文档库 最新最全的文档下载
当前位置:文档库 › 第二章微积分1

第二章微积分1

第二章微积分1
第二章微积分1

>

3章第二部分

3.3 其它积分方法

Maple有丰富的内建积分算法, 除了上述int命令外, 另外一些算法也非常有用. 本节简述其中几种较为有用的算法.

3.3.1 三角和双曲积分

三角和双曲积分主要有下述几种:

Si(x); Ci(x); Ssi(x); Shi(x); Chi(x);

上述函数在Maple中的调用格式分别为: Si(x); Ci(x); Ssi(x); Shi(x); Chi(x); 其中x为表达式(复数).

函数Si, Ssi和Shi是完整的, 函数Ci和Chi在原点处有一个对数极点, 在负实半轴上有一个分支截断点.

>

int(sin(x)/x,x=0..1);

>

evalf(%);

>

Ci(3.14159+1.23*I);

>

Ssi(2002.118);

>

evalf(Shi(Pi));

>

evalf(Chi(3+4*I));

>

convert(Ci(x),Ei);

>

3.3.2 Dirac函数和Heaviside阶梯函数

Dirac函数和Heaviside函数主要应用于积分变换或者求解微分方程, 也可以用来表示分段连续函数. 其定义分别如下:

命令格式为:

Dirac(t); # Dirac函数(t=0时为无穷大, 其余处处为0)

Dirac(n,t); # Dirac函数的n阶导数

Heaviside(t); #Heaviside函数(t<0时为0, t>0时为1, t=0时无意义)

> plot({Dirac(t),Heaviside(t)},t=-1..1);

>

>

>

Int(Dirac(t),t)=int(Dirac(t),t);

>

Diff(Heaviside(t),t)=diff(Heaviside(t),t);

3.3.3 指数积分

对于非负整数n, 指数积分Ei(n,x)在实部Re(x)0上定义为:

单参数的指数积分是一个Cauchy主值积分, 只对实参数x有如下定义:

特别地, 当x<0时, 有:

Ei(1,x)可以解析延拓到除了0点之外的整个复平面. 对于所有的这些函数, 0是一个分支点, 负实半轴是分支截断. 分支截断上的值要满足函数在增加参数的方向上是连续的条件.

指数函数和不完全GAMMA函数有如下关系:

>

Ei(1,1.); #=evalf(Ei(1,1));

>

>

>

>

expand(Ei(5,x));

evalf(Ei(1));

int(exp(-3*t)/t,t=-x..infinity);

int(exp(-3*t)/t,t=-x..infinity,CauchyPrincipalValue);

上述最后两例的结果大相径庭, 原因是在最后一例中出现了"CauchyPrincipal Value"一选项, 这一命令的主要功能是通知int将间断点的左右极限作为极限来处理, 此时, 独立变量按相同的速度接近间断点.

3.3.4 对数积分

对数积分Li(x)的定义为:

其中, PV-int表示Cauchy主值积分. 该函数只对实数参数有定义, 它给出了小于或等于x的素数的一个近似值.

Li(2002.); #对数积分在2002.0处的值

nops(select(isprime, [$1..2002])); #小于或等于2002的实数中素数个数

convert(Li(x),Ei); #对数积分转换为指数积分

3.3.5 椭圆积分

所谓椭圆积分是形如的积分, 其中R是一个有理数, y是3次或4次多项式, 这是椭圆积分的代数形式. 除此之外还有三角形式、双曲三角等形式.

椭圆积分可以用初等函数项和椭圆函数项, 如EllipticF, EllipticE和EllipticPi表示成它们的Legendre标准形式.

>

> evalf(ans,20);

> assume(0

> plot([EllipticF(k,k),EllipticE(k,k)],k=0..1);

>

>

> ?EllipticF

> evalf(%);

3.3.5 换元积分法和分部积分法

换元积分法是积分计算中一种重要而实用的方法. 在Maple中, 对被积函数施行变量代换的命令是changevar, 该命令在工具包student中, 须先调用student工具包. 命令格式为:

changevar(s, f);

changevar(s, f, u);

changevar(t, g ,v);

其中, s是形式为h(x)=g(u)的一个将x定义为u的函数的表达式, f为积分表达式(如Int(F(x),x=a..b);), u为新的积分变量名称, t为定义的多元变量代换的方程组, g为二重或者三重积分, v为新变量的列表.

Changevar函数对积分、求和或者极限实现变量代换. 第1个参数s是用旧变量定义新变量的一个方程, 如果包含了两个以上的变量, 新变量必须放置在第3个参数位置, 而第2个参数是一个要被替换的表达式, 一般包含Int, Sum或者Limit等非求值形式(应尽量使用这种形式以便最后用value求值).

当问题为二重或三重积分时, 定义多元变量代换的方程由一个集合给出, 而新变量由一个列表给出.

> with(student):

>

>

> simplify(%);

> assume(a>0,a<1);assume(b>0,b<1);

>

>

>

>

分部积分法(integration by parts)通过调用student工具包中的intparts

来完成:

> with(student):

>

> intparts(%,erf(b*x)); >

value(%);

3.3 重积分和线积分

在Maple中, 重积分的形式函数有Doubleint(二重)和Trippleint(三重), 均在student工具包中, 应用前需调用student工具包, 它们适用于定积分和不定积分, 可用value来获得积分结果的解析表达式. 命令格式为:

Doubleint(g, x, y);

Doubleint(g, x, y, Domain);

Doubleint(g, x = a..b , y = c..d );

Tripleint(g, x, y, z)

Tripleint(g, x, y, z, Domain)

Tripleint(g, x = a..b, z = e..f, y = c..d )

其中, g为积分表达式, x, y, z为积分变量, Domain为积分区域.

> restart;

> with(student):

Doubleint(f(x,y),x,y);

>

比较以下两个实验:

> Doubleint(x+y,x=0..1,y=1..exp(x)):

%=value(%);

>

Doubleint(x+y,y=1..exp(x),x=0..1):

%=value(%);

>

在这两个形式函数中, 我们还可以加入一个可选的参数, 用来表示积分区域(通常用S表示二维区域, 用表示三维区域). 注意: 在Maple中, 这个参数仅仅用来做形式上的表示, 不可以用来求值.

>

>

在Maple中还有一个计算用参数方程形式表示的第一型曲线积分的函数-Lineint, 它也在student工具包中. 下面通过一个实例说明这一函数的用法.

例: 求曲线积分 , 其中C为摆线的一拱.

>

>

3.4 利用辅助手段积分

机器终归是机器, 再聪明的机器也无法彻底代替人脑, Maple也一样, 它只能作为我们数学计算、推证的助手. 下面通过例子来体会Maple的真正用处.

例: 求广义积分 , 其中c0.

按照常规, 我们会通过下面的语句进行计算:

Int(exp(-c*x^2), x=0..infinity) = int(exp(-c*x^2),

x=0..infinity);

但Maple告诉我们, 由于无法确定常数c的正负号, 因而无法确定积分是否收敛. 解决这一问题的办法是, 通过assume设定c的取值范围:

>

>

解决这一问题的另一方法是假设c是另一个参数p的绝对值(c:=abs(p)), 这样c 就自然是一个非负的参数了.

> with(student):

int(x*exp(-a^2*x^2)*erf(b*x),x);

>

intparts(%,erf(b*x));

>

value(%);

>

其中, erf(x)为误差函数(error function), 定义为: . 例: 求证

在Maple7中,该积分直接利用Maple计算也可完成证明:

>

这里,我们将其作为一个例子,试图说明应用有关数学理论知识转化问题,然后再利用Maple进行辅助计算的方法和技巧。

由复变函数理论知道, 此积分可用围道积分(contour integration)来求解. 首先, 我们把被积函数写成复变量的形式, 然后把原问题转化成围道积分, 再求得结果. 过程为:

>

p:=1/(1+3*sin(t)^2);

>

convert(p,exp);

>

>

g:=subs(exp(I*t)=Z,%);

>

solve(denom(g)=0,Z);

>

readlib(residue):

>

residue(g,Z=1/3*sqrt(3));

>

residue(g,Z=-1/3*sqrt(3)); 2*pi*I*(%+%%);

>

其中, 函数residue(f, x=a) 计算表达式f对变量x在a点附近的代数残差(algebraic residue), 残差定义为f的Laurent级数中(x-a)^(-1)的系数.

4 级数

4.1 数值级数和函数项级数求和以及审敛法

我们可以用Maple中的函数sum方便地求得级数的和, 无论是有限项还是无穷项, 常数项级数还是函数项级数. 相应地, 和式的形式函数是Sum. 求连乘积使用命令product.

> Sum(1/(4*k^2-1), k=1..infinity)= sum(1/(4*k^2-1),

k=1..infinity);

>

>

Sum(i^2,i=1..n)=sum(i^2,i=1..n);

Product(1/k^2,k=1..n)=product(1/k^2,k=1..n);

5.1 拉普拉斯变换

形如多项式或者一些特定函数(如Diract function、Heaviside function、Bessel function等)组成的有理表达式或它们的和, 都可以用Maple积分变换工具包inttrans中的函数laplace求得其拉普拉斯变换, 相应的逆变换用invlaplace.

> t^2-exp(t)+sin(a*t);

>

with(inttrans):

laplace(%%,t,s);

>

>

invlaplace(%,s,t);

>

所有的积分变换都主要应用于微分和积分方程领域。由于拉普拉斯变换的导数和积分性质, 它被大量地应用到微分方程和积分方程的求解上. 作为拉普拉斯变换的一个应用, 下面求解Volterra积分方程:

>

>

下面要从这个简单的代数方程中解出laplace(e,t,s)来,值得注意的是要解出来的不是一个变量,而是一个子式。当然,我们可以先用subs将这个子式代换为一个变量,再用solve求解。但在Maple中有一个更方便的命令:库函数isolate 可直接从方程是解出这个子式来:

> readlib(isolate)(%,laplace(e,t,s));

然后求解变换后的结果laplace(u(t),t,s):

>

solve(%,laplace(u(t),t,s));

第二章微积分0

> 第二章微积分运算 微积分是数学学习的重点和难点之一, 而微积分运算是Maple最为拿手的计算之一, 任何解析函数, Maple都可以求出它的导数来, 任何理论上可以计算的积分, Maple都可以毫不费力的将它计算出来. > > 随着作为数学符号计算平台的Maple的不断开发和研究, 越来越多的应用程序也 在不断地出现。 函数的极限和连续 1.1 函数和表达式的极限 在Maple中, 利用函数limit计算函数和表达式的极限. 如果要仅仅聋子耳朵,仅仅写出数学表达式, 则用惰性函数Limit. 若a可为任意实数或无穷大时, 求极限命令格式为: limit(f,x=a); 求时的命令格式为limit(f, x=a, right); 求时的命令格式为limit(f, x=a, left); 请看下述例子: > Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity); >

> > > > >

对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如: > limit(a*x*y-b/(x*y),{x=1,y=1}); > > restart: > plot3d(sin(x+y), x=-1..1, y=-1..1); > plot3d(x^2*(1+x)-y^2*(1-y)/(x^2+y^2),x=-1..1,y=-1..1); >

微积分2期末复习提纲答案

2015年6月微积分2期末复习提纲 1、 本学期期末考试考察的知识点如下: 第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接 展开以 1 ,,ln(1)1x e x x +-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则 D d σ=??4π。(表示求解积分区域D 的面积——圆) ● 或D :9122≤+≤y x ,则 ??=D dxdy 8π。(表示求解积分区域D 的面积——圆环) ● 或2 2 :4D x y y +≤,将 dxdy y D ??化为极坐标系下的累次积分4sin 20 sin d r dr π θ θθ? ? . (判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入) 7.3极坐标系下二重积分的计算 2、交换积分次序 1 1 (,)y dy f x y dx = ? ?1 (,)x dx f x y dy ? ?。 (依题得:010<

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2 x x x x 6 π x x x 3262 3++↑ 3.=?? ? ??-∞ →3 21lim x x x 32 -e 4.设A x x ax x x =-+--→1 4 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞→- →x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+ 4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2 x x + ③x ④x 2sin

微积分入门

序 中国战国时代(公元前7世纪),我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。 古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。 17世纪,许多着名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。 19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 1874年,德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。外尔斯特拉斯最终完成了对实数系更深刻的性质的理解,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。 人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着,人类认识微积分的水平在不断深化。 ※ 微积分学(Calculus,拉丁语意为用来计数的小石头)是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。 ※ 在高二上学期的数学学习过程中,我们认识了导数和定积分,并开始了对其应用的理解和练习。其实,早在高中物理开始不久后的学习中,我们就接触到了微积分的原型——微元法。同当年的科学家一样,我们也因物理上的应用需要,开始了对微积分学的认识之旅。 借着这次研究性学习的契机,我们就了解一下微积分学的发展历史,认识数学研究对社会发展的重要意义,本着“以史为镜”的态度了解其中波折而有趣的发展历程;并由此拓展自己的知识面,

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

微积分计算公式

§3-6 常用积分公式表·例题和点评 ⑴ d k x kx c =+? (k 为常数) ⑵1 1 d (1)1 x x x c μ μμμ+≠-= ++? 特别, 2 1 1d x c x x =- +?, 3 223 x x c = +? , x c =? ⑶ 1 d ln ||x x c x =+? ⑷d ln x x a a x c a = +?, 特别, e d e x x x c =+? ⑸sin d cos x x x c =-+? ⑹cos d sin x x x c =+? ⑺ 2 2 1 d csc d cot sin x x x x c x ==-+?? ⑻ 2 2 1 d sec d tan cos x x x x c x ==+?? ⑼arcsin (0)x x c a a =+>?,特别,arcsin x x c =+? ⑽2 2 1 1d arctan (0)x x c a a a a x = +>+?,特别, 21 d arctan 1x x c x =++? ⑾2 2 1 1d ln (0)2a x x c a a a x a x += +>--? 或 2 2 1 1d ln (0)2x a x c a a x a x a -= +>+-? ⑿ tan d ln cos x x x c =-+? ⒀cot d ln sin x x x c =+? ⒁ln csc cot 1csc d d ln tan sin 2x x c x x x x c x ?-+? = =?+?? ? ? ⒂πln sec tan 1 sec d d ln tan cos 24x x c x x x x c x ?++?= =?? ?++ ?????? ?

微积分习题解答(第二章)

微积分习题解答(第二章) 1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。 ()()11120, ,0, ,0, ,2 4 6 1 112n n u n ??= +-?? 解:一般项 该数列收敛,其极限为零。 () () 1111 3,,,,261220 11n u n n = + 解:一般项 该数列收敛,其极限为零。 ()2 510172642, ,,,,2345 1n n u n += 解:一般项 该数列发散。 3.利用定义证明下列极限;

()n n n n n -11lim 0 60-110661 ln ln 6 1ln 1,ln 6-106-1lim 0 6n n n N n N εε ε εε→∞ →∞ ?? = ? ?? >???? -=< ? ? ???? > ? ???=+>?? ???? ??-< ?????∴= ??? 证明:对于任给,要使 只要 取正整数当时 总有不等式 成立 ( )2 23lim 010111,0lim n n n N n N εε ε εε→∞ →∞ =>-= <> ?? = +>???? -<∴=证明:对于任给,要使 只要 取正整数 当时 总有不等式 成立 4.试判断下列论点断是否正确。

()() ()1, ,lim 1111 1lim 01 n n n n n u A u A n n n n →∞ →∞ -=?--= +=≠-如果越大越接近零则有 错误 例如 随着越大,而越加接近零,但 ()() {}1130lim 0N =N n >N 10lim n n n n n n n u A u A u u u A ε εεε→∞ →∞ >-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<, 则有 正确 设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式 满足 ()() {}5s in s in n n n u n u n u ?==≤有界数列必定收敛 错误 例如 显然1,但发散 6.利用定义证明下列极限: ()() ()()()()1 1 1lim 312 0312311,3 312lim 312 x x x x x x x x εε ε δδε →→-=>-- =-<= <-<-- <-=证明:对于任意给定的,要使 只需取,则当0时总有 成立,于是,由极限定义可知

微积分习题集带参考答案(2)

微积分习题集带参考答案 一、填空题(每小题4分,本题共20分) ⒈函数x x x f -++=4) 2ln(1 )(的定义域是]4,1()1,2(-?--. ⒉若24sin lim 0=→kx x x ,则=k 2 . ⒊曲线x y e =在点)1,0(处的切线方程是1+=x y . ⒋ =+?e 1 2 d )1ln(d d x x x 0 . ⒌微分方程1)0(,=='y y y 的特解为x y e =. 6函数24)2(2 -+=+x x x f ,则=)(x f 62 -x . 7.当→x 0时,x x x f 1 sin )(=为无穷小量. 8.若y = x (x – 1)(x – 2)(x – 3),则y '(1) = 2-. 9. =+-? -x x x d )135(1 1 32. 10.微分方程1)0(,=='y y y 的特解为x y e =. 11.函数x x x f 2)1(2 +=+,则=)(x f 12 -x . 1⒉=∞ →x x x 1 sin lim 1 . 1⒊曲线x y =在点)1,1(处的切线方程是2 121+= x y . 1⒋若 ?+=c x x x f 2sin d )(,则=')(x f in2x 4s -. 1⒌微分方程x y xy y cos 4)(7) 5(3 =+''的阶数为 5 . 16.函数74)2(2 ++=+x x x f ,则=)(x f 32 +x . 17.若函数???=≠+=0, ,2)(2x k x x x f ,在0=x 处连续,则=k 2 . 18.函数2 )1(2+=x y 的单调增加区间是).1[∞+-. 19. = ? ∞ -dx e x 0 22 1 . 20.微分方程x y xy y sin 4)(5) 4(3 =+''的阶数为 4 . 21.设函数54)2(2 ++=+x x x f ,则=)(x f 12 +x . 22.设函数????? =-≠+=0, 10 ,2sin )(x x k x x x f 在x = 0处连续,则k =1-.

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

第二章数学模型与定解问题

第二章数学模型与定解问题 2.1典型方程 三类基本的二阶偏微分方程是: (1)波动方程 0)(2 =++-zz yy xx tt u u u a u (2)热传导方程 0)(=++-zz yy xx t u u u k u (3)拉普拉斯方程 0=++zz yy xx u u u 许多数学物理问题都可归结为解偏微分方程的问题,特别是可归结为解上面所列举的三个偏微分方程的问题.我们将开始研究这些方程,首先仔细考察表示这些物理问题的数学模型. 2.2弦的振动 在数学物理中最重要的问题之一是拉紧的弦的振动问题.由于它较简单, 且经常出现在许多数学物理的分支中,所以在偏微分方程理论中把它作为一个典型的例子. 让我们考察一长为 l 的两端固定的拉紧的弦.我们的问题是要确定弦的运动方程,用它来描述在给定初始扰动后任一时刻t 的弦的位移u(x,t). 为了能.得出一个较简单的方程,我们作下面的一些假设: (1)弦是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻弦的张力总是沿着弦的切线方向; (2)弦的每一段都不伸长,因此根据胡克(Hooke)定律,张力是常数; (3)弦的重量与其张力相比很小; (4)弦的偏移与其长度相比很小; (5)位移后的弦在任一点上的斜率与1相比很小; (6)弦只有横振动. 我们考察弦上一微小元素.设T 是如图2.1所示的两端点上的张力.作用在弦的这一微小元素上的垂直方向的力是: αβsin sin T T - 图(Figure )2.1

根据牛顿第二运动定律,合力等于质量乘以加速度.因此 tt su T T ?=-ραβsin sin (2.2.1) 其中ρ是弦的密度,s ?是这一小段位移后的弦的弧长.因为位移后的弦的斜率很小,所以有 x s ?≈? 因为角α和β都很小,所以 ααtan sin ≈, ββtan sin ≈ 于是等式(2.2.1)变成 tt u T x ?=-ραβtan tan (2.2.2) 但是,由微积分学我们知道,在时刻t 有 x x u )(tan ≈α 及 x x x u ?+≈)(tan β 于是等式(2.2.2)可以写成 tt x x x x x u t u u x ρ =-??+])()([1 令x ?趋于零取极限,得 xx tt u a u 2 = (2.2.3) 其中ρ T a = 2 。方程(2.2.3)称为一维波动方程. 如果在弦的每单位长度上有外力F 作用着,方程(2.2.3)具有下列形式: f u a u xx tt +=2 (2.2.4) Where ρ F f = ,而外力可以是压力、重力、阻力以及其他力等 2.3膜的振动 膜振动方程在数学物理的许多问题中出现.在我们导出膜振动方程前,像在弦振动的情形中一样,我们作下列一些简化的假设: (1) 膜是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻它的张力 总是在膜的切平面内; (2) 膜的每一块元素都没有伸张变形, 因此根据胡克定律, 张力是常数;

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

第二章测验题(微积分)

上海第二工业大学 2009-2010学年第一学期 微积分(第二章)测验 试卷 姓名: 学号: 班级: 成绩: 一、填空题(每题3分,共30分) 1.设421()tan f x x =,则()__________f x '=; 2 .设y = ,则________________x dy =; 3.若2,0()2,0 x ae x f x bx x ?<=?-≥?,在0x =处可导,则常数_______,_________a b ==; 4.设ln x y x =,则2ln 3________x x y xy x '''++=; 5.27()sin 2x f x x =+,则(28)()__________f π=; 6.若0()f x '存在,则0000 ()()lim _______x x xf x x f x x x →-=-; 7.设(cos )sin[()]y f x f x =+,其中f 可微,则 ______________dy dx =; 8.设函数()f u 可导,函数2()y f x =在点1x =-处取得增量0.1x ?=-时,相应的函数增量y ?的线性 主部为0.1,则(1)_____________f '=; 9.一个正方体的棱长10x m =,如果棱长增加0.1m ,则正方体体积的增加量(要求用微分近似计算)的近似值为3 __________m ; 10.曲线x y e =在(0,1)处的切线方程为______________。 二、选择题(每题3分,共21分) 1.设()f x 可导,常数0a ≠,则lim [()()]n a n f x f x n →∞--( ) (A )a ; (B )a -; (C )()af x '; (D )()a f x '-; 2.下列结论不正确的是( ) (A )若()f x 在0x 处可导,则()f x 在0x 处可微;

微积分的数值计算方法

第七章 微积分的数值计算方法 7.1 微积分计算存在的问题/数值积分的基本概念 1. 微分计算问题 求函数的导数(微分),原则上没有问题。当然,这是指所求函数为连续形式且导数存在的情形。但如果函数一表格形式给出,要求函数在某点的导数值;或者是希望某点的导数值只用其附近离散点上的函数值近似地表示,这就是新问题了,它称为微分的数值计算,或称为数值微分。 2.定积分计算问题 计算函数f 在],[b a 上的定积分 dx x f I b a ?= )( 当被积函数f 的原函数能用有限形式)(x F 给出时,可用积分基本公式来计算: )()()(a F b F dx x f I b a -==? 然而,问题在于:① f 的原函数或者很难找到,或者根本不存在;②f 可能给出一个函数表;③仅仅知道f 是某个无穷级数的和或某个微分方程的解等等。这就迫使人们不得不寻求定积分的近似计算,也称数值积分。 3.数值积分的基本形式 数值积分的基本做法是构造形式如下的近似公式 ∑?=≈n k k k b a x f A dx x f 0 )()( (7.1.1) 或记成 ∑?=+=n k n k k b a f R x f A dx x f 0 ][)()( (7.1.2) ∑==n k k k x f A I 0 * )( 和 ][f R n 分别成为],[b a 上的f 的数值求积公式及其 余项(截断误差),k x 和k A ),,1,0(n k =分别称为求积节点和求积系数(求积系数与被积函数无关)。 这种求积公式的特点是把求积过(极限过程)程转化为乘法与加法的代数运算。构造这种求积公式需要做的工作是:确定节点k x 及系数 k A ),,1,0(n k =,估计余项][f R n 以及讨论* I 的算法设计及其数值稳定 性。 4.插值型求积公式 如何构造求积公式呢?基本的技术是用被积函数f 的Lagrange 插值多项式 )(x L n 近似代替f ,也即对],[b a 上指定的1+n 个节点

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

相关文档
相关文档 最新文档