文档库 最新最全的文档下载
当前位置:文档库 › 轧机油膜轴承概况

轧机油膜轴承概况

轧机油膜轴承概况
轧机油膜轴承概况

轧机油膜轴承概况

油膜轴承的种类繁多,用途十分广泛,像汽轮机、发电机组、球磨机、风机轴承、天文、航空、航天设备使用的轴承等等。轧机油膜轴承是油膜轴承中承载最大的轴承之一。如宝钢5000mm宽厚板轧机其最大轧制压力可达108000kN是国内目前最大的板材轧机。

一般轧机机械可分为轧钢机和有色金属轧机(主要是铝材轧机和铜材轧机),按轧制产品又可分为线材轧机、型材轧机、带材轧机、板材轧机(分宽厚板、中厚板、热轧板、冷轧板)等。现今轧机使用的轴承主要有滚动轴承和油膜轴承两大类,根据轧机的不同性能和用途选用不同种类的轴承,一般轧钢机和铜材轧机使用油膜轴承为主,铝材轧机习惯使用滚动轴承。

线材轧机粗轧和中轧机组以使用滚动轴承为主,预精轧和精轧以使用油膜轴承为主。

型钢轧机和棒材轧机大多使用滚动轴承。

带材轧机目前国内仍是以滚动轴承为主,但因其承载低与寿命短等原因有逐步向油膜轴承发展的趋向。

板材轧机、一般中厚板轧机和热连轧机都是使用油膜轴承,冷连轧机大部分使用油膜轴承,部分使用滚动轴承,其中以日本冷轧机推行使用较多,西欧、美国、俄罗斯、中国等其它国家很少推荐使用滚动轴承。

这与轴承发展的历史和条件有关。世界上研究制造滚动轴承的单位和厂家很多,应用很广,研制的时间较长,有成熟的技术和经验。而应用于轧机的油膜轴承至今还不足100年的历史,迄今为止能集研究、设计、制造、服务全面发展的轧机油膜轴承厂家除美国摩根公司、前苏联的全苏冶金机械制造科学研究所和中国的太原重型机械集团公司外还没有具有自己的品牌,能独立进行产品设计、研究、开发和制造的独立厂家。一些世界上生产轧机的知名公司象德国西马克公司、意大利达涅利公司、奥地利奥钢联集团、日本的石川岛播磨和三菱公司等在轧机油膜轴承方面都没有自己独立的研发设计能力。美国的麦斯塔机械公司和原西德的萨克公司也曾设计制造过轧机油膜轴承,后来因为技术发展缓慢而逐渐在世界

上销声匿迹。但近年由于中国钢铁行业的迅猛发展和推动,国内外尤其是生产板带材轧机的著名厂家纷纷加大人力、物力和财力进行轧机油膜轴承的研发工作,这也相应促进了轧机油膜轴承技术的发展和进步。因此,就轧机而言,到目前为止,使用滚动轴承和油膜轴承都各有侧重。

油膜+滚动轴承

油膜轴承的基础知识 一、什么是油膜轴承? 油膜轴承是液体摩擦轴承的一种形式;按润滑系统供油压力的高低可分为静压轴承、静—动压轴承、动压轴承,通常习惯称动压轴承为油膜轴承。油膜轴承由锥套、衬套、滚动止推轴承、回转密封、轴端锁紧装置等部分组成;或者说是轧辊一端所安装的全 部零、部件的统称。 油膜轴承(动压轴承)是一种流体动力润滑的闭式滑动轴承。在轴承工作时,带锥形 内孔的锥套(锥度约1:5的锥形内孔与轧辊相联接)与轴承衬套(固定在轴承座内)工作面之间形成油楔(即收敛的楔形间隙);当轧辊旋转时,锥套的工作面将具有一 定粘度的润滑油带入油楔,润滑油产生动压力;当沿接触区域的动压力之和与轴承上 的径向载荷相平衡时,锥形轴套与轴承衬套被一层极薄的动压油膜隔开,轴承在液体 摩擦状态下工作。动压轴承的压力分布是不均匀的,而且,由于相对间隙、滑动速度、润滑油粘度及锥、衬套的表面变形等不同而不同,其峰值压力区越小(即压力分布尖锐)承载能力就越低。美国的摩根工程公司研制的Morgoil油膜轴承是其技术发展的典型代表,太原重工则是国内制造大型油膜轴承的唯一生产厂家。 二、油膜轴承形成的机理 动压轴承油膜的形成与轴套表面的线速度、油的粘度、间隙、径向载荷等外界条件有 密切关系。可用雷诺方程描述: —油的绝对粘度 —轴套表面的线速度 ★动压轴承(油膜轴承)保持液体摩擦的条件: 1、楔形间隙、即h-hmin≠常数 2、足够的旋转速度v 3、合适的间隙

4、足够的粘度、适当的纯净润滑油 5、轴套外表面和轴承衬的内表面应有足够的精度和光洁度 在可逆式中厚板轧机上能否使用油膜轴承,在最大载荷的前提下取决于最低的咬入速 度和轧制节奏;中厚板轧机的油膜轴承使用的均为高粘度的润滑油,油膜的消失滞后 于轧机的制动,只要轧机可逆运转的间隔时间小于油膜消失的时间,油膜轴承就能满 足使用。 三、油膜轴承的发展 二十世纪三十年代美国摩根工程公司首先把油膜轴承应用于轧机上至今,油膜轴承的 技术已发生了巨大的进步。 1、结构上的改变 A、油膜轴承锥套与轧辊的联接,从最初的承载区的键联接发展到今天的承载区无键联接,消除了锥套在键联接处受力的作用产生变形而导致的板厚呈周期性的波动; B、油膜轴承的轴向锁紧装置由机械锁紧发展到液压锁紧,极大的方便了油膜轴承的拆装,减轻了装配的劳动强度; C、油膜轴承的轴向定位方式,由止推法兰演变到单端止推轴承加轴向拉杆的方式,再发展到目前的双端止推轴承的结构形式,有效地控制了辊的轴向窜动,改善了密封效果。 注:采用滚动轴承止推的注意事项:滚动轴承的外座圈与轴承箱之间要有足够的间隙,保证在油膜厚度(或者说偏心率)变化的任何时刻,在径向自由移动不承受径向力; 单独的供油系统,根据轧制速度供给充足的润滑油。 D、环保型的巴氏合金的开发、使用极大地改善了材料的蠕变性能,使衬套的寿命更长。 E、锥套结构尺寸的改变提高了油膜轴承的承载能力(即承载区的有键连接发展到无键连接)。 2、密封结构型式的进步 油膜轴承密封的作用,其一,防止油膜轴承的润滑油外泄,其二是避免轧辊冷却水、 润滑乳化液及氧化铁皮等进入到润滑系统中,污染润滑油导致润滑失效;任何形式的 接触密封随着服役期的延长,其密封效果都将下降,直至失效;油膜轴承的密封式消 耗件。当今油膜轴承普遍使用的密封是DF密封,摩根油膜轴承在DF密封的基础上又开发出新一代的HD密封加挡水板的组合结构。

油膜轴承故障机理与诊断

油膜轴承的故障机理与诊断 油膜轴承因其承载性能好,工作稳定可靠、工作寿命长等优点,在各种机械、各个行业中都得到了广泛的应用,对油膜轴承故障机理的研究工作也比较广泛和深入。 一、油膜轴承的工作原理 油膜轴承按其工作原理可分为静压轴承与动压轴承两类。 静压轴承是依靠润滑油在转子轴颈周围形成的静压力差与外载荷相平衡的原理进行工作的。不论轴是否旋转,轴颈始终浮在压力油中,工作时可以保证轴颈与轴承之间处于纯液体摩擦状态。因此,这类轴承具有旋转精度高、摩擦阻力小、承载能力强的特点,并且对转速的适应性和抗振性非常好。但是,静压轴承的制造工艺要求较高,还需要一套复杂的供油装置,因此,除了在一些高精度机床上应用外,其他场合使用尚少。 动压轴承油膜压力是靠轴本身旋转产生的,因此供油系统简单,设计良好的动压轴承具有很长的使用寿命,因此,很多旋转机器(例如膨胀机、压缩机、泵、电动机、发电机等)均广泛采用各类动压轴承。 在旋转机械上使用的液体动压轴承有承受径向力的径向轴承和承受轴向力的止推轴承两类,本节主要讨论径向轴承的故障机理与诊断。 在动压轴承中,轴颈与轴承孔之间有一定的间隙(一般为轴颈直径的千分之几),间隙内充满润滑油。轴颈静止时,沉在轴承的底部,如图1-1 (a )所示。当转轴开始旋转时,轴颈依靠摩擦力的作用,沿轴承内表面往上爬行,达到一定位置后,摩擦力不能支持转子重量就开始打滑,此时为半液体摩擦,如图1-1(b)所示。随着转速的继续升高,轴颈把具有黏性的润滑油带入与轴承之间的楔形间隙(油楔)中,因为楔形间隙是收敛形的,它的入口断面大于出口断面,因此在油楔中会产生一定油压,轴颈被油的压力挤向另外一侧,如图1-1(c)所示。如果带入楔形间隙内的润滑油流量是连续的,这样油液中的油压就会升高,使入口处的平均流速减小,而出口处的平均流速增大。由于油液在楔形间隙内升高的压力就是流体动压力,所以称这种轴承为动压轴承。在间隙内积聚的油层称为油膜,油膜压力可以把转子轴颈抬起,如图1-1(d)所示。当油膜压力与外载荷平衡时,轴颈就在与轴承内表面不发生接触的情况下稳定地运转,此时的轴心位置略有偏移,这就是流体动压轴承的工作原理。

(情绪管理)液体动压润滑径向轴承油膜压力和特性曲线

液体动压润滑径向轴承油膜压力和特性曲线 (二) HZS —Ⅰ型试验台 一. 实验目的 1. 观察滑动轴承液体动压油膜形成过程。 2. 掌握油膜压力、摩擦系数的测量方法。 3. 按油压分布曲线求轴承油膜的承载能力。 二. 实验要求 1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。 2. 绘制摩擦系f 与轴承特性 λ 的关系曲线。 3. 绘制轴向油膜压力分布曲线 三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。 滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η (Pa ?s)、轴的转速n (r/min)和轴承压力p (MP a)有关,令 (7) 式中:λ—轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。 四. HZS —I 型试验台结构和工作原理 1. 传动装置 如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V 带5带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。 λη= n p

01摩根油膜轴承培训教材_MS_

摩根油膜轴承使用维护培训教材 摩根油膜轴承(上海)有限公司 二OO七年五月

目录 第一章 概述 第二章 油膜轴承的组装与使用 第三章 油膜轴承的维护 第四章 油膜轴承的润滑 第五章 参考图以及资料 说明说明::本教材仅供参考和掌握基本知识使用本教材仅供参考和掌握基本知识使用,,部分内容并不全面部分内容并不全面,,如有疑问如有疑问,,请致电摩根油膜轴承请致电摩根油膜轴承((上海上海))有限公司有限公司,,摩根油膜轴承摩根油膜轴承((上海上海))有限公司拥有对于本教材内容的全部解释权利对于本教材内容的全部解释权利。。

第一章 概述 一、油膜轴承原理及摩根油膜轴承的历史 二、摩根油膜轴承的构造 三、摩根油膜轴承的型号含义 四、摩根油膜轴承的特性 一、油膜轴承原理及摩根油膜轴承的历史 1.1、油膜轴承工作原理 油膜轴承又称液体摩擦轴承,它是利用液体润滑在锥套与衬套间形成一个完整的压力油膜,分离两个工作表面,而不发生直接的金属接触,达到液体摩擦状态。它被广泛地应用与轧机轴承中,按其油膜形成的条件,可分为动压油膜轴承,静压油膜轴承和动静压油膜轴承。 目前多数轧机使用的为动压或动静压油膜轴承,它是基于粘滞流体动压效应(也称为楔形效应):当把油从楔形的大间隙带入小间隙时,油液受到挤压,而液体本身是不可压缩的,于是就产生抗力实现承载。而应用于轴承中,由于轴比轴承小,只要轴与轴承不同心,就存在不相等的间隙,只要轴转动,就能带动轴颈附近的油顺转动方向运动,从而把油带入收敛的楔形间隙内,实现油膜轴承的正常工作。而静压油膜轴承的工作原理是基于液体的静压效应,在轴承的工作区开设油腔,并通入压力油,将轴抬起。动静压油膜轴承是在动压轴承的承载区域内开设很小的压力油腔,并通入高压油,即具备静压和动压双重效应,具备两者的特点。 1.2、油膜形成的条件 1.2.1、两个工作面间必须形成楔形区域。 在油膜轴承中,锥套外表面直径与衬套的内径的差值即可得到这个楔形。 1.2.2、两个工作面必须存在一定的相对运动。

油膜轴承变形和压力分析

第44卷 第3期 2009年3月 钢铁 Iron and Steel  Vol.44,No.3 March 2009 油膜轴承变形和压力分析 Thomas E Simmons , Andrea Contarini , Nonino G ianni (达涅利油膜轴承公司) 摘 要:轧机油膜轴承最新试验结果表明,实测油膜厚度比计算机模型预测值大3~5倍。这意味着,油膜厚度增加是由于锥套和衬套变形的结果,这种变形会导致锥套和衬套压力场扩大,进而导致油膜厚度增加。如果油膜厚度真的比预想的高3~5倍,则不但可以充分利用轴承固有的安全系数,而且还可以提高轴承的最大运行负荷。为确认试验结果,DanOil 油膜轴承工程师构建了因液体动压场变化而导致的锥套变形模型,然后将这种变形用于复杂的计算机轴承模拟程序,来计算新的压力场。对压力场和锥套变形进行重复迭代计算,直到计算结果收敛为止。介绍了这一分析方法和计算结果。 关键词:油膜轴承;油膜厚度;压力场;变形 中图分类号:T H13313 文献标识码:A 文章编号:04492749X (2009)0320093204 Deflection and Pressure Analysis of Oil Film B earings Thomas E Simmons , Andrea Contarini , Nonino G ianni (Danieli DanOil ) Abstract :Recent tests on rolling mill oil film bearings have indicated that the oil film thickness is three to five times greater than predicted by computer models.It has been implied that the increase in oil film thickness is due to the deflection of the sleeve and bushing ,which would spread out the pressure field increasing the oil film thickness.I f the oil film thickness is three to five times greater than expected ,the maximum operating load can be increased tak 2ing advantage of the inherent safety factor in the bearing.To confirm the test results ,DanOil engineers modeled the sleeve deflection produced by the hydrodynamic pressure field and then used this deflection in a sophisticated bearing computer program to calculate the new pressure field.The iteration of the pressure field and deflection was contin 2ued until the model converged.The paper presents the method of analysis and the results.K ey w ords :oil film bearing ;oil film thickness ;pressure field ;deformation 联系人:苏宏蕾,女; E 2m ail :h 1su @china 1danieli 1com ; 修订日期:2008209219 油膜轴承广泛用于世界各地数以百计的板带轧机上。这种轴承可用在中板轧机、热轧机、冷轧机、平整机上等,使用寿命长,可实现无故障运行。轴承工作时,其表面覆盖一层薄薄的油膜,具有很小的摩擦力。这是轴承使用寿命长的原因。由于没有金属之间的直接接触,因此轴承几乎没有磨损。轧机上使用的油膜轴承由一个锥套(辊颈)和一个衬套(轴承)组成,如图1所示。 辊颈和轴承表面之间由一层油膜将其分隔开来,形成一小间隙,在载荷作用下,辊颈中心线和轴承中心线不会重合,但它们之间会存在一定的距离,这一距离称为偏心距e 。偏心距和滑动表面之间的相对运动,将建立起一个会聚楔;由于油膜内的粘性作用而形成一个压力场。正是这个压力场支撑着轴承的载荷,如图2所示。图中表示的是一个标准圆柱形滑动表面。 其中,x =R θ,u =R ω;R 为辊颈半径;C 为半径图1 支撑辊轴承 Fig 11 B ackup roll bearing

滑动轴承油膜厚度计算

1 滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min =C-e=C(1-ε)=r ψ(1-ε) (1) 式中C=R -r ——半径间隙,R 轴承孔半径;r 轴颈半径; ε=e/C ——偏心率;e 为偏心距; ψ=C/r ——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4 , v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3 [1] (2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2 )(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强 (N/m 2 ) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2 +E ε+C=0 (4) 其中A=2.31(B/d)-2 ,E=-(2.052A +1), C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1] 。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。 油的温升为进出油的温度差,计算式为: ) 5()(v K vBd Q c f p T S ψπψρψ += ? 式中 f —摩擦系数;c —润滑油的比热,通常取1680-2100 J/kg ℃;ρ—润滑油的密 度,通常取850-900kg/m 3;Q —耗油量(m 3 /s),通常为承载区内流出的端泄量;K S —为轴承体 的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按 f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2 (1.052-ε)] (6) Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2] (7) 求解,上式中的B ,d 的单位均为m ,p 的单位为N/m 2 ,ν为油的运动粘度,单位为m/s. 轴承中油的平均温度应控制在 t m =t 1+△T/2≤75℃ (8) 其中t 1为进油温度;t m 为平均温度 2 径向动压滑动轴承稳健设计实例 设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响 和交互作用。如参数B 、轴颈与轴瓦的配合公差、润滑油的粘度的变化对油膜温升及承载能

滑动轴承常见故障及解决方法

滑动轴承常见故障及解决方法 【摘要】滑动轴承是机器中应用很广泛的一种传动,其工作平稳、可靠、无噪声。但在运行过程中常见故障很多,影响设备的正常运行。因此,总结故障原因,找出消除故障的解决方案和预防措施,从而可以达到设备正常运行,降低维修率,提高企业的经济效益。 【关键词】异常磨损;巴氏合金;轴承疲劳;轴承间隙 巴氏合金是滑动轴承常用材料之一,因其独特的机械性能,很多旋转机械广泛采用为滑动轴承材料。在日常工作中发现因滑动轴承故障导致停产,造成很大损失的情况时常发生。总结积累经验,参考有关书目知识,对巴氏合金轴承故障因素及解决方法作以简要论述。 一、巴氏合金松脱 巴氏合金松脱原因多产生于浇注前基体金属清洗不够,材料挂锡,浇注温度不够。当巴氏合金与基体金属松脱时,轴承就加速疲劳,润滑油窜入松脱分离面,此时轴承将很快磨损。 解决方法:重新挂锡,浇注巴氏合金。 二、轴承异常磨损 轴径在加速启动跑合过程中,轻微的磨合磨损和研配磨损都属正常。但是当轴承存在下列故障时,将出现不正常或严重磨损。 1、轴承装配缺陷。轴承间隙不适当,轴瓦错位,轴径在轴瓦中接触不良,轴径在运行中不能形成良好油膜,这些因素可引起转子振动和轴瓦磨损。 解决方法:更换轴承或重新修刮并做好标记,重新装配,使其达到技术要求。 2、轴承加工误差。圆柱轴承不圆,多油楔轴承油楔大小和分布不当,轴承间隙过大或过小,止推轴承推力盘端面偏摆量超差、瓦块厚薄不均,都能引起严重磨损。 解决方法:采用工艺轴检测修理轴承瓦不规则形状。 3、转子振动。由于转子不平衡、不对中,油膜振荡、流体激进等故障,产生高振幅,使轴瓦严重磨损、烧伤、拉毛。

滑动轴承油膜厚度计算

稳健设计理论在液体动压滑动轴承中的应用 滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。 在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。 通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。 本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。 1滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min=C-e=C(1-ε)=rψ(1-ε)(1) 式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径; ε=e/C——偏心率;e为偏心距; ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,

v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3[1](2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2)(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强(N/m 2) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2+E ε+C=0(4) 其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承 的液体润滑。 油的温升为进出油的温度差,计算式为: )5()(v K vBd Q c f p T S ψπψρψ +=? 式中f —摩擦系数;c —润滑油的比热,通常取1680-2100J/kg ℃;ρ—润滑油的密度,通常取850-900kg/m 3;Q —耗油量(m 3/s),通常为承载区内流出的端泄量;K S —为轴承体的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按

油膜振荡

油膜振荡的特征及判别方法 山东工程学院曲庆文马浩柴山 摘要:油膜振荡是大型机电设备出现故障较多的原因之一,本文主要对机电设备中出现油膜振荡的特征及判别方法加以总结论述,以便尽可能地避免油膜振荡的产生,提高机电设备的利用率和生产效率,减少设备的维修时间。 关键词:油膜振荡;设备故障;故障检测 1 涡动 转轴的涡动通常有惯性涡动、液力涡动和气隙涡动等[1]。对于轴颈轴承受到动载荷时,轴颈会随着载荷的变化而移动位置。移动产生惯性力,此时,惯性力也成为载荷,且为动载荷,取决于轴颈本身的移动。轴颈轴承在外载荷作用下,轴颈中心相对于轴承中心偏移一定的位置而运转。当施加一扰动力,轴颈中心将偏离原平衡位置。若这样的扰动最终能回到原来的位置或在一个新的平衡点保持不变,即此轴承是稳定的;反之,是不稳定的。后者的状态为轴颈中心绕着平衡位置运动,称为“涡动”。涡动可能持续下去,也可能很快地导致轴颈和轴承套的接触,稳定性是轴颈轴承的重要性能之一,是由于惯性作用的主要例证。 惯性涡动是由于转子系统的不平衡重量引起的惯性离心力P强迫引起的涡动。图1所示,矢量P与瞬时轴的动态挠度oH的夹角ψ表示惯性涡动的不同位置,夹角ψ随轴的转速n W变化。对于小的n W值,ψ接近于零,当轴的转速小于临界转速时,ψ由零增加至90°,此时力P可以分解成作用在挠度方向oH上的力P r和垂直于OH的力P t。P r与轴的弹性变形后生成的弹性力相平衡;而P t则没有与之平衡的固定力,于是被迫形成“同步涡动”。当轴的转速达到临界转速n k时,涡动达到极值;若转速继续增加,超过临界转速n k后,涡动减小。此时, P r与挠度方向相反,产生自动对中现象,这是柔性轴的特征。

轧机油膜轴承技术的说明范本

工作行为规范系列 轧机油膜轴承技术的说明(标准、完整、实用、可修改)

编号:FS-QG-51338轧机油膜轴承技术的说明 Description of rolling mill oil film bearing technology 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 中国轧机油膜轴承技术摘要:渗碳淬火件磨削裂纹形成的原因和防止措施精密加工和超精密加工的发展趋势和技术前沿激光焊接的防侧撞横梁提高安全性能什么是数据库营销?数控车床操作步骤(下)PDM―企业信息化的又一利器拉簧计算公式混粉电火花加工技术在粗加工中的应用研究龙门式加工中心和镗铣床的发展新型线性电机及其在直线运动系统中应用低压电器可靠性概况及其发展21/4Cr-1Mo 厚壁乙烯裂解炉管焊接工艺金刚石砂轮攻关项目通过鉴定E2S4000-MB型机械压力机振动传播及现场实测走近孔加工的挑战鲁南机床创新产品填补国内空白ActiveX技术在刀具CAD中的应用在普通电火花成形机上加工斜齿轮模具型腔可转位普通刀片偏差规定冲模高速走丝线切割加工中夹丝的防止措施技术轴承轧机运行测量我国主要系统制造密封中

国轧机油膜轴承技术独立自主自力更生方针指导发展起来回顾总结研究中国轧机油膜轴承技术认识促进发展中国轧机油膜轴承技术是有益处轧机油膜轴承技术系统工程技术也是领域综合性工程技术发展速度形成配套能力一个侧面反映中国工业发展速度达到水平. 中国轧机油膜轴承技术,是在“独立自主,自力更生”方针指导下发展起来的。回顾总结、研究中国轧机油膜轴承技术,对于认识、促进、发展中国轧机油膜轴承技术是有益处的。 轧机油膜轴承技术,是个系统工程技术,同时,也是个多学科领域的综合性工程技术,它的发展速度和所形成的配套能力,从一个侧面反映了中国工业的发展速度与所达到的水平。兹从运行技术、制造技术、测试技术、理论研究、产品开发、成套能力等几个主要方面进行简要的论述。 1.运行技术,包括轧机油膜轴承零部件的储放、清洗、安装、调试、运转、维修、诊断、管理等一整套知识与技能。运行技术的正确运用,是轴承安全运行的可靠保证。 50年代初期,我国只有鞍钢冷轧厂的可逆轧机装备了油

121-100系列油膜轴承油指标

海联润滑 HIRI 121-100系列油膜轴承油 一、产品用途 本系列产品以深度精制的矿油为基础油,添加多种多效添加剂而制得的。适用于冶金系统高速线材精轧机的油膜轴承、齿轮、调校螺杆以及其它轧钢和支承辊轴承循环系统的润滑。目前根据开发的顺序分为A、B、C三个不同的型号。 二、产品性能 1. 具有良好的粘温性能。 2. 具有良好的抗氧、防锈性能。 3. 具有良好的抗乳化性能。 4. 具有良好的极压和抗磨损性能。 5. 均能用于120米/秒的高速线材。 6. 使用寿命长。 三、产品技术指标 项目 质量指标 试验方法100(A)100(B)100(C) 运动粘度(40℃) mm2/s 90~110 90~110 90~110 GB/T265 粘度指数≥95 GB/T2541 闪点(开口) ℃≥220 GB/T3536 倾点℃≤-12 GB/T3535 铜片腐蚀(100℃×3h) 级≤1b GB/T5096 水分% ≤痕迹GB/T260 抗乳化试验(40-37-3) (54℃) min ≤30 29 27 GB/T7305 泡沫特性(24℃) 消泡时间min ≤10 9 8 GB/T12579 液相锈蚀A法合格B法合格B法合格GB/T11143 破乳试验(405mL油+45mL蒸馏水) 总分水量ml ≥36 36.5 37 GB/T8022 四球试验 烧结负荷P D N ≥ 磨斑直径 D 196N 60min mm ≤ 1470 0.50 1800 0.49 2300 0.48 GB/T3142 SH/T0189 FZG齿轮试验级≥9 10 12 GB/T306 抗氧化试验(旋转氧弹法) min ≥180 200 240 SH/T0193 四、包装:海联标志色200L铁桶

油膜振荡分析与处理

油膜振荡分析与处理 油膜涡动是由于油膜不稳定造成的,其振动频率一般在0.4~0.6倍频,但在现场实际观察也有0.3~0.7倍频的情况甚至更高;影响油膜的原因很多,如:1转速,2轴承载荷,3油的粘度,4轴颈与轴的间隙,5轴颈与轴的尺寸,6油的温度7油压8轴承进油孔的直径等’还有轴瓦的宽度等。除了润滑油品质的影响外,还有轴瓦载荷的影响,轴瓦载荷较小时容易发生油膜涡动,过大的振动容易产生油膜涡动; 油膜涡动和油膜振荡在高、中压和低压转子上均可能发生,并且由于转子标高受热负荷的影响,油膜失稳不但可能在升速过程,而且也可能在带负荷期间发生。油膜振荡不仅会导致高速旋转机械的故障,有时也是造成轴承或整台机组破坏的原因。 其实所有的振动都是轴心绕其旋转中心旋转的,这个旋转中心并不一定是轴瓦中心,因为大家都知道在运行中轴是有偏心的; 解决油膜涡动的方法当然也不是使转子运行在临界转速以下,工作转速是设计好的,不可能都改成刚性转子; 可以从轴心位置图看到其轴心是否过高,可以判断该轴瓦是否载荷较低; 解决油膜涡动,一个是检查油的质量使其合格,保证油温在设计范围内,还有就是增加该轴瓦的载荷,比如抬高轴瓦,增加轴瓦的轴径比等。

油膜涡动: 油膜的楔形按油的平均流速绕轴瓦中心运动的现象称为油膜涡动,因其平均速度为轴颈圆周速度的一半,故又称为半速涡动。 机理: 油润滑滑动轴承工作时,以薄的油膜支承轴颈。在轴瓦表面的油膜速度为零(轴瓦静止),而在轴颈表面的油膜速度与轴颈表面相同(轴颈高速旋转)。因此,不论在圆周上的任何剖面,油膜的平均速度均为轴颈圆周速度的一半。 轴颈高速旋转时,油膜厚度随楔形变化,但油的平均流速却相对不变。由于油的不可压缩性,多出的油将从轴承两端流出,或者油膜的楔形按油的平均流速绕轴瓦中心运动。 如何诊断油膜涡动引起的振动? 诊断油膜涡动可从以下的振动特征来判断: (1)油膜涡动的特征频率为略小于转子转速的1/2,并随转速的升高而升高,常伴有1倍频; (2)振动较稳定,次谐波振幅随工作转速的升高而升高; (3)相位较稳定; (4)轴心轨迹为双环椭圆,进动方向为正进动; (5)对轴承润滑油的温度、粘度和压力变化敏感。 怎样消除? 当前在生产中,可通过以下途径来消除油膜涡动: (1)从结构上,保证轴颈相对于轴瓦处于较大的偏心下工作;

液体动压润滑径向轴承油膜压力和特性曲线

精品资料推荐 液体动压润滑径向轴承油膜压力和特性曲线 (二) HZS —I型试验台 一.实验目的 1. 观察滑动轴承液体动压油膜形成过程。 2. 掌握油膜压力、摩擦系数的测量方法。 3. 按油压分布曲线求轴承油膜的承载能力。 二.实验要求 1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。 2. 绘制摩擦系f与轴承特性的关系曲线。 3. 绘制轴向油膜压力分布曲线 三?液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度 时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层 中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。因此这种轴承摩擦小,寿命 长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。 滑动轴承的摩擦系数f是重要的设计参数之一,它的大小与润滑油的粘度(Pas)、轴的转速n (r/min)和轴承压力p (MPi)有关,令 n P (7) 式中:一轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数的变化如图8-2所示。 图中相应于f值最低点的轴承特性数c称为临界特性数,且c以右为液体摩擦润滑区, c以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f值随减小而急剧增加。不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f—曲线不同,c 也随之不同。 四.HZS-1型试验台结构和工作原理 1?传动装置 如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。

轧机油膜轴承概况

轧机油膜轴承概况 油膜轴承的种类繁多,用途十分广泛,像汽轮机、发电机组、球磨机、风机轴承、天文、航空、航天设备使用的轴承等等。轧机油膜轴承是油膜轴承中承载最大的轴承之一。如宝钢5000mm宽厚板轧机其最大轧制压力可达108000kN是国内目前最大的板材轧机。 一般轧机机械可分为轧钢机和有色金属轧机(主要是铝材轧机和铜材轧机),按轧制产品又可分为线材轧机、型材轧机、带材轧机、板材轧机(分宽厚板、中厚板、热轧板、冷轧板)等。现今轧机使用的轴承主要有滚动轴承和油膜轴承两大类,根据轧机的不同性能和用途选用不同种类的轴承,一般轧钢机和铜材轧机使用油膜轴承为主,铝材轧机习惯使用滚动轴承。 线材轧机粗轧和中轧机组以使用滚动轴承为主,预精轧和精轧以使用油膜轴承为主。 型钢轧机和棒材轧机大多使用滚动轴承。 带材轧机目前国内仍是以滚动轴承为主,但因其承载低与寿命短等原因有逐步向油膜轴承发展的趋向。 板材轧机、一般中厚板轧机和热连轧机都是使用油膜轴承,冷连轧机大部分使用油膜轴承,部分使用滚动轴承,其中以日本冷轧机推行使用较多,西欧、美国、俄罗斯、中国等其它国家很少推荐使用滚动轴承。 这与轴承发展的历史和条件有关。世界上研究制造滚动轴承的单位和厂家很多,应用很广,研制的时间较长,有成熟的技术和经验。而应用于轧机的油膜轴承至今还不足100年的历史,迄今为止能集研究、设计、制造、服务全面发展的轧机油膜轴承厂家除美国摩根公司、前苏联的全苏冶金机械制造科学研究所和中国的太原重型机械集团公司外还没有具有自己的品牌,能独立进行产品设计、研究、开发和制造的独立厂家。一些世界上生产轧机的知名公司象德国西马克公司、意大利达涅利公司、奥地利奥钢联集团、日本的石川岛播磨和三菱公司等在轧机油膜轴承方面都没有自己独立的研发设计能力。美国的麦斯塔机械公司和原西德的萨克公司也曾设计制造过轧机油膜轴承,后来因为技术发展缓慢而逐渐在世界

轧机油膜轴承油膜厚度的测量方法_赵春江

收稿日期:2006207208 基金项目:国家自然科学基金资助(50575155) 作者简介:赵春江(1975-),男,讲师,在读博士,研究方向:轧钢设备与轧机轴承。 第27卷 增刊太原科技大学学报Vol .272006年9月 JOURNAL OF T A I Y UAN UN I V ERSI TY OF SC I E NCE AND TECHNOLOGY Sep.2006 文章编号:167322057(2006)S0-0037-03 轧机油膜轴承油膜厚度的测量方法 赵春江 1,2 ,王建梅2,马立峰2,姚建斌2,王国强1,黄庆学 2 (11吉林大学,长春130025;21太原科技大学,太原030024) 摘 要:在对弹流膜厚测量方法总结的基础上,介绍了与轧机油膜轴承油膜厚度的测量相关的技术方法,重点的介绍了近期发展的光纤位移传感器方法和超声共振方法。通过比较分析,得出光纤位移传感器方法虽然测量精度高,外界依赖性小,但是其透光性要求极大的限制了在轧机油膜轴承上的应用,超声共振法具有对材料的穿透能力,研究其应用有较高的实用价值。 关键词:轧机油膜轴承;油膜厚度;测量中图分类号:TG333 文献标识码:A 1 测膜厚度的测量方法 1.1 电阻法 1947年英国的B rix 测量了滑动和滚动情况下接触处的 电压和电流的关系,获得了油膜电压与油膜厚度的关系曲线。1955年,Le wicki 在详细讨论了把电阻测量值与油膜厚度联系起来的可能性后指出,不能用电阻法准确的测量膜厚。原因是油膜的电阻随油膜厚度的变化量很小,所以电阻的大小来标定油膜的厚薄很难实现。放电现象常被误解为金属微观表面凸起互相接触时出现的低阻值现象,电阻值的偶然减小并不能反映油膜厚度的减小。分析结果经过了后人的实验验证。 电阻法的优点是电路简单,不需要昂贵的测试设备。但是由于其自身所固有的特点,只能在定性分析弹流润滑状态时是一种有效的测试方法。 1.2 放电电压法 Ca mer on 和Dys on 分别用放电电压法对弹流膜厚进行 了测量。结果表明润滑剂的纯洁度对放电电压影响较大,因此测量结果并不能定量的反映油膜厚度的大小。1.3 电容法 电容法测量膜厚始于1955年Le wicki 所做的实验研究。 Dys on 做了改进使该方法得到广泛的应用。国内外的相关研 究人员做了大量的测试与验证工作,表明该方法能够准确的测量出两接触表面之间的膜厚。这种方法的局限性在于对部分膜状态下失效,且要求润滑剂应该是非极性的。 1.4 电容分压器法 这种方法的原理是把润滑膜视为电阻和电容的并联,当润滑状态从部分过度到全膜时,该方法可测量润滑状态的转化过程。但是该方法需要载波和低通滤波、信号失真很大,因而测量数据的准确率不高。 1.5 阻容振荡法、时基电路法和多谐振荡法 1998年,张鹏顺和李曙光基于文氏振荡器的自激振荡 原理,提出弹流膜厚测试的阻容振荡法。在全膜状态下,通过测量振荡频率并借助于“频率-电容-膜厚”标定曲线可测出膜厚的大小。在部分膜状态下,可利用液形分析来确定非金属接触率。这种方法集中了电阻法和电容法的优点。既可用于全膜弹流测试又可用于部分膜弹流测试,现场测试实用性强。 该方法的缺点是标定曲线的制定复杂,分布电容难于

滑动轴承油膜特性分析及实验研究

滑动轴承油膜特性分析及实验研究 滑动轴承具有承载能力高、使用寿命长、加工维护方便等优点,因而被广泛应用于大型旋转机械中。其油膜静力特性及动力特性影响转子系统的运动稳定性,直接决定整个设备能否安全稳定运行。 本文通过理论分析计算与实验相结合的方式,对滑动轴承油膜特性进行研究。为了得到油膜特性实验数据,本文设计了满足实验要求的滑动轴承试验台。 利用三维绘图软件,对试验台的主轴及轴瓦等结构部分进行三维模型设计, 并利用该软件对设计进行校核验证。通过理论计算,设计了满足实验要求的供油系统、加载系统及测试系统。 较传统滑动轴承试验台,本文设计的试验台具有浮动加载及多测点数据采集的优点,使轴承运动状态与实际运行状态更吻合且可以分析油膜轴向和周向上压力的变化情况。根据所设计的滑动轴承试验台,建立与之对应的轴承间隙结构模型。 在滑动轴承流动特性理论及经典Reynolds方程基础上,利用软件模拟对模 型进行数值计算,得到了不同运行条件下的油膜压力分布,并对各因素对滑动轴 承油膜压力的影响进行分析。同时,也对滑动轴承油膜动力特性进行数值计算, 并将宽径比、间隙比和载荷对滑动轴承动力特性的影响进行分析。 最后利用搭建的滑动轴承试验台进行滑动轴承油膜静力特性实验,并将实验数据与理论模拟计算的结果进行对比分析。通过理论与实验研究发现,油膜压力随载荷的增大而增大,增大速率则逐渐减小,在实验范围内,油膜压力的稳定性随载荷的增大更加稳定;且随着实验载荷的增大,理论计算模型得到的模拟压力分 布与实验数据更加贴近,模型所忽略的影响因素对压力分布的影响逐渐减小。

随着转速升高,油膜压力有所降低,下降速率随转速增大而减小,相较中间转速(临界速度附近)条件在较低转速及高转速条件下,油膜稳定性更好。实验条件下的相对偏心距与偏位角的变化趋势也与模拟得到的变化趋势一致,反映出数值计算的可靠性与试验台设计的科学性。

汽轮机油膜振荡影响因素分析及措施研究

汽轮机油膜振荡影响因素分析及措施研究 摘要:所谓油膜振荡是指旋转轴受到滑动轴承中的油膜作用,所产生旋转轴的自激振荡,能够产生和旋转轴在达到临界的转速时相同的振幅,或者使之变得更加激烈。油膜振荡是中小型汽轮机组在运行过程中常遇见的机械故障之一,中小型汽轮机组,安全的运行受到油膜振荡的影响。影响中小型汽轮机组产生油膜振荡的因素有很多,主要有轴系结构的设计、轴承负载、润滑油粘度以及轴瓦间隙等,针对产生油膜振荡的这些因素要制定相应的措施,防止油膜振荡的产生,使中小型汽轮机组安全的运行。 油膜振荡是中小型汽轮机组的发电组经常出现的故障,油膜振荡对机组的危害非常大。我国的中小型汽轮机的发电机组的容量不断增大,中小型汽轮机组的轴颈不断增大,导致中小型汽轮机组的整个轴系系统中的不稳定区域变大,非常容易产生油膜振荡现象。中小型汽轮机组转子的长度也不断增大,使转子的临界转速降低,现在机组一般工作在一阶临界转速,还有的甚至工作在二阶临界转速之上,这些也非常容易导致油膜振荡产生。中小型汽轮机组发生油膜振荡后会对汽轮的机组产生动静部件的摩擦、转子热弯曲以及瓦片碎裂等故障的产生,要不断找到消除中小型汽轮机组油膜振荡的方法是非常重要的一项任务。本篇文章主要是通过对中小型汽轮机组产生油膜振荡的因素进行系统详细的分析,就消除中小型汽轮机组的油膜振荡给予相关的建议。 1.产生汽轮机油膜振荡的影响因素 1.1润滑油黏度。润滑油的黏度是导致中小型汽轮机组产生的影响因素。油度、油温以及油的型号都会影响润滑油的黏度,随着润滑油粘度度的升高,轴瓦的稳定性不断降低。油中含水和劣化影响油的质量,目前32号的汽轮油黏度最小,油温越高,最小油膜厚度变小,轴承也就不容易产生油膜振荡。 1.2轴瓦间隙。轴瓦间隙对轴承的稳定性产生影响,其中影响最大的就是轴承的最小间隙,稳定工作的最小依据就是最小间隙,它越小轴承也就越稳定。 1.3轴系结构设计。轴系的结构影响转轴刚度,即影响临界转速、载荷分布、挠曲程度等。转轴在运行中偏心率的大小对临界转速有很大影响,同时也会影响到转轴的工作性能。设计好轴系结构,能够大大减少中小型汽轮机组油膜振荡的产生,使中小型汽轮机安全的运行。 1.4轴承负载。中小型汽轮机组组发电机的安装,是根据厂家提供的挠曲度曲线及其规范,在转子不旋转的情况下不断调整轴承的中心位置来找正。在实际运行中,受到机组发生热变形、转子浮起、地基和真空度不均匀这些因素的影响,在热态情况下,机组轴承的负荷将发生变化,会导致个别轴承出现过载、升温过高、烧瓦以及油膜振荡或其他不正常的振荡。 1.5其他因素的影响

轧机油膜轴承的使用及维护

轧机油膜轴承的使用及维护 现代轧机的主要特征是大型、高速、重载、连续、自动,现代大型轧机特别是具有板型、板厚自动控制的大型板、带材连轧机大都采用油膜轴承,应用在轧机上作为工作辊轴承或支承辊轴承的称做轧机油膜轴承,这类轴承基本上属于低速重载、中速中载或重载轴承。随着八钢板带系统冷轧、热轧、中厚板项目的陆续建设投产,板材轧机油膜轴承在八钢逐步得到应用,油膜轴承的使用维护成为影响辊系装配使用质量和保证轧线稳定顺行的一项重要环节,由于使用时间较短,现场工作人员对使用维护规范等缺乏了解。 油膜轴承主要由锥套、衬套、止推轴承部分、密封系统、锁紧系统等部分组成。油膜轴承有很多特点:承载能力大,抗冲击能力强;使用寿命长;速度范围宽;结构尺寸小;摩擦系数低。 1.油膜轴承的使用 以八钢公司板材连轧机使用的一种单止推拉杆装配、螺环机械锁紧的动-静压油膜轴承为例,介绍油膜轴承的组装及使用维护、注意事项。 (l)单止推装拉杆形式是在同一轧辊上装配的两个轴承座是不同的,一侧油膜轴承是带止推的轴承,而另一侧则是不带止推轴承的,两轴承座之间靠拉杆固定。带止推轴承的,是将轴承箱与轧辊固定,即轧辊与轴承箱在轧辊的轴向不发生移动。不带止推的轴承,即轧辊与轴承箱没有轴向约束,当轧辊受外界作用,比如受力、受冷、受热等作用而发生轴向长度变化时,锥套与衬套产生轴向相对位移。由于止推轴承的轴承箱与轧机牌坊相连,故当轧辊轴承受轴向力时,完全由止推轴承承受。 (2)油膜轴承座组装时,首先轴承座、油膜轴承锥套、衬套和辅助配件清洗,清洗时不得使用刮刀及磨料。利用翻转机将清洗后的轴承座翻转,使轴承座孔垂直,辊外侧(相对于辊身侧而言)开口向上。 (3)检查和清洁衬套,使用内径、外径千分尺检测衬套内外径尺寸,并做好记录,选择将要使用的承载区域,使用堵头将衬套非承载区域的静压油口堵塞,用洁净的压缩空气吹扫承载区域静压油路,并安装阻尼器和静压弯头,弯头应该与中心线平行。 (4)将轴承座内孔和衬套外径面涂抹润滑油,涂抹用油使用润滑系统同牌号油品。在起吊设备的辅助下,衬套的凸缘处有锥度孔与衬套吊装螺栓配合使用,进行衬套的吊装。安装过程中,须慢速、小心下降衬套使其装入轴承座,确认所选择的衬套承载区域与轴承座承载区域一致,同时在下降过程中旋转衬套,使衬套上的锁定孔与轴承座上的衬套锁定孔方相一致,装入密封及锁定销并固定到位。 (5)将静压软管、快换接头、连接接头及密封预先装配好,然后将静压软管穿过轴承座上的开孔,其一端与衬套静压弯头连接。快换接头安装后,必须低于轴承座表面1/8。 (6)检查锥套,将衬套的内表面和锥套的外表面涂抹润滑油,涂抹用油使用润滑系统同牌号油液。在锥套内安装锥套提升杆。锥套与衬套之间的间隙非常小,必须十分精细的安装。通常的安装方法是在将锥套装入衬套孔的过程中间断性地下降锥套,并测量从轴承座到锥套边部的周向四点,调整起重设备使四点测量值相同,然后将锥套缓慢落放到安装位置。当锥套装入衬套约一半时,旋转锥套使键槽在轴承座的水平中心线上方。 (7)将锥套压环涂抹润滑油并安装到锥套圆柱孔的位置,确认锥套环上的键安装到位和锥套环边部卡入锥套孔内。 (8)将止推轴承盒支撑在木垫块上并确认木垫块未接触内孔。将止推轴承盒内孔清洁和润滑涂油后,放入轴承座内。将止推轴承一外圈清洁和润滑涂油,并装入轴承盒孔内,对安装位置进行适当调整,双列圆锥滚子组清洁和润滑涂油后装入止推轴承盒内,注意使轴承外圈

相关文档
相关文档 最新文档