文档库 最新最全的文档下载
当前位置:文档库 › 与数列有关的不等式的常见证明方法

与数列有关的不等式的常见证明方法

与数列有关的不等式的常见证明方法
与数列有关的不等式的常见证明方法

一类与数列有关的不等式的证明方法

四川师大附中 黄光鑫

一、利用二项式定理

【例1】已知数列{}n a 的通项公式为1

1()

2

n n a n -=?,求证:当3n ≥时,

1232

...1

n n a a a n ++++≥

+。 证明:用错位相减法易求得:

12242432224

...4,4221122424

,222222

n n n n

n n n n n n n a a a n n n n n n ++++++++=-

--=-++++=-++所以只需比较与的大小。

112(11)=1...22n n n n n n C C C n =+++++≥+。∴

24242424

0222222

n n

n n n n n n ++++≤∴-≥++, 故∴24324021n

n n n ++--≥+,即当3n ≥时,1232

...1

n n a a a n ++++≥+。 点评:本题通过二项式定理的展开式,进行简单的放缩巧妙的证明了不等式。

二、利用放缩法

要注意放缩的技巧和放缩的适度。常见的技巧有: 比如:

①添加或舍去一些项,如:a a >+12

,n n n >+)1(,22

131242a a ????++>+ ? ??

???;

②将分子或分母放大(或缩小);

③真分数的性质:“若0a b <<,0m >,则

a a m

b b m

+<+”; ④利用基本不等式,如:22

lg 3lg 5lg16lg 3lg 5(

)()lg 422

+?<<=;

2

)

1()1(++

<

+n n n n ;⑤利用函数的单调性;

⑥利用函数的有界性:如:sin x ≤

1()x R

∈;2

x x -≥1

4

()x R ∈;20x >()x R ∈; ⑦利用常用结论:

2=>=()*

,1k N k ∈>

2=<=()*

,1k N k ∈>

Ⅱ、

k k k k k 111)1(112--=-< ; 11

1)1(112

+-=+>k k k k k (程度大) Ⅲ、

)1

111(21)1)(1(111122+--=+-=-

11

(1)!!(1)!

n n n n =-

++; ⑧绝对值不等式:a b -≤a b ±≤a b +;⑨应用二项式定理。

【例2】数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*

n N ∈,总有2

,,n n n

a S a 成等差数列,又记2123

1

n n n b a a ++=。(1)求数列{}n a 的通项公式:(2)求数列{}n b 的前n 项

和n T ,并求使150

n m

T >

对都成立的最大正整数m 的值。 2

2111221111111(1)2......(1)2 (2)

(2)(1):2()(1)011.1111

(2)()(21)(23)2212311111(2)64661015150

n n n n n n n n n n n

n n n n n n n n n S a a S a a a a a a a a a a a a a a n b n n n n m

T m n +++++++++=+=+-=-+-∴+--=∴-==∴==

=-∴++++=-≥-=>∴<+解:易求得:a 易求得:

10,9

m =。

点评:

本题是先拆项求和再放缩。这是常规思路。 【例3】若2(1),(1),n n a n n b n =+=+求证:

11221115

(12)

n n a b a b a b +++<+++。 证明:

1112211

,6(1)(21)

11111111()...2(1)216111115()2216412

n n n a b a b n n n n n n a b a b a b n =≥=

++++<=-∴+++<++++++-<+=+1n 11当n=1时,当n 2时,

点评:

本题是先放缩再求和,求和之后再放缩。难度较大。

记住一些常用的结论对解题非常有帮助, 用导数的方法容易证明:(1)当0x >时,

ln(1)x x +≤;(2) 当0x >时,2ln(1)x x +≤;(3) 当(0,1)x ∈时,1ln

1x x

<-. (4) 当2x ≥时,2ln 8

x x

x +<.

比如1:

【例4】设45

,12

n n n n c S n n ++=

++为数列{}n c 的前n 项和,证明:6(1ln )n S n n <++.

答案:。 2

36

161,32n n c n n n +=+?<+++ 1116(1......),23n S n n ∴<+?++++用导数的方法容易证明:当(0,1)x ∈时,1

ln 1x x

<-;

11ln ln

111n

n n n

∴<=--,从而1116(1......)232346(1ln ln ln ......ln )6(1ln )

1231

n S n n

n

n n n n ∴<+?+

+++<+?+++++=+?+-。

点评:用导数的方法容易证明:当(0,1)x ∈时,1

ln 1x x

<-; 比如2:

【例5】已知1

n n

a n =

+,求证:12...ln 2ln(2).n a a a n n +++<+-+ 提示: 当0x >时,用导数的方法容易证明:ln(1)x x +≤。

12111...(1)(1)...(1)11211

111342(...)(ln ln ln )2312312ln ln 2ln(2).

2n a a a n n n n n n n n n n +++=-

+-++-++++=-+++<-++=+++-=+-+ (注意:利用第(1)问的结论)

比如3:

【例6】已知数列{n a }中,12-=n n a ,求证:

)(3

21...11*132N n a a a n ∈<++++. 证明:12-=n

n a ,

),2(1

21)121(212211211*1

1N n n a a n n n n n ∈≥?=-=-<-=--,

S a a a n =++++1321...11,则:3

2

0,13211),1(21111

1212<

∴>-=-<∴-<-

++++S a a a a S a S a S n n n n

【例7】已知函数)()1ln()(2R a ax x x f ∈++=。(1)若函数)(x f 在]1,0(上是减函数,求a 的取值范围:

(2)证明:))(1ln(1...31211*N n n n

∈+>++++. 解:(1)1-≤a ;(2)容易证明:当R x ∈时,)()1ln()(2R a x x x f ∈-+=是减函数;当

0>x 时,0)0()(=

x 1

=

得:)(1)11ln(*N n n n ∈<+,

)1ln()1

1)...(311()211()11ln(1...31211n n n

+=++?+?+>++++

点评:用导数的方法容易证明:2ln(1)x x +≤。

【例8】证明:2*11132

....(2,)ln 2ln3ln (1)

n n n n N n n n --+++>≥∈+.

解:用导数的方法容易证明:当2x ≥时,2ln 8x x

x +<.所以

22*11188811......8()

l n 2l n 3l n 2334(1)

21

4(1)4(1)32(

1)(2)

,0

11(1)(1)

11132

....(2,)ln 2ln 3ln (1)

n n n n n n n n n n n n n n n n n n n n N n n n +++>+++=-

??++------=-=≥++++--∴+++>≥∈+

三、利用导数法

【例9】当3n ≥且*

n N ∈时,求证:

211

ln(1)ln n n n n

<+-<。 证明:原不等式等价于:2111

ln(1),n n n

<+<先考察:

'1()ln(1),(0,),()1011

x

g x x x x g x x x -=+-∈+∞=-=<++,()g x ∴在(0,)+∞上递减,

0,()(0)0x g x g ≥∴≤=,即ln(1).x x +≤ 再考察:2

1()l n (1

),(0,)3h x x x x =+-∈,2'1122()2011x x h x x x x

--=-=>++在

1(0,)3上恒成立,即()h x 在1

(0,)3

上递增()(0)0h x h ∴>=即:22ln(1)x x +>,综上所述,当1(0,)3x ∈时,2l n (1)x x x <+<,当3n ≥时,1103n <<,以

1

n

代x 得: 2111ln(1),n n n <+<即:211ln(1)ln n n n n

<+-<。 点评:

用导数的方法证明不等式,首先要从函数和变量的观点出发仔细观察式子的结构特征,有时也需要对不等式作一些等价变形;其次是引入相应的函数并将所有的式子移到一边,用导数的方法研究此函数的单调性,从而证得结论。另一思路请见后面第5题。 【例10】求证::对一切(0,+)x ∈∞,都有12

ln x

x e ex

>

-成立. 证明:问题等价于证明2ln ((0,))e

x

x x x x >-∈+∞, 容易证明:()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1e x =时取得最小值。

设2()((0,))e e

x

x m x x =-∈+∞,则1()e x x m'x -=, 当)1,0(∈x 时0)(>'x m ,)(x m 单调递增;当),1(+∞∈x 时)(,0)(x m x m <'单调递减。故[]max 1

()(1)e m x m ==-,当且仅当1=x 时取得最大值。 所以max min )]([1

)]([x m e

x f =-

=且等号不同时成立,即2ln ((0,))e e x x x x x >-∈+∞

从而对一切(0,)x ∈+∞,都有12ln e e x

x x >-成立. 点评:

本题证明不等式关键是将原不等式变形为2ln ((0,))e

e x x x x x >-∈+∞之后用左边的最小值大于右边的最大值。这是证明不等式的又一思路。 四、利用数学归纳法

【例11】[2004年辽宁高考]已知函数223)(x ax x f -

=的最大值不大于61,又当]2

1,41[∈x 时81)(≥x f ,(Ⅰ)求a 的值。(Ⅱ)设,),(,210*

11N n a f a a n n ∈=<<+证明:1

1+

点评:

本题在使用数学归纳法证明的过程中再次使用了放缩法。考察了学生灵活运用数学方

法解题的能力。

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

数列不等式的证明方法

数列型不等式的证明 数列型不等式问题在近年逐渐成为高考热点,数列型不等式问题常被设置为高考压轴题,能力要求较高。因其仍然是不等式问题,可用处理不等式的方法:基本不等式法;比较法;放缩法,函数单调性法等都是常用的方法;但数列型不等式与自然数有关,因而还有一种行之有效的方法:数学归纳法。 1、重要不等式法 若数列不等式形如下式,可用均值不等式法求证。 (1)),(222R b a ab b a ∈≥+; (2) ),(2 +∈≥+R b a ab b a (3) ),,,(2121321+∈???????????≥+??????+++R x x x x x x n n x x x x n n n n 2、比较法 比较法是证明不等式的基本方法,可以作差比较也可以作商比较,是一种易于掌握的方法。 3、放缩法 常用的放缩结论: ①、 ,111)1(11)1(11112k k k k k k k k k --=-<<+=+-其中(2≥k ) ②、 ;)12)(12(1)12(12+->-n n n ;)12)(32(1)12(12--<-n n n ) 22(21 )12(12+<+n n n ③、 1 211 2-+< < ++k k k k k 用放缩法解题的途径一般有两条,一是先求和再放缩,二是先放缩再求和。 (1)、先求和再放缩 一般先分析数列的通项公式,如果此数列的前n 项和能直接求和或通过变形后可以求和,则采用先求和再放缩的方法证明不等式。数列求和的方法较多,我们在数列求和的专题中有具体的讲解,主要用的有公式法、裂项法、倒序相加法、分组求和法等方法。 例1、已知函数)(x f 对任意实数q p ,都满足)()()(q f p f q p f ?=+,且3 1 )1(=f , (1)当+∈N n 时,求)(n f 的表达式;(2)设))((+∈=N n n nf a n ,n T 是其前n 项和,试证明4 3

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

数列型不等式的证明.docx

数列型不等式证明的常用方法 一. 放缩法 数列型不等式证明是前见年高考中的一个热点,在多 省试题中常常作为压轴题出现。放缩法是数列不等式证明的 一个重要方法,它具有很强的技巧性的特点,学生往往无从 下手,下面总结放缩法证明的一些常用技巧, 例如 归一技巧、 抓大放小技巧、回头追溯技巧、利用函数性质技巧 ,仅供参 考 . 1 归一技巧 归一技巧,指的是将不容易求和的和式中的所有项或 若干项全部转化为 同一项 ,或是将和式的通项中的一部分转 化为 同一个式子 (或数值),既达到放缩的目的,使新的和 式容易求和 . 归一技巧有 整体归一、分段归一。 例如 1 1 1 1 设 n 是正整数,求证 n 1 n 2 1. 2 2n 1 1 1 【证明】 n 1 n 2 L 2n 1 1 1 1 1 . 2n 2n 2n 2n 2 14444244443 个 1 n 2n 1 1 L 1 另外: n 1 n 2 2n 1 1 1 1 n n n n 1 . 144424443 n 个 1 n 1 1 【说明】在这个证明中,第一次我们把 n 1 、 n 2 、

1 1 L 2n 这些含 n 的式子都 “归一” 为 2n ,此时式子同时变小, 1 1 L 1 1 顺利把不易求和的 n 1 n 2 2n 变成了 n 个 2n 的 和,既将式子缩小,同时也使缩小后的式子非常容易求和, 这就是 “归一” 所达到的效果。 而不等式右边的证明也类似 . 1.1 整体归一 放缩法中,如果通过将所有项转化为同一项而达到放缩目的的,称之为“整体归一” . 例 1. 数列 a n 的各项均为正数, S n 为其前 n 项和,对于任 意 n N * ,总有 a n , S n ,a n 2 成等差数列 . ( Ⅰ ) 求数列 a n 的通项公式; ( Ⅱ ) 设数列 b n 的前 n 项和为 T n ,且 b n ln n x ,求证:对 2 a n 任意实数 x 1, e ( e 是常数, e = )和任意正整数 n , 总有 T n 2 ; (Ⅰ)解:由已知:对于 n N * ,总有 2S n a n a n 2 ①成立 ∴ 2S n 1 a n 1 a n 1 2 (n ≥ 2 )② ① -- ②得 2a n a n a n 2 a n 1 a n 1 2 ∴ a n a n 1 a n a n 1 a n a n 1 ∵ a n , a n 1 均为正数, ∴ a n a n 1 1 (n ≥ 2) ∴数列 a n 是公差为 1 的等差数列

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

证明数列不等式之放缩技能及缩放在数列中的应用全套整合

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12n n n +<. 证法一:令)6(2 ) 2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时,2 (2) 1.2 n n +< 证法二:可用数学归纳法证.(1)当n = 6时,6 6(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即 (2) 1.2k k k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++ 由(1)、(2)所述,当n ≥6时, 2 (1) 12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明: ()23 11112 3 n n N a a a *++++ <∈. 证明:n n n n n a a 121121************?=-?=-<-=+++ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S . 例3. 已知函数f(x)= 52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <1 4(2n -1).

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

相关文档
相关文档 最新文档