文档库 最新最全的文档下载
当前位置:文档库 › 中考数学圆的综合综合题汇编及答案解析

中考数学圆的综合综合题汇编及答案解析

中考数学圆的综合综合题汇编及答案解析
中考数学圆的综合综合题汇编及答案解析

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802

AE ππ

??=

=.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

2.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F . (1)求证:OE ∥BD ;

(2)当⊙O 的半径为5,2

sin 5

DBA ∠=

时,求EF 的长.

【答案】(1)证明见解析;(2)EF 的长为212

【解析】

试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.

试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=?. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=?. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠. ∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD . (2)由(1)可得sin ∠C = ∠DBA=

25,在Rt △OBE 中, sin ∠C =

2

5

BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=?

∵E C ∠=∠,∴△CBD ∽△EBO .

BD CD

BO EO

= ∴252

EO =

. ∵OE ∥BD ,CO =OD , ∴CF =FB . ∴1

22

OF BD =

=. ∴212

EF OE OF =-=

3.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF . (1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)若半圆O 的半径为6,求AC 的长.

【答案】(1)直线CE 与半圆O 相切(2)4π 【解析】

试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;

(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题. 试题解析:(1)直线CE 与半圆O 相切,理由如下: ∵四边形OABC 是平行四边形,∴AB ∥OC. ∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE , ∴直线CE 与半圆O 相切.

(2)由(1)可知:∠COF=60°,OC=OF , ∴△OCF 是等边三角形, ∴∠AOC=120° ∴AC 的长为

1206

180

π??=4π.

4.如图,AD 是△ABC 的角平分线,以AD 为弦的⊙O 交AB 、AC 于E 、F ,已知EF ∥BC . (1)求证:BC 是⊙O 的切线; (2)若已知AE=9,CF=4,求DE 长;

(3)在(2)的条件下,若∠BAC=60°,求tan ∠AFE 的值及GD 长.

【答案】(1)证明见解析(2)DE=6(3)37

5

【解析】

试题分析:(1)连接OD ,由角平分线的定义得到∠1=∠2,得到DE DF =,根据垂径定理得到OD ⊥EF ,根据平行线的性质得到OD ⊥BC ,于是得到结论;

(2)连接DE ,由DE DF =,得到DE=DF ,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;

(3)过F 作FH ⊥BC 于H ,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到

FH=

12DF=1

2

×6=3,=,根据三角函数的定义得到

tan ∠AFE=tan ∠C=

7

HF CH =

;根据相似三角形到现在即可得到结论. 试题解析:(1)连接OD , ∵AD 是△ABC 的角平分线, ∴∠1=∠2, ∴DE DF =, ∴OD ⊥EF , ∵EF ∥BC , ∴OD ⊥BC , ∴BC 是⊙O 的切线; (2)连接DE , ∵DE DF =, ∴DE=DF , ∵EF ∥BC , ∴∠3=∠4, ∵∠1=∠3, ∴∠1=∠4, ∵∠DFC=∠AED , ∴△AED ∽△DFC ,

∴AE DE DF CF =,即94DE

DE =, ∴DE 2=36, ∴DE=6;

(3)过F 作FH ⊥BC 于H , ∵∠BAC=60°,

∴∠1=∠2=∠3=∠4=30°,

∴FH=

1

2

DF=1

62?=3,

=, ∵EF ∥BC , ∴∠C=∠AFE ,

∴tan ∠AFE=tan ∠C=

7

HF CH =

; ∵∠4=∠2.∠C=∠C , ∴△ADC ∽△DFC ,

AD CD

DF CF

=, ∵∠5=∠5,∠3=∠2, ∴△ADF ∽△FDG , ∴AD DF

DF DG

=, ∴

CD DF CF DG =,即3376

4DG +=, ∴DG=

18367

5

-.

点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.

5.如图,⊙O 的直径AB =26,P 是AB 上(不与点A 、B 重合)的任一点,点C 、D 为⊙O 上的两点,若∠APD =∠BPC ,则称∠CPD 为直径AB 的“回旋角”.

(1)若∠BPC =∠DPC =60°,则∠CPD 是直径AB 的“回旋角”吗?并说明理由; (2)若CD 的长为

13

4

π,求“回旋角”∠CPD 的度数; (3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.

【答案】(1)∠CPD 是直径AB 的“回旋角”,理由见解析;(2)“回旋角”∠CPD 的度数为45°;(3)满足条件的AP 的长为3或23. 【解析】 【分析】

(1)由∠CPD 、∠BPC 得到∠APD ,得到∠BPC =∠APD ,所以∠CPD 是直径AB 的“回旋角”;(2)利用CD 弧长公式求出∠COD =45°,作CE ⊥AB 交⊙O 于E ,连接PE ,利用∠CPD 为直径AB 的“回旋角”,得到∠APD =∠BPC ,∠OPE =∠APD ,得到

∠OPE+∠CPD+∠BPC =180°,即点D ,P ,E 三点共线,∠CED =

1

2

∠COD =22.5°, 得到∠OPE =90°﹣22.5°=67.5°,则∠APD =∠BPC =67.5°,所以∠CPD =45°;(3)分出情况P 在OA 上或者OB 上的情况,在OA 上时,同理(2)的方法得到点D ,P ,F 在同一条直线上,得到△PCF 是等边三角形,连接OC ,OD ,过点O 作OG ⊥CD 于G , 利用sin ∠DOG ,求得CD ,利用周长求得DF ,过O 作OH ⊥DF 于H ,利用勾股定理求得OP ,进而得到AP ;在OB 上时,同理OA 计算方法即可 【详解】

∠CPD 是直径AB 的“回旋角”, 理由:∵∠CPD =∠BPC =60°,

∴∠APD =180°﹣∠CPD ﹣∠BPC =180°﹣60°﹣60°=60°, ∴∠BPC =∠APD ,

∴∠CPD 是直径AB 的“回旋角”; (2)如图1,∵AB =26, ∴OC =OD =OA =13, 设∠COD =n°, ∵CD 的长为134

π, ∴

1313

1804n ππ= ∴n =45,

∴∠COD =45°,

作CE ⊥AB 交⊙O 于E ,连接PE , ∴∠BPC =∠OPE ,

∵∠CPD 为直径AB 的“回旋角”, ∴∠APD =∠BPC , ∴∠OPE =∠APD ,

∵∠APD+∠CPD+∠BPC =180°, ∴∠OPE+∠CPD+∠BPC =180°, ∴点D ,P ,E 三点共线, ∴∠CED =

1

2

∠COD =22.5°, ∴∠OPE =90°﹣22.5°=67.5°, ∴∠APD =∠BPC =67.5°, ∴∠CPD =45°,

即:“回旋角”∠CPD 的度数为45°,

(3)①当点P 在半径OA 上时,如图2,过点C 作CF ⊥AB 交⊙O 于F ,连接PF , ∴PF =PC ,

同(2)的方法得,点D ,P ,F 在同一条直线上,

∵直径AB的“回旋角”为120°,

∴∠APD=∠BPC=30°,

∴∠CPF=60°,

∴△PCF是等边三角形,

∴∠CFD=60°,

连接OC,OD,

∴∠COD=120°,

过点O作OG⊥CD于G,

∠COD=60°,

∴CD=2DG,∠DOG=1

2

∴DG=ODsin∠DOG=13×sin60°=133

2

∴CD=133

√,

∵△PCD的周长为24+133

√,

∴PD+PC=24,

∵PC=PF,

∴PD+PF=DF=24,

过O作OH⊥DF于H,

∴DH=1

DF=12,

2

在Rt△OHD中,OH=225

-=

OD DH

在Rt△OHP中,∠OPH=30°,

∴OP=10,

∴AP=OA﹣OP=3;

②当点P在半径OB上时,

同①的方法得,BP=3,

∴AP=AB﹣BP=23,

即:满足条件的AP的长为3或23.

【点睛】

本题是新定义问题,同时涉及到三角函数、勾股定理、等边三角形性质等知识点,综合程度比较高,前两问解题关键在于看懂题目给到的定义,第三问关键在于P点的分类讨论

6.

如图,△ABC中,AC=BC=10,cosC=3

5

,点P是AC边上一动点(不与点A、C重合),

以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.

(1)当⊙P与边BC相切时,求⊙P的半径.

(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.

(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.

【答案】(1)

40

9

R=;(2)2

5

880

320

x

y x x

x

=-+

+

(3)505

-

【解析】【分析】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3

5

,则

sinC=4

5

,sinC=

HP

CP

10

R

R

-

4

5

,即可求解;

(2)首先证明PD∥BE,则EB BF

PD PF

=,即:20

2

4

588

x y

x

x

x

y

-+

-

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP,则HP⊥BC,cosC=3

5

,则sinC=

4

5

sinC=HP

CP

10

R

R

-

4

5

,解得:R=

40

9

(2)在△ABC中,AC=BC=10,cosC=3

5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,

则BH=ACsinC=8,

同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=22

8+(4)

x-=2880

x x

-+,

DA=25

x,则BD=45﹣25x,

如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,

tanβ=2,则cosβ

5,sinβ

5

EB =BDcosβ=(45﹣25

x )×5=4﹣25

x ,

∴PD ∥BE ,

∴EB BF

PD PF

=,即:202

4588x y x x

x y

-+--=,

整理得:y =

25x

x 8x 803x 20

-++;

(3)以EP 为直径作圆Q 如下图所示,

两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,

由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,

∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中, AD =2rcosβ5DG 5

AG =2r , 5=52r 51

+, 则:DG 5

50﹣5 相交所得的公共弦的长为50﹣5 【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

7.如图①,已知Rt ABC ?中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作

O ,过C 作CE 切O 于E ,交AB 于F .

(1)若

O 的半径为2,求线段CE 的长;

(2)若AF BF =,求O 的半径;

(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.

【答案】(1)42CE =;(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6.

【解析】 【分析】

(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r

=610

,解得即可;

(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,

GB GE

AB AC

=,即12108GE =,解得即可. 【详解】

(1)如图,连结OE . ∵CE 切

O 于E ,

∴90OEC ∠=?. ∵8AC =,

O 半径为2,

∴6OC =,2OE =.

∴2242CE OC OE =-=; (2)设

O 半径为r .

在Rt ABC ?中,90ACB ∠=?,10AB =,8AC =, ∴226BC AB AC =-=.

∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵

CE 切O 于E ,

∴90OEC ∠=?. ∴OEC ACB ∠=∠, ∴OEC BCA ?~?. ∴OE OC

BC BA =, ∴

8610

r r -=, 解得3r =. ∴

O 的半径为3;

(3)连结EG 、OE ,设EG 交AC 于点M ,

由对称性可知,CB CG =. 又CE CB =, ∴CE CG =. ∴EGC GEC ∠=∠. ∵CE 切

O 于E ,

∴90GEC OEG ∠+∠=?. 又90EGC GMC ∠+∠=?,

∴OEG GMC ∠=∠.又GMC OME ∠=∠, ∴OEG OME ∠=∠. ∴OE OM =. ∴点M 与点D 重合.

∴G 、D 、E 三点在同一条直线上. 连结AE 、BE ,

∵AD 是直径,

∴90AED ∠=?,即90AEG ∠=?. 又CE CB CG ==, ∴90BEG ∠=?.

∴180AEB AEG BEG ∠=∠+∠=?, ∴

A 、E 、

B 三点在同一条直线上.

∴E 、F 两点重合.

∵90GEB ACB ∠=∠=?,B B ∠=∠, ∴GBE ABC ?~?. ∴

GB GE AB AC =,即12108

GE

=. ∴9.6GE =.

故G 、E 两点之间的距离为9.6. 【点睛】

本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.

8.如图,直角坐标系中,直线y kx b =+分别交x ,y 轴于点A (-8,0),B (0,6),C (m ,0)是射线AO 上一动点,⊙P 过B ,O ,C 三点,交直线AB 于点D (B ,D 不重合). (1)求直线AB 的函数表达式. (2)若点D 在第一象限,且tan ∠ODC =

5

3

,求点D 的坐标.

【答案】(1)364y x =+;(2)D (8825,21625

). 【解析】 【分析】

(1)把A 、B 两点坐标代入y=kx+b 求出k 、b 的值即可;(2)连结BC ,作DE ⊥OC 于点E ,根据圆周角定理可得∠OBC=∠ODC ,由tan ∠ODC=

5

3

可求出OC 的长,进而可得AC 的长,利用∠DAC 的三角函数值可求出DE 的长,即可得D 点纵坐标,代入直线AB 解析式求出D 点横坐标即可得答案. 【详解】

(1)∵A (-8,0)、B (0,6)在y=kx+b 上, ∴086k b

b

=-+??

=?,

解得346

k b ?=???=?,

∴直线AB 的函数表达式为

y=3

4

x+6. (2)连结BC ,作DE ⊥OC 于点E , ∵∠BOC=90°,

∴BC 为⊙P 的直径, ∴∠ADC=90°,

∵∠OBC=∠ODC ,tan ∠ODC=5

3

OC 5

OB 3

=, ∵OB=6,OA=8,

∴OC=10,AC=18,AB=10,

∵cos ∠DAC=

OA AB =4

5,sin ∠DAC=OB AB =35

, 472

AD AC cos DAC 1855∠=?=?

=, 723216

DE AD sin DAC 5525

∠=?=?=,

∵D 点在直线AB 上, ∴

2163

x 6254

=+, 解得:88x 25

=, ∴D (

8825,21625

【点睛】

本题考查待定系数法求一次函数解析式、圆周角定理及锐角三角函数的定义,熟练掌握直径所对的圆周角等于90°及正切、正弦、余弦等三角函数的定义是解题关键.

9.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一

点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=1

2

∠P.

(1)求证:PA是⊙O的切线;

(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;

(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.

【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH 63

-

1223

+

【解析】

【分析】

(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;

(2)解直角三角形求出AD,PD即可解决问题;

(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF

=.

②当△CDH∽△MFB时,DH CD

FB MF

=,分别构建方程即可解决问题;

【详解】

(1)证明:如图1中,作PH⊥FM于H.

∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=1

2

∠FPM,∴∠HPF=∠HPM,

∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,

∵OF=OC,∴∠C=∠OFC,

∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,

∴∠OFC+∠PFC=90°,∴∠OFP=90°,

∴直线PA是⊙O的切线.

(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,

∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,

∵⊙O的半径为4,DM=1,

∴OA=2OF=8,CD=3DM=3,

∴OD=OC﹣CD=4﹣3,

∴AD=OA+OD=8+4﹣3=12﹣3,

在Rt△ADP中,

DP=AD?tan30°=(12﹣3)×

3

3

=43﹣1,

∴PM=PD﹣DM=4 3﹣2.(3)如图2中,

由(2)可知:BF =

1

2

BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2, ①当△CDH ∽△BFM 时,DH CD

FM BF

= , ∴

3432=

- ,∴DH =63

- ②当△CDH ∽△MFB 时,DH CD FB MF

=, ∴

34432

DH =

- ,∴DH =1223

+ , ∵DN =()

2

2443

833--=- ,

∴DH <DN ,符合题意, 综上所述,满足条件的DH 的值为63- 或1223

+. 【点睛】

本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.

10.如图,AB 是⊙O 的直径,∠ACB 的平分线交AB 于点D ,交⊙O 于点E ,过点C 作⊙O 的切线CP 交BA 的延长线于点P ,连接AE . (1)求证:PC=PD ;

(2)若AC=5cm ,BC=12cm ,求线段AE ,CE 的长.

【答案】(1)见解析 (2) EC=22 AE=1322

【解析】

试题分析:(1)如图1中,连接OC 、OE .利用等角的余角相等,证明∠PCD =∠PDC 即可;

(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .首先证明Rt △AEF ≌Rt △BEH ,推出AF =BH ,设AF =BH =x ,再证明四边形CFEH 是正方形,推出CF =CH ,可得5+x =12﹣x ,推出

x =

7

2

,延长即可解决问题; 试题解析:(1)证明:如图1中,连接OC 、OE .

∵AB 直径,∴∠ACB =90°,∴CE 平分∠ACB ,∴∠ECA =∠ECB =45°,∴AE =BE ,∴OE ⊥AB ,∴∠DOE =90°.∵PC 是切线,∴OC ⊥PC ,∴∠PCO =90°.∵OC =OE ,∴∠OCE =∠OEC .∵∠PCD +∠OCE =90°,∠ODE +∠OEC =90°,∠PDC =∠ODE ,∴∠PCD =∠PDC ,∴PC =PD .

(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .

∵CE 平分∠ACB ,EH ⊥BC 于H ,EF ⊥CA 于F ,∴EH =EF ,∠EFA =∠EHB =90°.∵AE =BE ,∴AE =BE ,∴Rt △AEF ≌Rt △BEH ,∴AF =BH ,设AF =BH =x .∵∠F =∠FCH =∠CHE =90°,∴四边形CFEH 是矩形.∵EH =EF ,∴四边形CFEH 是正方形,∴CF =CH ,∴5+x =12﹣x ,∴x =

72,∴CF =FE =172,∴EC 2CF 172,AE 22EF AF +2217722(

)()

+132

2

. 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

《圆的有关概念》练习题

《圆的有关概念》练习题 一.选择题(共7小题) 1.下列各图形中,各个顶点一定在同一个圆上的是() A.正方形B.菱形C.平行四边形D.梯形 2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个 3.下列说法中,(1)长度相等的两条弧一定是等弧;(2)半径相等的两个半圆是等弧;(3)同一条弦所对的两条弧一定是等弧;(4)直径是圆中最大的弦,也就是过圆心的直线.其中正确说法的个数是() A.1个B.2个C.3个D.4个 4.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则 ∠DAC等于() A.15°B.30°C.45°D.60° 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20° 第4题图第5题图第6题图 6.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为() A.70°B.60°C.50°D.40° 7.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.5 二.填空题(共3小题) 8.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交 AB于点D,则∠ACD=度. 第8题图第9题图第0题图 9.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=. 10.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则a、b、c的大小是. 三.解答题(共6小题)

人教版九年级数学上册 圆 几何综合中考真题汇编[解析版]

人教版九年级数学上册 圆 几何综合中考真题汇编[解析版] 一、初三数学 圆易错题压轴题(难) 1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线; (2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标; (3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由. 【答案】解:(1)证明:连接CM , ∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴ . 又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,. ∴545(x )x 5)12152- =--(,∴,解得10 OD 3 = . 又∵D 为OB 中点,∴ 1552 4 +∴D 点坐标为(0,154). 连接AD ,设直线AD 的解析式为y=kx+b ,则有

解得. ∴直线AD 为 . ∵二次函数的图象过M (5 6 ,0)、A(5,0), ∴抛物线对称轴x= 154 . ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15 4 交于点P , ∴PD+PM 为最小. 又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15 4 的交点. 当x= 15 4时,45y (x )x 5)152 = --(. ∴P 点的坐标为(15 4,56 ). (3)存在. ∵ ,5 y a(x )x 5)2 =--( 又由(2)知D (0,154),P (15 4,56 ), ∴由 ,得 ,解得y Q =± 103 . ∵二次函数的图像过M(0,5 6 )、A(5,0), ∴设二次函数解析式为, 又∵该图象过点D (0,15 4 ),∴,解得a= 512 . ∴二次函数解析式为 . 又∵Q 点在抛物线上,且y Q =±103 . ∴当y Q =103 时,,解得x= 1552-或x=1552 +; 当y Q =5 12 - 时,,解得x= 15 4 .

2017中考数学真题汇编:圆(带答案)

2017年浙江中考真题分类汇编(数学):专题11 圆 一、单选题 1、(2017·金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( ) A、10cm B、16cm C、24cm D、26cm 2、(2017?宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为() A、 B、 C、 D、

3、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是() A、 B、 C、 D、 4、(2017·衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是() A、 B、 C、 D、 二、填空题

5、(2017?杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________. 6、(2017?湖州)如图,已知在中,.以为直径作半圆,交于点.若 ,则的度数是________度. 7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则弧BC的长为________cm(结果保留) 8、(2017?绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.

9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形 (阴影部分)粘贴胶皮,则胶皮面积为________. 10、(2017?湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是________. 11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线 上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________ 三、解答题

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

2018年中考数学真题汇编 圆

2018年中考数学真题汇编:圆(填空+选择46题)答案 一、选择题 1.已知的半径为,的半径为,圆心距,则与的位置关系是( C ) A. 外离 B. 外切 C. 相交 D. 内切 2. 如图,为的直径,是的弦,,则的度数为( C ) A. B. C. D. 3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( C ) A. B. C. D. 4. 如图,在中,,的半径为3,则图中阴影部分的面积是( C ) A. B. C. D. 5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( D ) A.40° B.50° C.70° D.80° 6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是( A ) A. B.40πm2 C. D.55πm2 7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( A ) A. B. C. D. 8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(D ) A. 点在圆内 B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内 9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为( C ) A. B. C. D.

10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于( A )。 A.27° B.32° C.36° D.54° 11.如图,过点,,,点是轴下方上的一点,连接,,则 的度数是( B ) A. B. C. D. 12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( D ) A. 3cm B. cm C. 2.5cm D. cm 13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则 的长为( C ) A. B. C. D. 14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( B ) A. 75° B. 70° C. 65° D. 35° 15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( D ) A.3 B. C. D. 16. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD 的延长线于点C,若的半径为4,,则PA的长为( A ) A. 4 B. C. 3 D. 2.5 17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题: 如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小 值为( D )A. B. C. 34 D. 10

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

2015中考数学专题与圆有关的综合题

与圆有关的综合题 知识考点?对应精练 【知识考点】 (1)圆与三角函数; (2)圆与函数; (3)圆与点、线、三角形; (4)圆与多边形. 【方法总结】 (1)看到求圆的切线,想到:有交点,连半径,证垂直;无交点,作垂直,证半径;(2)看到圆中的三角函数,想到三角函数一般在直角三角形中使用,直径所对的圆周角是直角; (3)看到过圆外的同一点的两条切线,想到切线长定理; (4)看到垂直于弦的直径,想到垂径定理. 【失分盲点】 (1)易忽视圆中的两条半径构成等腰三角形这个条件; (2)在证明一条直线是圆的切线时,若直线与圆的公共点未确定时,易犯证明直线与半径垂直的错误; (3)在圆中的三角形,易犯不说明其为直角三角形就应用三角函数解决问题的错误. 【对应精练】 例.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB 垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值 、

真题演练?层层推进 1.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C. (1)求证:AB与⊙O相切; (2)若∠AOB=120°,AB= ,求⊙O的面积. 2.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 3.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)PF是⊙O的切线。

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

专题3.4 以解析几何中与圆相关的综合问题为解答题 高考数学压轴题分项讲义(解析版)

专题三压轴解答题 第四关以解析几何中与圆相关的综合问题 【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,圆不会单独出大题,一般是结合椭圆、抛物线一起考查,预计在15年高考中解答题仍会重点考查圆与椭圆、抛物线相结合的综合问题,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.这体现了考试中心提出的“应更多地从知识网络的交汇点上设计题目,从的整体意义、思想含义上考虑问题”的思想. 类型一以圆的切线为背景的相关问题 典例1【浙江省台州市2019届高三上学期期末质量评估】设点为抛物线外一点,过点作抛物线 的两条切线,,切点分别为,. (Ⅰ)若点为,求直线的方程; (Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.【解析】(Ⅰ)设直线方程为,直线方程为. 由可得. 因为与抛物线相切,所以,取,则,. 即. 同理可得.所以:. (Ⅱ)设,则直线方程为, 直线方程为.

由可得. 因为直线与抛物线相切,所以 . 同理可得 ,所以,时方程 的两根. 所以,. 则 . 又因为,则, 所以 .学_ 【名师指点】圆的切线的应用,往往从两个方面进行考查,一是设切线方程,利用圆心到切线的距离等于半径列方程求解;二是结合切线长定理与勾股定理求解. 【举一反三】已知椭圆C :2 2 24x y +=. (1)求椭圆C 的离心率; (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆2 2 2x y +=的位置关系,并证明你的结论. 【解析】(1)由题意椭圆C 的标准方程为12 422=+y x , 所以42 =a ,22 =b ,从而2242 2 2 =-=-=b a c , 所以2 2 == a c e . (2)直线AB 与圆22 2 =+y x 相切,证明如下: 设点),(00y x A ,)2,(t B ,其中00≠x , 因为OB OA ⊥,所以0=?,即0200=+y tx ,解得0 2x y t - =,

与圆有关的综合问题

与圆有关的综合问题 题型一:与圆有关的轨迹问题 [典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程; (2)若∠PB Q =90°,求线段P Q 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |. 设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法 [针对训练] 1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′), 由题意得,????? x ′+4=2x ,y ′-2=2y ,则? ???? x ′=2x -4,y ′=2y +2, 故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A. 2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→ =(2-x,2-y ). 由题设知CM ―→·MP ―→ =0, 故x (2-x )+(y -4)(2-y )=0,

几何综合题(与圆相关)

图3 N M F E B C A B A C E F M N P 图2图1 A 图3 D A 图2图1几何综合题:与圆相关 1.已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一圆心角为45°半径长等于CA 的扇形CEF 绕点C 旋转,直线CE 、CF 分别与直线AB 交于M 、N 。 (1)如图1,当AM =BN 时,将△ACM 沿CM 折叠,点A 落在EF 的中点P 处,再将△BCN 沿CN 折叠,点B 也恰好落在点P 处,此时,PM =AM ,PN =BN ,△PMN 的形状是 ,线段AM 、BN 、MN 之间的数量关系是 。 (2)如图2,当扇形CEF 绕点C 在∠ACB 内部旋转时,线段AM 、MN 、BN 之间的数量关系是 ,试证明你的结论。 (3)当扇形CEF 绕点C 旋转到图3的位置时,线段MN 、AM 、BN 之间的数量关系是 ,试证明你的结论。 2.李明同学在学习正多边形和圆时,发现了以下一些有趣的结论:若P 是正多边形外接圆上一点,将P 与正多边形相邻三个顶点连结,这三条线段之间有一些特殊的数量关系。 (1)如图1,若P 是正△ABC 外接圆的弧BC 上一点,连PA 、PB 、PC ,则PB +PC 与PA 之间的数量关系是 ; (2)如图2,若P 是正方形ABCD 的外接圆的弧BC 上一点,连PA 、PB 、PD ,则PB +PD 与PA 之间的数量关系是 ,试证明你的结论; (3)如图3,若点P 是正六边形ABCDEF 外接圆的弧BC 上一点,连PA 、PB 、PF ,则PB +PF 与PA 之间的数量关系是 。 3.小明学习了垂径定理后,作了下面的探究,请你根据题目要求帮小明完成探

2017中考数学真题汇编:圆(带答案)0001

2017年浙江中考真题分类汇编(数学):专题11圆、单选题 1、(2017 ?金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦 A、10cm B、16cm C、24cm D、26cm 2、(2017?宁波)如图,在Rt △KBC中,Z A = 90 ° BC = .以BC的中点O为圆心的圆分别与AC相切于D、E两点,则:三的长为() JT B、 C、 D、AB的 AB、 长为(

3、(2017 ?丽水如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是() B、— C、 D、 32 4、(2017 ?衢州)运用图形变化的方法研究下列问题:如图,AB是O O的直径,CD , EF是O O的弦, 且AB //CD //EF, AB=10 , CD=6 , EF=8。则图中阴影部分的面积是() A、一 B、 C、-- + 4." D、 、填空题

(2017?杭州)如图,AT 切O O 于点A , AB 是O O 的直径.若/ ABT=40 (2017?绍兴)如图,一块含45。角的直角三角板,它的一个锐角顶点 A 在 O O 上,边AB , AC 分别 与O O 交于点D , E.则/DOE 的度数为 9、 ( 2017 ?嘉兴如图,小明自制一块乒乓球拍, 正面是半径为比謬的 . 亏:一,弓形 (阴影部分)粘贴胶皮,则胶皮面积为 C 10、 ( 2017?湖州)如图,已知 Z.4.L 一;「,在射线 上取点 ,以 为圆心的圆与 相 ,则 B= 6、( 2017?湖州)如图,已知在 上]1中,一-上二_二「.以.p?为直径作半圆 , 交二'_1 于点一.若 的度数是 度. 如图,扇形纸扇完全打开后,外侧两竹条 AB , AC 的夹角为120 ,AB 长为30cm ,则 8 、

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

热点与圆有关的计算问题含答案

热点18 与圆有关的计算问题 (时间:100分钟总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.已知圆心角为120°,所对的弧长为5 cm,则该弧所在圆的半径R=() A.7.5cm B.8.5cm C.9.5cm D.10.5cm 2.一条弦分圆周为5:4两部分,则这条弦所对的圆周角的度数为() A.80° B.100° C.80°或100° D.以上均不正确 3.⊙O的半径R=3cm,直线L与圆有公共点,且直线L和点O的距离为d,则() A.d=3cm B.d≤3cm C.d>3cm D.d<3cm 4.如图1,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A,?B?两点到直线CD 的距离之和为() A.12cm B.10cm C.8cm D.6cm (1)(2)(3)(4) 5.如图2,同心圆中,大圆的弦AB交小圆于C、D,AB=4,CD=2,AB?的弦心距等于1,那么两个同心圆的半径之比为() A.3:2 B5 2 C52.5:4 6.正三角形的外接圆的半径为R,则三角形边长为() A3R B. 3 2 R C.2R D. 1 2 R 7.已知如图3,圆内一条弦CD与直径AB相交成30°角,且分直径成1cm和5cm两部分,则这条弦的弦心距是() A.1 2 cm B.1cm C.2cm D.2.5cm 8.∠AOB=30°,P为OA上一点,且OP=5cm,若以P为圆心,r为半径的圆与OB相切,则半径r为() A.5cm B 5 3 2 . 5 2 cm D 5 3 3 cm 9.如图4,∠BAC=50°,则∠D+∠E=() A.220° B.230° C.240° D.250° 10.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面高2米(左右对称),则该秋千所荡过的圆弧长为()

相关文档
相关文档 最新文档