文档库 最新最全的文档下载
当前位置:文档库 › 立体几何的探索存在性问题

立体几何的探索存在性问题

立体几何的探索存在性问题
立体几何的探索存在性问题

解析:(1)证明:取AB1的中点

=0.

∴CA是平面的一个法向量,令n2=CA,

17=cos〈n

m-4)2+4

,解得m=1(0≤m≤4).∴在棱CC

和它的三视图.

⊥平面A1CC1?若不存在,请说明理由,若存在,

,则??? -λx ,y +2=-z =2λ-??λ?

??λ. ,

??? ,-,解得λ=2,

,=2,使BE

,则y=-1,z=1.故m=

CA的一个法向量为n

,6).

,∴=(3,-

的余弦值为13

13.

依题意,设M(t,t,0)(t>0),则AM=

点的三等分点.

三、议——学生起立讨论。根据以上学习的内容进行小组集体讨论。(

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下 进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题 的强有力的方法. 【精选名校模拟】 1. 在四棱锥E ABCD中,底面ABCD是正方形,AC与BD交于点O,EC 底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;

2019年高考数学一轮复习专题探究课4立体几何中的高考热点问题理北师大版

四立体几何中的高考热点问题 (对应学生用书第127页) [命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查. 空间点、线、面间的位置关系 空间线线、线面、面面平行、垂直关系常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等. 用向量法证明平行、垂直、求空间角,通过建立空间直角坐标系,利用空间向量的坐标运算来实现,实质是把几何问题代数化,注意问题: (1)恰当建系,建系要直观;坐标简单易求,在图上标出坐标轴,特别注意有时要证 明三条轴两两垂直(扣分点). (2)关键点,向量的坐标要求对,把用到的点的坐标一个一个写在步骤里. (3)计算要认真细心,特别是|n|,n1、n2的运算. (4)弄清各空间角与向量夹角的关系. 如图1所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC =1,E,F分别是A1C1,BC的中点. 图1 (1)求证:平面ABE⊥平面B1BCC1; (2)求证:C1F∥平面ABE; (3)求三棱锥E-ABC的体积. [解] (1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB. 又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB平面ABE,

高考数学总复习第八章立体几何与空间向量专题探究课四高考中立体几何问题的热点题型学案!

专题探究课四 高考中立体几何问题的热点题型 高考导航 1.立体几何是高考的重要内容,每年都有选择题或填空题或解答题考查.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题); (2)数形结合(根据空间位置关系利用向量转化为代数运算). 热点一 空间点、线、面的位置关系及空间角的计算(规范解答) 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】 (满分12分)(2017·湖州模拟)如图,在△ABC 中,∠AB C=\f (π,4),O 为AB 边上一点,且3O B=3O C=2A B,已知PO ⊥ 平面A BC,2DA =2AO=P O,且D A∥P O. (1)求证:平面PBD ⊥平面C OD ; (2)求直线PD 与平面B DC 所成角的正弦值. 满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OC B=π4 ,∴∠BO C=\f (π,2). ∴CO ⊥AB .2分 又PO ⊥平面A BC, OC ?平面ABC ,∴PO ⊥OC . 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PD B.4分 又CO ?平面COD , ∴平面PDB ⊥平面COD .6分 (2)解 以O C,OB ,OP 所在射线分别为x ,y ,z轴,建立空间直角坐标系,如图所示.

2020年高考理科数学大一轮提分讲义第8章 第7节 立体几何中的翻折、探究性、最值问题

第七节立体几何中的翻折、探究性、最值 问题 考点1平面图形的翻折问题 3步解决平面图形翻折问题 (2018·全国卷Ⅰ)如图,四边形ABCD为正方形, E,F分别为AD,BC的中点,以DF为折痕把△DFC折起, 使点C到达点P的位置,且PF⊥BF. (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值. [解](1)证明:由已知可得BF⊥PF,BF⊥EF, PF∩EF=F,PF,EF?平面PEF, 所以BF⊥平面PEF. 又BF?平面ABFD,所以平面PEF⊥平面ABF D. (2)如图,作PH⊥EF,垂足为H. 由(1)得,PH⊥平面ABF D. 以H为坐标原点,HF→的方向为y轴正方向,|BF→|为单位长,建立如图所示

的空间直角坐标系H -xyz . 由(1)可得,DE ⊥PE . 又DP =2,DE =1,所以PE = 3. 又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ? ????0,0,32,D ? ????-1,-32,0, DP →=? ????1,32,32,HP →=? ????0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ, 则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →| =343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 平面图形翻折为空间图形问题重点考查平行、垂直关系,解题关键 是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征. [教师备选例题] (2019·贵阳模拟)如图所示,在梯形CDEF 中,四边形ABCD 为正方形,且AE =BF =AB =1,将△ADE 沿着线段AD 折起,同时将△BCF 沿着线段BC 折起,使得E ,F 两点重合为点P .

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如. 1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法. 【精选名校模拟】 1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

2021新高考数学二轮总复习专题突破练18 立体几何中的翻折问题及探索性问题含解析

专题突破练18立体几何中的翻折问题及探索性问 题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值. 5.(2020北京通州一模,18)如图1,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD沿BE折起至EBHG,使得∠AEG=90°,如图2. (1)求证:AE⊥平面EBHG; (2)求二面角A-GH-B的余弦值; (3)若点F满足=λ,当EF∥平面AGH时,求λ的值.

最新高考数学立体几何试题分析及备考建议

高考数学立体几何试题分析及备考建议 一、高考命题分析 立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图 形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体。主要包 括柱、锥、台、球及其简单组合体的结构特征,三视图,点、直线、平面 的位置关系等。通过研究近年高考试卷,不难发现有关立体几何的命题较 稳定,难易适中,基本体现出“两小一大”或“一小一大”的特点.即1--2道小题,1道大题,占17--22分,小题灵活多变且有一定的难度,其中常有组 合体三视图问题和开放型试题,大多考查概念辨析,位置关系探究,空间 几何量的简单计算求解等,考查画图、识图、用图的能力;而解答题大多 属中档题, 一般设计成几个小问题,此类考题往往以简单几何体为载体, 考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想 象能力、推理论证能力和运算求解能力,也关注对条件和结论不完备情形 下开放性问题的探究。其解题思路也主要是“作——证——求”,强调作图、证明和计算相结合。命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展。 二、高考命题规律 (一)客观题方面

1.以三视图为载体考查空间想象能力 空间几何体的结构与三视图主要培养观察能力、归纳能力和空间想象 能力,识别三视图所表示的空间几何体,柱、锥、台、球体及其简单组合 体的结构特征与新增内容三视图的综合会重点考查,从新课标地区的高考 题来看,三视图是出题的热点,题型多以选择题、填空题为主,属中等偏 易题。随着新课标的推广和深入,难度逐渐有所增加。主要考查以下两个 方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积。 例1 (新课标2)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx平面为投影面, 则得到正视图可以为 A B C D 注意:必修2中的空间直角坐标系容易被文科忽视。 例2 (新课标2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.18 注意:简单组合体的表面积和体积的问题为常考题目。 例3 (四川理)一个几何体的三视图如图所示,则该几何体的直观图可以

第九讲-立体几何中探索性问题的向量解法

立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。 一、存在判断型 1、已知空间三点A (-2,0,2),B (-2,1,2),C (-3,0,3).设a =AB ,b =AC ,是否存在存在实数k ,使向量k a +b 与k a -2b 互相垂直,若存在,求k 的值;若不存在,说明理由。 解∵k a +b =k (0,1,0)+(-1,0,1)=(-1,k ,1),k a -2b =(2,k ,-2), 且(k a +b )⊥(k a -2b ), ∴(-1,k ,1)·(2,k ,-2)=k 2 -4=0. 则k=-2或k=2. 点拨:第(2)问在解答时也可以按运算律做. (k a +b )(k a -2b )=k 2a 2-k a ·b -2b 2= k 2 -4=0,解得k=-2或k=2. 2、 如图,已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,∠PDA 为θ,能否确定θ,使直线MN 是直线AB 与PC 的公垂线?若能确定,求出θ的值;若不能确定,说明理由. 解:以点A 为原点建立空间直角坐标系A -xyz.设|AD|=2a ,|AB|=2b , ∠PDA=θ.则A(0,0,0)、B(0,2b ,0)、C(2a ,2b ,0)、D(2a ,0,0)、P(0, 0,2atan θ)、M(0,b ,0)、N(a ,b ,atan θ). ∴=(0,2b ,0),=(2a ,2b ,-2atan θ),=(a ,0,atan θ). ∵AB ·MN =(0,2b ,0)·(a ,0,atan θ)=0, ∴⊥.即AB ⊥MN. 若MN ⊥PC , 则·=(a ,0,atan θ)·(2a ,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0. ∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°. 即当θ=45°时,直线MN 是直线AB 与PC 的公垂线. 【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。这是一种最常用也是最基本的方法.

立体几何专题突破之《探究性问题》

《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A BC D -中, P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122 m OG PC ==.又 1A O D B A O B B ,⊥ ⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 D 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11AC 上找一点Q ,使得1D Q AP ⊥.可推测11AC 的中点1O 即为所 求的Q 点.因为1111111DO AC DO AA ,⊥⊥,所以11DO ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则 s i n c o s θθπ?? = - ?2?? 2 22AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11AC 上存在这样的点Q ,设此点的横坐标为 x ,则 1(11)(10)Q x x D Q x x -= -,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11AC 的中点时,满足题设要求.

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

立体几何专题突破之《探究性问题》

立体几何专题突破之《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A B C D -中,P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11A C 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122m OG PC == .又1AO DB AO BB ,⊥⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11A C 上找一点Q ,使得1D Q AP ⊥.可推测11A C 的中点1O 即为所 求的Q 点.因为1111111D O AC D O AA ,⊥⊥,所以11D O ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为 θ,则 s i n c o s θθπ?? = - ?2?? 2 2 2AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11A C 上存在这样的点Q ,设此点的横坐标为x ,则 1(11)(10) Q x x D Q x x -=-,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11A C 的中点时,满足题设要求.

用空间向量解决立体几何中的探索性问题

典型例题 例题:如图,四棱锥P -ABCD 的底面ABCD 为矩形, P A ⊥平面ABCD ,点E 是棱PD 的中点,点F 是PC 的中点. (1)证明:PB ⊥平面AEC ; (2)若四边形ABCD 为正方形,探究在什么条件下,二面角C -AF -D 大小为60°? [解] (1)证明:连接BD ,设AC ∩BD =O ,连接OE , 因为四边形ABCD 为矩形, 所以点O 是BD 的中点, 因为点E 是棱PD 的中点, 所以PB ⊥EO , 又因为PB ⊥平面AEC ,EO ⊥平面AEC , 所以PB ⊥平面AEC . (2)由题意知AB ,AD ,AP 两两垂直,以A 为坐标原点,以AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, 设AB =AD =2a , AP =2c , 则A (0,0,0),C (2a ,2a ,0), D (0,2a ,0),P (0,0,2c ),F (a ,a ,c ). 因为z 轴⊥平面CAF , 所以设平面CAF 的一个法向量为n =(x ,1,0), 而AC ―→=(2a ,2a ,0), 所以AC ―→·n =2ax +2a =0,得x =-1, 所以n =(-1,1,0). 因为y 轴⊥平面DAF , 所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =(1,0c a ), 所以cos 60°=|n·m||n|·|m|=1 2·1+a 2c 2=12,得a =c . 即当AP 等于正方形ABCD 的边长时,二面角C -AF -D 的大小为60°. 解题策略 利用空间向量求解探索性问题的策略 (1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论. (2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论. 变式练习 如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,⊥OAB ,⊥OAC ,⊥ODE ,⊥ODF 都是正三角形. (1)证明:直线BC ⊥平面OEF ; (2)在线段DF 上是否存在一点M ,使得二面角M -OE -D

立体几何中的探索性问题-存在型问题配套练习

立体几何中的探索性问题-存在型问题配套练习 福州第三中学陈增 1. 如图,在三棱锥P?ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点. (1)证明:平面PBE⊥平面PAC. (2)在BC上是否存在一点F,使AD//平面PEF?说明理由. 2. 如图,在三棱锥V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<π 2 ). (1)求证:平面VAB⊥平面VCD; (2)当角θ在(0,π 2)上变化时,求直线BC与平面VAB所成的角的取值范围. P C B A

立体几何中的探索性问题-存在型问题配套练习参考答案 福州第三中学陈增 1.解:(1)证明:∵PA⊥底面ABC,BE?平面ABC, ∴PA⊥BE. 又△ABC是正三角形,E是AC的中点, ∴BE⊥AC,又PA∩AC=A. ∴BE⊥平面PAC. 又BE?平面PBE,∴平面PBE⊥平面PAC. (2)存在满足条件的点F,且F是CD的中点. 理由:∵E、F分别是AC、CD的中点, ∴EF//AD. 而EF?平面PEF,AD?平面PEF, ∴AD//平面PEF. 2.解:(1)证明:因为AC=BC=a,所以△ACB是等腰三角形.又D是AB的中点,所以CD⊥AB. 又VC⊥底面ABC,所以VC⊥AB. 于是AB⊥平面VCD.又AB?平面VAB, 所以平面VAB⊥平面VCD. (2)在平面VCD内过点C作CH⊥VD于H,则由(1)知CH⊥平面VAB.连接BH, 于是∠CBH就是直线BC与平面VAB所成的角. 在Rt△CHD中,易知CH=√2 2 asinθ. 设∠CBH=φ,在Rt△BHC中,CH=asinφ, 所以√2 2 sinθ=sinφ. 因为0<θ<π 2,所以0

立体几何中的向量方法探究性问题

1.(湖北高考)如图,在四棱锥P—ABCD中, 底面ABCD为矩形,侧棱PA⊥底面ABCD, AB=3,BC=1,PA=2,E为PD的中点. (Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.

本小题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力. 解法1:(Ⅰ)建立如图所示的空间直角坐标系, 则A 、B 、C 、D 、P 、E 的坐标为A (0,0,0)、 B ( 3,0,0)、C (3,1,0)、D (0,1,0)、 P (0,0,2)、E (0,2 1,1), 从而).2,0,3(),0,1,3( -== 设PB AC 与的夹角为θ,则 ,14 7 37 23cos == = θ ∴AC 与PB 所成角的余弦值为14 73 . (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,O ,z ),则 )1,2 1 ,(z x --=,由 NE ⊥面PAC 可得, ?????=+-=-??? ????=?--=?--?????=?=?.021 3,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(. 0,0x z z x z x AC NE AP NE 化简得即 ∴?? ???==16 3 z x 即N 点的坐标为)1,0,6 3 (,从而N 点到AB 、AP 的距离分 别为1,6 3.

2.(湖北高考)如图1,45ACB ∠= ,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠= (1)当BD 的长为多少时,三棱锥A BCD -的体积最大; (2)当三棱锥A BCD -的体积最大时,设点E , M 分别为棱BC ,AC 的中点,试在棱CD 上确 定一点N ,使得EN ⊥BM ,并求EN 与平面 BMN 所成角的大小. D A B C A D B 图 图1

2021新高考数学二轮总复习专题突破练18立体几何中的翻折问题及探索性问题含解析

专题突破练18 立体几何中的翻折问题及探索性问题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2. (1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值.

5.(2020北京通州一模,18)如图1,已知四边形ABCD 为菱形,且∠A=60°,取AD 中点为E.现将四边形EBCD 沿BE 折起至EBHG ,使得∠AEG=90°,如图2. (1)求证:AE ⊥平面EBHG ; (2)求二面角A-GH-B 的余弦值; (3)若点F 满足AF ????? =λAB ????? ,当EF ∥平面AGH 时,求λ的值. 6.

立体几何中的开放探索性问题(教师版)教师版)2014.10.06

立体几何中的开放探索性问题 数学开放性题是近年高考命题的一个新的亮点,其解法灵活且具有一定的探索性,这类题型按解题目标的操作模式分为:规律探索型,问题探究型,数学建模型,操作设计型,情景研究型.如果是未知的是解题假设,那么就称为条件开放型;如果是未知的是解题目标,那么就称为结论开放型;如果是未知的是解题推理,那么就称为策略开放型.当然,作为数学高考试题中开放题其"开放度"是比较弱的,如何解答立体几何中的这类问题,还是通过实际例子加以说明. 一、 规律探索型 例1.1111ABCD A BC D - 是单位正方体,黑白两个蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为”走完一段”. 白蚂蚁的爬行路线是111AA A D →→ , 黑蚂蚁的爬行路线是 1AB BB →→ ,它们都依照如下规则:所爬行的第n+2段与第n 段所在直线必须是异面直线, 设黑白两个蚂蚁都走完2005段后各停止在正方体的某个顶点处,这时黑白两个蚂蚁的距离是多少? D 1C 1 规则黑蚂蚁的爬行路线是11D D D DA →→,走6段又回到出发点A 。故而它们的周期为6。20052005段后停止在正方体的B 顶点处,白蚂蚁走完2005 这类题为操 二、 操作设计型 例2.(Ⅰ)给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (Ⅲ)(附加题)如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明. 【分析】 本题主要考查空间想象能力、动手操作能力、探究能力和灵活运用所学知识解决现实问题的能力. 通过数学科的高考,倡导重视数学应用,是从1993年开始的,已经经历了十个年头.这些年来,尽管数学科高考中有关数学应用的试题存在这样那样的缺陷,但是它所倡导的加强数学学科与社会实际和生产实际的联系,引导考生置身于现实社会大环境中,关心身边的数学问题,具有良好的导向,也促进了中学数学教学加强数学应用的研究,推动数学教学改革.这种命题方向得到数学教育界的普遍肯定.回顾这些年来高考中有关数学应用的问题,所涉及的知识面上还存在

立体几何中的探索性问题精编WORD版

立体几何中的探索性问题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设. 8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动. (1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由. (2)求证:无论点E在BC边的何处,都有PE⊥AF. (3)当BE为何值时,PA与平面PDE所成角的大小为45。? 拓展提升 (1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解. (2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在. 9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P 为侧棱SD上的点.

(1)求证:AC⊥SD. (2)若SD⊥平面PAC,求二面角P-AC-D的大小. (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由. 如图所示,在正方体ABCD—A l B l C 1 D l 中,M,N分别是AB,BC中点. (1)求证:平面B 1MN⊥平面BB 1 D 1 D; (2)在棱DD 1上是否存在点P,使BD 1 ∥平面PMN,若有,确定点P 的位置;若没有,说明理由. 如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中 点. (1)求证:PO⊥平面ABCD; (2)求异面直线PB与CD所成角的大小: (3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由. 立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势.

相关文档
相关文档 最新文档