,所得的数作为“实”, 作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 当P=1时,△2=q, △=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 因式分解得 △^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2] =1/4[(c+a)^2-b^2][b^2-(c-a)^2] =1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/4[2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c)

Taylor公式的唯一性证明

Tayloy 公式的唯一性证明 作者:卢晓峰 1. 引理:设0 lim ()0x x g x →=,()g x 在0x 的某邻域内可导,且()g x ' 在0x 处连续。若0()(())n g x x x ο=-,则10()(())n g x x x ο-'=-。 证明: 00001 11 00 000 ()()()()() () lim lim lim lim lim ()()()()()n n n n n x x x x x x x x x x g x g x g x x x g x g x g x x x x x x x x x x x ---→→→→→-''-===------又 0()(())n g x x x ο=-,0 0lim ()()0x x g x g x →== ∴0 0() lim 0()n x x g x x x →=-;0 00 ()lim 0()n x x g x x x →=- ∴0 1 0()lim 0() n x x g x x x -→'=-,即1 0()(())n g x x x ο-'=-。 2. 唯一性证明: ()f x 在0x 处存在n 阶导,设0()()(())n n f x P x x x ο=+-<1>。(其中() n P x 为n 次多项式) 设<1>式中0(())()n x x g x ο-=。易证:()g x 满足引理的条件。 ∴10()(())n g x x x ο-'=-,20()(())n g x x x ο-''=-, ,(1)0()()n g x x x ο-=-。 ∴ ()()() n f x P x g x '''=+, ()()() n f x P x g x ''''''=+, , (1)(1)(1)()()()n n n n f x P x g x ---=+<2> 对<2>中的所有等式,均取0x x →的极限,则有: 00()()n f x P x ''=,00()()n f x P x ''''=, ,(1)(1)00()()n n n f x P x --= 又

泰勒公式证明及应用讲解

泰勒公式及其应用 佟梅 (渤海大学数学系辽宁锦州121000 中国) 摘要:数学是一门很重要的学科,许多的数学家研究出了各种定理、公式,并且都证实了它们的正确性,应用这些定理公式解决了许多疑难问题,泰勒公式就是其一。泰勒公式是数学分析中的一个重要公式,它在解决分析中的问题时应用广泛、灵活,也是解决各种数学问题的一个强有力的工具之一,本文对泰勒公式进行了简单的介绍,重点介绍了它的各种应用,作了一个较系统和规律性的分析综述。首先,介绍了泰勒定理及其几种表示形式的泰勒公式,在后面的应用中会应用到。其次,就是本文的重点——泰勒公式的应用,介绍了九个方面,主要包括:研究级数和广义积分的敛散性、利用泰勒公式求极限、近似计算和误差估计、确定和比较无穷小的阶、证明不等式等等,通过许多的例题分析,体现出了泰勒公式在解决数学问题时的重要性和简洁性。 关键词:泰勒公式,极限,误差估计,敛散性,不等式。 Taylor’s formula and its application Tong Mei (Department of Mathematics Bohai University,Liaoning Jinzhou 121000 China) Abstract:Mathematics is a very important discipline. Many mathematicians studied all kinds of theorem and formula, proved their correctness, and applied them to solve a number of difficult problems. Taylor formula is one of them.Taylor’s formula is a important formula in mathematical analysis. It can be used widely and conveniently to solve the problems in analysis. In addition, it is one of powerful tools to solve all kinds of mathematics problems. This article provides a simple introdu ction to Taylor’s formula, emphasizes its various applications, and makes a systematic and inerratic analysis summary. Firstly, this article introduces the Taylor theorem and some Taylor’s formula of different _expression forms, which will be applied later. Next, it is the emphasis of this article -- the application of Taylor’s formula. Here nine aspects are introduced: studying the convergence and divergence of series and the improper integral, using the Taylor’s formnla to calculate limit, the approximate calculation and error estimate, determining and comparing the order of infinitesimals, the application in theorem proof, proving inequality, and so on. Through many example analysis, the importance and conciseness of Taylor’s formula in solving mathematic s questions are well illustrated. Key Words: Taylor’s formula; limit; error estimate ;convergent or divergent; inequality.

泰勒公式与拉格朗日中值定理在证明不等式中的简单应用

高三数学培优资料(10)教师版 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒 公式能很好的集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟 在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0'f x 0(x -x )+ ()0f''x 2!02(x -x )+???+ ()()0 n f x n! 0n (x -x )+()n R x , 其中()n R x = ()(1)(1)! n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x +()02!f''2x +???+()()0! n f n n x +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有 直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0) (x f n ,则有公式 )()(! )()(!2)()(!1)()()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得 )(00)(2 00000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥ 或)(00)(2 00000)(! )()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤

泰勒公式的证明

泰勒公式 定理(peano 余项型,洛必达法则法证明) 若()0()n f x 存在, 则0()x x ?∈ , 0()(,)n f x T x x =+()0()n x x - . ()200000000()()(,)()()()()()2!! n n n f x f x T x x f x f x x x x x x x n '''=+-+-++- . 0(,)n T x x 叫做f 在0x 的n 次泰勒多项式,也叫f 在0x 的n 次密切( “切线”). 证法 洛必达法则法的分析. 按照洛必达法则往证0()()lim 0()n n x a f x T x x x →-=-即可. 记()()()n n R x f x T x =-,0()()n n Q x x x =-, 注意到 (1)()000()()()0n n n n n R x R x R x -==== , (1)00()()0n n n Q x Q x -=== ,()0()!n n Q x n = ()0()n f x 存在,意味着(1)()n f x -在0()U x 内还可导.允许()0lim ()0n x a n R x Q x →?? ???反复使用洛必达法则1n -次. 证明 连续1n -次使用洛必达法则,得 (1)(1)()()00lim lim ()0()0n n n n x a x a n n R x R x Q x Q x --→→????= ? ?????不断添入0,使结论成为两个函数值之差的比. (1)(1)()0000()()()()lim (1)2() n n n x a f x f x f x x x n n x x --→---=-- (1)(1)()000()()1lim ()0!n n n x a f x f x f x n x x --→??-=-= ?-?? . 注1 即使函数能表成()00()(,)()n n f x P x x x x =+- ,0(,)n P x x 不一定是泰勒多项式. 如1()(),n f x x D x n N ++=∈,由100()()lim lim 0n n n x x f x x D x x x +→→==,故()()(0)n f x x x =→ . 虽然能写成()2()0000n n f x x x x x =+++++ ,但是,根据海因定理,1()()n f x x D x += ,n N +∈仅在0点仅1阶可导(0)0f '=(0的邻域内()f x '无定义). 故2()0000n n p x x x x =++++ 并不是()f x 在0处的泰勒多项式. 注2 若f 能表成()00()(,)()n n f x P x x x x =+- ,则多项式0(,)n P x x 是唯一的 (不论可导性). 因为 若 () 00()(,)()n n f x P x x x x =+- ()20102000()()()()n n n a a x x a x x a x x x x =+-+-++-+- (1) 则由(1) 00lim ()x x f x a →=, 反代入(1)式又得 0010 ()lim x x f x a a x x →-=-, 反代入(1)式又得 0010220()[()]lim ()x x f x a a x x a x x →-+-=-

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

泰勒公式的几种证明法及其应用 -毕业论文

泰勒公式的几种证明法及其应用 -毕业论文 【标题】泰勒公式的几种证明法及其应用 【作者】张廷兵 【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应用【指导老师】陈波涛 【专业】数学与应用数学 【正文】 1引言 泰勒公式在分析和研究数学问题方面有着重要的应用。但是它的证明大多数是重复运用柯西中值定理来推导,这给初学者从理解到接受有一定的困难。为了给不同层次的学习者理解和接受泰勒公式提供方便。本文研究不同的证明方法,给学习者提供了选择的余地。归根结底,使学习者更好运用泰勒公式,为此就对泰勒公式的应用及技巧的总结。 2 带佩亚诺型余项泰勒公式的证明方法 在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很方便。如果将一类复杂的函数用多项式来近似表示出来,其误差又能满足一定的要求。那么,我们就可以表示出此函数。若函数是n次多项式 令 .于是 对任意一个函数,只要函数在a点存在n阶导数,我们就可以写出一个相应的多项式 称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a 的邻域上有什么联系呢,下面的定理回答了这个问题( 定理1[1] 若函数在a点存在n阶导数 ,则 其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.

2.1方法一 证明:将上式改为 ,有 分子是函数 ,分母是函数 .应用n-1次柯西中值定理[2] 其中 其中 其中 (至此已应用了n-1次柯西定理) 当根据右导数定义,有 同法可证: 于是 , 表示余项是佩亚诺型. 证毕. 2.2方法二 证明在的一个邻域内有一阶导数,则存在且在处连续,即有则由极限与无穷小量的关系有: ( 是无穷小量), 又 则 (2—1) 从(2—1)式推出: 比较无穷小量与 = = (因为二阶可导) 又由极限与无穷小量的关系有: 将上边代入(2—1)式: 设 .则在处有阶导数,且设当时仍有: + (2—2) 从(2—2)中推出 比较与 :

证明泰勒公式

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2,+f'''(x.)/3!?(x-x.)^3+……+f(n) (x.)/n!?(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以 A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n) (x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n) (x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n- 0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但 Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项 Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)

相关文档
相关文档 最新文档