文档库 最新最全的文档下载
当前位置:文档库 › 预分解窑熟料热影响因素降低途径

预分解窑熟料热影响因素降低途径

预分解窑熟料热影响因素降低途径
预分解窑熟料热影响因素降低途径

预分解窑熟料热影响因素降低途径

————————————————————————————————作者:————————————————————————————————日期:

2

预分解窑熟料热耗的影响因素和降低的途径

1 系统熟料热耗高的原因分析

国外水泥厂家通过采用低阻高效的多级预热器系统、新型篦式冷却机和多通道喷煤管等先进技术装备,利用窑系统的低温废气余热发电,回收使用二次能源等先进工艺,降低了水泥生产的熟料热耗。

表1、表2分别为国内外部分水泥厂家熟料热耗、预热器出口废气热损失及系统漏风量的对比。国内生产厂家的熟料热耗较国外高出较多,以RSP预分解窑为例,G厂、C厂和F厂的热耗分别比日本RSP窑高出31%、30%和13%。众所周知,国内生产厂家热耗高的原因有三个方面。一是预热器出口废气热损失大。国内厂家预热器出口废气热损失占系统熟料热耗的26%左右,有的近30%,平均比国外厂家高出约4%,而国内这些厂家在我国还算是较好的水泥企业。造成如此高的废气热损失主要原因在于预热器出口废气量大、废气温度较高、系统存在较严重的漏风。国外较先进的带五级预热器的预分解窑的预热器出口废气温度一般为290~310℃,如果国内厂家预热器出口废气温度能降至这个水平,则其预热器出口废气热损失可降低许多。以G厂为例,若其预热器出口废气温度由目前的370℃降至300℃,则废气带走的热损失将由目前的每千克熟料1119kJ降至903kJ,降幅为19.3%;如果此时其出口废气量再降低,比如系统漏风量由目前的每千克熟料0.389kg降为0.195kg,即降低一半,则废气量由每千克熟料2.898kg降至2.704kg,其它条件不变,此时预热器出口废气热损失又将降到842kJ,降幅为6.7%,这种情况下系统的熟料热耗将由目前的4 031kJ/kg降为3254kJ/kg,降幅为19.3%。表2中A厂、D厂和E厂烧成系统漏风量较少,多数厂家系统漏风量占物料总收入的比例为日本DD窑的2.5倍,有的厂家甚至高达6倍。如果用系统漏风量占预热器出口废气量的百分比来看,多数厂家约为15%,有的竟高达23%。由此可见系统漏风问题在部分厂家仍没有引起高度重视,但系统漏风造成的损失却是显而易见的。一方面增大了系统废气量,增加了热损失和风机电耗,另一方面由于漏风降低了气体温度,进而降低了气固换热效率。特别是各级预热器下部翻板阀及下料管的内、外部漏风,将使旋风筒分离效率急剧降低,从而造成高温物料向上级低温旋风筒返混,扰乱系统正常生产,其热耗必然增加。

表1 国内外部分厂家熟料热耗、预热器出口废气热损失的比较

厂家

熟料热耗

/(kJ/kg)预热器出口

废气热损失

预热器出口

废气热损失

备注

(数据来源

3

/(kJ/kg)占熟料热耗

的比例/% 时间、预热器级数)

A厂 3 265.4 789.3 24.2 1995、四级B厂 3 648.1 862.8 23.7 1992、四级C厂 3 996.6 1136.1 28.4 1995、四级D厂 3 501.7 817.7 23.4 1995、五级E厂 3 568.2 929.8 26.1 1996、五级F厂 3 484.8 804.2 23.1 1997、五级G厂 4 031.0 1119.0 27.8 1998、五级H厂 3 827.7 1086.9 28.4 1995、五级RSP窑 3 075.2 752.8 24.5 日本、五级UMFC窑 2 992.9 553.0 18.5 日本、五级DD窑 3 136.2 703.3 22.4 日本、四级SLC窑 3 191.2 724.0 22.7 丹麦、四级

表2 国内外部分厂家预热器出口废气量及系统漏风量的比较

厂家实际生

产能力

/(t/d)

预热器

出口废气量

/(kg/kg)

预热器出

口废气

温度/℃

系统漏风量

/(kg/kg)

系统漏风量占

物料总收入的

百分比/%

4

A厂 4 341 2.193 349 0.331 0.62

B厂 3 636 2.315 367 0.434 6.87

C厂 2 064 2.547 424 0.434 7.65

D厂 2 009 2.270 349 0.209 3.79

E厂 2 029 2.407 366 0.131 2.13

F厂 1 149 2.344 329 0.245 7.11

G厂725 2.898 370 0.389 6.29

H厂751 3.095 335 0.716 17.35

日本DD窑 2 000 1.848 325 0.144 2.82

当然,国内厂家预热器出口废气量即使扣除系统漏入的空气量,其数值也多在2.1kg/kg左右,而日本DD窑扣除后仅为1.7kg/kg。国内预热器出口废气量大的主要原因除热耗高、燃烧产生的烟气量大外,系统用风量方面仍值得深入的探讨。

国内厂家熟料热耗高的第二个方面是烧成系统的散热损失较大。数据对比如表3所示。

表3 国内外部分厂家烧成系统的散热损失(kJ/kg)

厂家回转窑预热器分解炉三次风管冷却机合计系统散热量占熟料热耗的百分比/%

A厂197.6 98.8 7.5 38.9 4.8 347.6 10.7

5

B厂218.2 133.8 11.3 25.4 6.2 394.9 11.7

C厂207.9 213.7 36.7 57.3 18.2 533.8 13.4

D厂246.7 164.3 46.0 25.4 15.1 497.5 14.2

E厂256.6 67.5 14.7 12.5 15.6 366.9 10.3

F厂317.5 177.6 28.0 68.1 353.0 944.2 27.1

G厂404.2 192.4 40.1 105.2 9.7 751.6 18.6

H厂286.7 179.8 43.7 39.6 36.9 586.7 15.3 日本DD 窑167.7 50.2 7.2 19.2 30.9 275.2 8.77 注:1.E厂测定的散热损失数据受到天气影响较大;2.F厂冷却机为单筒冷却机,其余各厂为篦式冷却机。

由表3可见,就系统各部分散热损失大小而言,回转窑最大,以下依次为预热器、三次风管、分解炉、冷却机(篦式冷却机),其中回转窑、预热器两者散热损失之和要占系统总散热量的80%~90%。除去二者的外表面积较大的原因外,设备的表面温度较高也不容忽视,特别是回转窑。

造成国内水泥生产厂家烧成系统散热损失高不仅有内衬材料选择的原因,而且有生产操作上的原因。如耐火材料的选择不当,使用时间较长,隔热效果不够理想以及窑头、分解炉两把火用煤量不尽合理,使烧成系统的整体温度普遍较高等。在耐火材料配套设计和施工、窑速变化及碱等挥发性组分的侵蚀对耐火材料的影响等方面重视也不够〔1〕。另外还有设备设计选型上的原因。国内在设计中小型预分解窑系统时,可能本着设备留有适当富余能力、缓冲操作上的困难等种种原因,设备选型往往偏大,以回转窑为例,国内外部分厂家的比较如表4所示。

通过对比可以看出,就窑的单位容积产量而言,国内回转窑明显要低于国外厂家,从某种程度上来说,也就意味着国内回转窑(超短窑除外)规格的设计仍值得探讨。以Φ4m×60m的回转窑为例,印度Visaka水泥公司的窑的设计生产能力为2500t/d,而国内只有2 000t/d,两者差值竟然高达25%。生产实践指出,对于同一规格的回转窑,会因预热器与分解炉等的规格匹配、原燃料的品质种类、窑炉燃料的用量比、配料的率值、化学成分的稳定性及操作而影响其台时产量〔2〕,但当热负荷的主体碳酸盐分解,部分或大部分从窑内移到窑外时,决定系统能力的因素也理应由回转窑移到预热器和分解炉系统〔3〕。目前国外厂家在保证预分解程度高且稳定,回转窑具有一定潜力的基础上,纷纷在缩小窑的规格,比如超短窑。这样可适当降低窑的散热损失,减小耐火材料的用量,有利于节

6

能。与国外相比,国内在这方面还存在提高认识的问题。在设计新的水泥生产线时,应具体考虑到工厂使用的原、燃料品质,操作管理水平等,充分做到设备选型合理、优化,功能匹配得当,否则生产中产量的提高会使窑系统平衡变得极为敏感,有时遇到小小的波动亦难以调整。

表4 国内外部分厂家回转窑的规格及产量

厂家窑规格

/m

预热

器级数

回转窑

有效容

积/m3

设计

产量

/(t/d)

窑单位容

积产量

/(t/(d·m3))

窑单位截

面积产量

/(t/(d·m2))

A厂Φ4.7×75 4 1 089.2 4 000 3.672 275.4 J厂Φ4.7×74 4 1 074.6 4 000 3.722 275.4 L厂Φ4.55×68 4 1 114.6 3 200 3.479 236.6 C厂Φ4.0×60 4 610.7 2 000 3.275 196.5 E厂Φ3.96×59 5 587.3 2 000 3.405 200.9 F厂Φ3.3×50 5 330.3 1 000 3.028 151.4 G厂Φ3.0×48 5 254.8 700 2.747 131.8 H厂Φ3.0×46.5 5 246.9 700 2.835 131.8

泰国西姆

水泥公司

Φ5.6×82 5 1 741.5 7 500 4.307 353.2

德国Be-

rnburg厂

Φ4.8×76 6 1 155.6 5 000 4.327 328.8

丹麦最新

史密斯型

Φ4.88×73 5 1 150.7 5 000 4.345 317.2

7

德国La-

gerdorf厂

Φ4.8×65 3 988.3 4 500 4.553 295.9

印度

Raj厂

Φ4.4×60 6 754.0 3 700 4.907 294.4

菲律宾共

和水泥公司

Φ4.4×52 5 653.4 3 300 5.050 262.6

马来西亚

Pahang厂

Φ4.4×60 5 754.0 3 200 4.244 254.6

印度

Visaka厂

Φ4.0×60 5 610.7 2 500 4.093 245.6 注:表中国内厂家窑单位容积产量和窑单位截面积产量均是按照窑的有效尺寸来进行计算的。

由表3可以发现,分解炉的散热损失占系统总散热损失的比例较小,适当增大分解炉的有效容积,对系统散热损失影响不大,但可延长粉料在炉内停留时间,对煤粉燃烧与生料分解反应有利。目前新型分解炉的设计,除了注重改变燃料入口位置、燃料、生料、三次风分布方式外,还存在着增大炉体体积的趋势。

通过表4还可以看出,规模大的厂家的窑的单位截面积产量大于规模小的厂家。同时研究也表明,对于不同规模的预分解窑,规模大的预分解窑的单位容积的耐火材料用量比规模小的预分解窑要少,而且在国内各种规模的预分解窑系统中,没有达产达标的以中小型窑居多。因此,本着工厂的技术经济指标考虑,国内在新建预分解窑时,在资金允许的条件下以采用大中型预分解窑为佳,日本、东南亚一些国家纷纷建造大型的水泥预分解生产线也足以证明这一点。

冷却机余风带走热量较大也是导致系统热耗高的一个原因,如表5所示。

表5 各厂冷却机的热回收效率、出冷却机熟料温度及二次风温等的比较

厂家

热回收

效率出冷却机

熟料温度

二次风温

/℃

出冷却机

余风风量

出冷却机

余风风温

8

/% /℃/(kg/kg) /℃

A厂59.2 158 1 050 2.192 238

B厂67.7 143 980 1.876 221

C厂55.4 148 960 1.956 332

D厂60.6 135 873 2.003 206

E厂66.4 135 926 2.535 198

F厂56.6 168 720 - -

G厂73.9 187 820 1.983 138

H厂58.2 - 725 1.720 250

日本DD 窑67.0 98 1 013 2.009 213 注:表中二次风温为各厂的测定值,因二次风温测量误差较大,故仅供参考。

由表5可知,若从出冷却机余风风量、风温两项指标来看,国内厂家与国外水平还比较接近。但国内厂家冷却机热回收效率、入窑二次风温明显偏低,出冷却机熟料温度偏大,这些都说明了国内的篦式冷却机与国外厂家相比,在冷却风利用率、提高窑系统二次风温等方面尚存在较大差距。

2 降低系统熟料热耗的途径

从前面叙述中可以知道,国内厂家熟料热耗高的原因虽主要在于预热器出口废气热损失、系统散热损失及冷却机余风热损失三大热损失较高,但具体到各项热损失仍有其根本原因。目前,降低系统热耗的途径有多方面,本文归结如下。

2.1 优化系统设计和生产操作

2.1.1 优化原料配方

原料的性质及其配料方案对水泥生料易烧性有着重要的影响,它与烧成系统设备如分解炉等的设计、操作密切相关。生产中理应对不同的原料,通过优化配比,为实现节能降耗打下基础〔4〕。

9

2.1.2 采用多级新型旋风预热器系统

造成预热器出口废气热损失较高的原因有预热器系统换热效率不高,厂家忽视了系统漏风对水泥生产的影响等。实践证明只有选用多级低阻高效旋风预热器系统,彻底改进预热器本身的性能,才能提高预热器系统的换热效率,降低预热器出口废气温度,生产中还应严格注意设备的密封堵漏,从而降低系统的熟料热耗。但对目前已建成投产的预分解窑,还可以针对其较高的预热器出口废气温度和出冷却机余风温度,通过低温废气余热发电,从而为降低系统熟料热耗做出贡献〔5〕,这在鲁南、琉璃河、宁国等厂已取得了成功。

2.1.3 应用新型高效的篦式冷却机

新型篦式冷却机应力求以最少的冷却风冷却尽可能多的热熟料,使冷却风与热熟料充分地进行热交换,提高入窑系统的二、三次风的温度,从而达到高效、低耗的目的〔6〕。

1990年新型的控流式篦式冷却机投放市场以来,很快以其节省熟料热耗、提高窑系统的运转率和可靠性,以及延长篦板寿命与减少维修量等优点,在国外得到了广泛的运用,获得了显著的效益〔7〕。目前,我国水泥工业也正积极推广带阻力篦板空气梁垫的新型高效篦式冷却机。

当然,除上述三点之外,正确合理地选择耐火材料和保温材料对水泥生产也至关重要,水泥生产中理应引起高度重视,以求实现窑系统及不同部位衬里的长寿命和低散热。

2.2 开发新型水泥烧成工艺,发展高性能水泥

英国、美国、法国及日本等国已率先利用工业可燃废料来生产水泥。他们通过水泥工业可以回收利用的可燃废料和含可燃质的原料作为二次燃料,结合循环流化床技术,进行水泥新烧成工艺的开发,业已取得了初步成功〔7,8〕。国内在此方面尚未见到报导,但国内已着手进行新型干法窑燃无烟煤生产水泥技术的研究开发,同时不少单位已从节能降耗和环保角度出发,开展对具有低的钙硅比、低的烧成温度和高的水硬活性、高的水化率的高性能水泥的研究,以期达到降低生产能耗、减少资源消耗、减轻环境负荷的目的,促进我国水泥工业的结构性调整。

3 结论

1)国内水泥厂家熟料热耗高的原因主要在于三大热损失较高,其中预热器出口废气量大、废气温度高、系统漏风严重、耐火材料使用不尽合理、冷却机热回收效率低等原因是导致系统热耗高的直接原因。同时回转窑规格的设计等也值得进一步探讨。

10

2)降低系统热耗的途径有多方面。一是从原料入手,优化原料配方。二是优化系统设计和生产操作,通过采用多级低阻高效旋风预热器系统,或充分利用预热器出口废气热量和出冷却机余风热量,通过低温废气余热发电技术,为降低熟料热耗做贡献。三是应用新型高效的篦式冷却机,通过提高冷却风的利用率,降低出冷却机的熟料温度,以此降低系统热耗。

3)耐火材料和保温材料的正确合理的配套选择、使用和管理等对降低系统热耗至关重要。

4)最大限度地将水泥工业可以回收利用的可燃废料和含可燃质的原料,乃至人类社会活动中排出的工业废弃物和生活废弃物作为二次燃料,加以有效利用,积极开发新型水泥烧成工艺,发展高性能水泥,实现我国水泥工业的可持续发展战略,并使水泥工业成为环境协调型产业体系。

11

水泥生产预分解窑的统一操作的意义

水泥生产预分解窑的统一操作的意义 0、前言 在现代化水泥生产中,预分解窑具有窑温高、窑速快、产量高、熟料结粒细小、负荷重、系统工艺复杂、自动化程度高等特点,因此其操作控制应该是根据预分解窑的工艺特点、装备水平,制定相应的操作规程,正确处理系统关系,统一操作。 1、统一操作的必要性 预分解窑操作要求操作人员具有丰富的理论知识和一定的实践经验,通工艺、懂机电,熟悉现场环境,具有协调指挥能力,随时掌握系统状态,熟练掌握窑系统各点参数的变化情况,对每一个参数发生偏离都要进行分析,找出变化的原因,并及时采取措施处理,使系统尽快恢复到新的平衡状态,在三班统一操作的基础上,稳定窑系统热工制度,提高运转率,达到优质、高产、低消耗和长期、安全、连续运转的目的。 操作上的随意性是预分解窑热工制度不稳定的突出问题,因此必须强化统一操作的系统性,统一操作标准,规范程序控制。思想决定行动,行动决定结果, 思想是行动的先导和动力,人们无论做任何事,都是先有思想,后有行动。有正确的思想才有正确的行动,有积极的思想才有积极的行动,有统一的思想才有统一的行动。 统一思想是第一位的,只有在统一思想的前提下,统一指挥,统一行动,才能得到希望的结果。具体到窑系统的生产操作,应以窑为纲,

实现三统一,即:统一思想、统一指挥、统一操作。统一思想使操作认识一致化,有明确的方向;统一指挥使操作规范化、有序化;统一操作使行动连续化,避免随意性。 2、怎样实现统一操作 窑系统操作是整体操作,要求集中思想统一操作。就像汽车上路必须遵守交通规则一样,不能乱行,否则就要出事故。要稳定窑系统热工制度,统一操作是一个很好的方法,特别是在系统有问题、不稳定的时候,有助于尽早发现问题的原因,及时解决问题。要做到统一操作,首先,要有领导上的统一,在意见繁杂的时候,有人来管理队伍,和行军打仗一样,整齐划一才能形成共振的合力,可以有不同意见,但最终还必须遵章守纪,统一操作;其次,人员的统一,特别是相关操作岗位人员,必须高度统一,认识不同是技术层面上的事,统一操作则是管理层面的内容,窑系统工艺复杂,操作上涉及到的方面、单位、事务多,必须有统一的管理,特别是在困难、有问题的情况下,高度统一的队伍才能打硬仗、打赢仗,才能够使生产稳定运行;第三,统一操作是管理上的需要,也是技术上的需要,其最大好处就是不论方法的对与错,都能够容易得出结论。 3、统一操作的特性 3.1 统一操作具有连续性 窑操作是典型的体力劳动和脑力劳动相结合的岗位,要求集中思想、行动快捷;是一个应具有广泛理论知识与丰富的实践经验、复杂的操作技术与高科技知识相结合的特殊工种,稳定窑况、优化参

预分解窑操作中常见的问题及原因

预分解窑操作中常见的问题及原因 (1)窑尾和预分解系统温度偏高 1)检查是否生料KH、SM值偏高,熔融相(A1203和Fe203)含量偏低;生料中是否f-Si02含量比较高和生料细度偏粗。如若干项情况属实,则由于生料易烧性差,熟料难 烧结,上述温度偏高属正常现象。但应注意极限温度和窑尾O2含量的控制。 2)窑内通风不好,窑尾空气过剩系数控制偏低,系统漏风产生二次燃烧。 3)排灰阀配重太轻或因为怕堵塞,窑尾岗位工把排灰阀阀杆吊起来,致使旋风筒收尘效率降低,物料循环量增加,预分解系统温度升高。 4)供料不足或来料不均匀。 5)旋风筒堵塞使系统温度升高。 6)燃烧器外流风太大、火焰太长,致使窑尾温度偏高。 7)烧成带温度太低,煤粉后燃。 8)窑尾负压太高,窑内抽力太大,高温带后移。 (2)窑尾和预分解系统温度偏低 1)对于一定的喂料量来说,用煤量偏少。 2)排灰阀工作不灵活,局部堆料或塌料。由于物料分散不好,热交换差,致使预热 器C1出口温度升高,但窑尾温度下降。 3)预热器系统漏风,增加了废气量和烧成热耗,废气温度下降。 (3)烧成带温度太低 1)风、煤、料配合不好。对于一定喂料量,热耗控制偏低或火焰太长,高温带不集中。 2)在一定的燃烧条件下,窑速太快。 3)预热器系统的塌料以及温度低、分解率低的生料窜入窑前。 4)窑尾来料多或垮窑皮时,用煤量没有及时增加。 5)在窑内通风不良的情况下,又增加窑头用煤量,结果窑尾温度升高,烧成带温度反 而下降。 6)冷却机一室篦板上的熟料料层太薄,二次风温度太低。 (4)烧成带温度太高 1)来料少而用煤量没有及时减少。 2)燃烧器内流风太大,致使火焰太短,高温带太集中。 3)一二次风温度太高,黑火头短,火点位置前移。 (5)二次风温度太高 1)火焰太散,粗粒煤粉掺入熟料,入冷却机后继续燃烧。 2)熟料结粒太细致使料层阻力增加,二次风量减少,风温升高;大量细粒熟料随二次 风一起返回窑内。 3)熟料结粒良好,但冷却机一室料层太厚。 4)火焰太短,高温带前移,出窑熟料温度太高。 5)垮窑皮、垮前圈或后圈,使某段时间出窑熟料量增加。 (6)冷却机废气温度太高 1)冷却机篦板运行速度太快,熟料没有充分冷却就进入冷却机中部或后部。 2)熟料冷却风量不足,出冷却机熟料温度高,废气温度自然升高。 3)熟料层阻力太大(料层太厚或熟料颗粒细)或料层太容易穿透(料层太薄或熟料颗粒 太粗),这样熟料冷却不好,出口废气温度升高。

分解窑操作注意事项

分解窑操作注意事项 1.看“黑影”。要求看清“黑影”和稳住“黑影”位置,维持一定的烧成温度,控制来料均匀,以达到快转率高的目的。 2.看熟料的提升高度和翻滚情况,判断烧成带的温度是否适当。当烧成温度正常时,物料随窑灵活的翻滚,提升高度也适当;温度过高时,熟料提升得高,而且成片地向下翻滚。 3.看熟料粒度,要求熟料颗粒细小均齐。当熟料粒度变粗,火焰发白时,表示窑内温度升高,应酌情减煤。 4.看火焰的颜色。正常的火焰颜色是微白色,此时,熟料的颗粒细小均齐并有一定的立升重。当火焰发白时,表示烧成温度过高,应减煤。火色带红,表示温度低,应加煤。物料的耐火程度不同,控制的火色也应不同。即物料较耐火时,火色应控制比较白,否则反之。 5.看来料多少,切实掌握来料变化情况,便于及时而又准确的加减煤粉,以控制烧成带温度。在生料进入烧成带时,若火焰缩短,则表示物料由少增多,这时应适当加煤。若后面的火色发红,在烧成带的料子也不多,则应逐渐加煤;如果加煤后,后面很快发白,说明温度增高,则应及时减煤。当后段发亮,火焰伸长,“黑影”走远或没有加煤,火色转亮,物料又翻滚得快时,表示来料减少,应及时减煤。 6.看风煤。在正常操作中,如果风煤配合适当,则火焰保持平稳,形状完整,分布均匀,活泼有力。当煤多风少时,则火焰细长无力;若煤少风多,则火焰混乱且不集中。若一、二次风温高时则火焰短;当一、二次风温低时火焰则长。煤风管靠外时,火焰短;煤风管靠内时,火焰就长。应根据具体情况使风煤配合合理,保证煤粉燃烧完全和火焰形状良好。 7.看烟色。从烟囱废气的颜色,判断窑内燃烧情况和烧成的好坏。烟色如果是白色,表示窑内燃烧完全;如果是黑烟、乌烟,说明煤粉没有完全燃烧。这时,应及时减煤或适当打小慢车。当烟色浓而且发黄时,说明窑内有结圈的可能。 8.看废气温度,要求尽可能稳定废气温度,使其波动范围愈小愈好。若废气温度有所上升或下降,应及时调整风煤,并注意窑内是否有结圈。 9.看窑皮,要求操作中控制窑皮平整、厚度适中,以保证窑的安全运转。但发现窑皮有深坑、剥蚀、局部脱落或冷却水有烫手感觉时,应立即通过调整生料成分、下料量、窑速、冷却水或煤粉咀位置等措施及时粘补窑皮。 10.看喂料量,要求严格控制窑速和喂料量,以保证入窑生料的均匀和窑

新型干法水泥预分解窑中控操作员(讲课精简版)

预分解窑中控操作员精细操作讨论(讲课精简版) 讨论的背景与目的 预分解窑发展迅速,经济指标相差较大,操作员水平参差不齐。运转水平高者不多,带病运转者不少。与国际平均水平有差距。 新型干法企业之间的竞争日趋激烈。操作技术相互封闭,缺乏培训与交流机会。 企业重发展,疏管理。认为是都已掌握的…下里巴人?技术,无潜力可挖。实际存在不少误区。企业技术力量不足,员工培训质量不高。 (谢:中国的水泥产量在世界排名第一,年产水泥约大于14亿吨,第二名是印度,年产约4、5亿吨,但评价一下我们水泥技术的实际情况,在成本消耗和环保上还是与世界水平存在一定的差距,国外5000吨生产线每公斤熟料消耗700大卡,国内普遍在750~800大卡,大水是770大卡、110公斤标煤,要把能耗降下去,这是降成本的最重要的一条,要把经济指标搞得最好。 降能耗不是降员工的工资,反而要想办法提高员工的待遇,目的是提高员工的素质。人是第一位的,能够节能降耗的员工是我们企业最需要的!很多企业都缺少搞技术的人。) 序:用什么衡量运转水平 (谢:江西亚泥一条生产线转400多天,窑砖没换,运转率几乎月月100%,个别的时候也在99%以上。我们要客观地区分差别,我们要提前判断窑现在存在什么问题,就像人要定期体检一样。我们只有区分了现状生产水平之后,明确了差距,才会找到努力的目标,措施才有针对性,而且采取措施越早越有效。)

(一)、提高运转水平的意义 1、企业提高效益的途径:充分利用国家政策;增加生产规模;挖掘企业内涵。 挖掘企业内涵就是提高运转水平:与增加生产规模应当是企业腾飞的两只翅膀。 (谢:企业要想在社会上生存就得挣钱,挣钱有几个方法,所有的企业家对于“利用国家政策”都会,这没多大潜力。最大的潜力不是增加生产规模,) 2、我国新型干法生产线现状 目前,全国预分解窑生产线的运行状态大致分为三类:精细运转(<10%)、正常运转(60%)、带病运转(>30%)。 差距产生在何处: 国内水平国际水平 设计方面相差不大 装备方面仪表及个别设备依靠进口 施工质量相差不大 企业管理刚起步高 现场操作深受其它窑型影响成熟 带病运转的产生原因: (1)投产后就带病运转:多属设计、设备、施工质量; (2)运转一年后带病运转:多属资金或人员培训不足所致; (3)运转数年后带病运转:多属管理与操作不善造成。 (二)、衡量运转水平的指标 1、能耗指标的实现水平; 2、环保治理的水平; 3、劳动生产率水平;(上述具体指标后续分解) (三)、什么是精细运转

预分解窑的规格

预分解窑的规格 《新世纪水泥导报》2000年第3期 成都建材设计研究院(610051)杜秀光 内容提要:本文通过对预分解窑规格的分析,并结合生产实践提出了几个新的计算方法,这对指导新型干法窑的选型和降低新型干法窑的投资具有一定意义。关键词:单位截面积热负荷、断面风速、停留时间、斜度、转速 前言 目前的预分解窑设计中,窑规格的确定一直沿用早期设计的一些生产线的平均水平进行统计回归得到的计算公式进行的。由于回归公式受到这些生产线水平比较低等因素的影响,采用这些公式进行计算所得到的结果也必然是低水平上的重复,造成有些指标甚至远远低于湿法窑,这就造成了窑和分解炉及预热器的匹配不和理,使窑的能力没有得到充分发挥,也造成了窑的能力的浪费。因此,有必要根据预分解窑的发展状况,对预分解窑规格的计算公式进行重新分析,确定更加准确合理的计算方法,以适应预分解窑技术发展的要求。 1.窑直径的确定 窑的直径主要影响窑的单位截面积热负荷和断面风速,这也是预分解窑与其它窑型具有可比性的两个指标。单位截面积热负荷是衡量窑的发热能力和热力强度的最主要的指标,这一指标的高低从一定意义上决定了窑的产量;而窑内断面风速的高低主要影响窑内传热效率的高低,过高的断面风速回带走窑内过多的物料、削弱传导传热、增大阻力、破坏窑内正常工况。根据目前国内外比较典型的几种窑型中不同规格的窑的设计和生产水平计算的单位截面积热负荷和断面风速列于表1,其中预分解窑的窑头用煤量按40%计算,燃料燃烧生成的废气量按0.335Nm3/1000kJ计算。

注:表中带“*”的数据为国外某公司最新的设计资料,带“**”的数据为日本住友公司赤穗厂生产数据,带“***”的数据为拉法基北京兴发水泥有限公司1998年的生产数据,该公司计划1999年将产量提高到50-55t/h,这样一来,该窑的单位截面积热负荷和断面风速将分别达到15.5-17.05和1.32-1.45。 从表中可以看出,无论是单位截面积热负荷还是断面风速,都是湿法窑最高,预热器窑次之,预分解窑最低,而湿法窑的历史最长,技术也是最成熟的,湿法窑的这两个指标才是窑的热力强度的真实反映,从表中带“*”和“**”的两个数据也证明了这一点。这表明,我们过去在预分解窑的设计过程中,由于当时的水平所限,对窑的发热能力估计不足,造成了很大的浪费。从表中的两个先进数据可以看出,经过努力和对预热器及分解炉的优化设计,预分解窑的指标是可以得到提高的,达到湿法窑的水平是完全能够办到的。因此,我们认为,过去的一些预分解窑的回归计算公式已经不能适应新的技术水平的要求了。笔者根据分析对预分解窑的直径计算提出以下公式: D i=6.325(Qlq/πq f)1/2 (1)式中:D i--窑内径(m); Q --设计系统产量(t/h); l --设计窑头燃料比例(%); q --设计单位热耗(kJ/kg.cl); q f--单位截面积热负荷(kJ/m2.h),可取16-19kJ/m2.h,小规模的取低值,规模大的取高值。 计算出窑的直径后,可根据具体情况乘以1.05-1.10的富余系数,以保证系统的生产能力,避免给操作造成困难。然后再核算窑内的断面风速,窑内的断面风速一般可取1.4-1.8 Nm/s,且不宜超过2.0Nm/s,小规模的取低值,规模大的取高值。 2.窑的斜度和转速 目前,无论是干法窑还是湿法窑,窑的斜度一般均为3.5-4%,预分解窑的转速一般运行在2.5-3.2r/min范围内。这两个参数主要影响物料在窑内的运动速度,目前几种典型的预分解窑的物料运动速度列于表2,其中窑的斜度按3.5%计算,转速按2.8r/min计算。窑的斜度越高,物料流速越快,物料在窑内的翻滚次数越少,物料与气流的接触次数和时间也就越少,因此,过快的窑速引起热交换效率降低;窑的转速不仅影响物料的运动速度,还影响了物料被带起的高度,窑速越高,物料被带起越高,它与窑内热气流的接触越好,传热效率也就越高。因此,我们认为,在保证物料运动速度的情况下,适当降低窑的斜度,提高窑的转速,可以提高物料的翻滚次数和被带起的高度,这对于提高窑内的热交换效率是有益的。我们推荐窑的斜度为2.5-3.0%,窑转速为3.0-4.0r/min. 窑的长度主要影响物料在窑内的停留时间。在窑内物料运动速度一定的情况下,窑的长度越长,物料的停留时间也就越长。保证窑内足够的停留时间,也

预分解窑熟料欠烧成因及处理

预分解窑熟料欠烧成因及处理 -------------------------------------------------------------------------------- 作者:- 作者:佚名时间:2007-4-2 1 欠烧料成因 1.1 窑头用煤量太大,温度偏低 在生产过程中,当fCaO不合格时,总是认为窑头用煤量过少,温度低,煤灰掺入量少。于是便增加窑头用煤量,试图以此来提高烧成带温度,有时甚至出现窑头用煤量与分解炉用煤量倒置的现象,造成系统温度偏高,窑尾温度达到1 200℃,C5级筒出口温度≥500℃,窑尾废气中CO含量高,直接威胁预热器的安全运行。 对于回转窑来说,它的容积热力强度是有一定限度的。当容积热力强度已到极限时,增加窑头用煤量,会造成煤粉不完全燃烧,窑内还原气氛加剧,窑头温度进一步降低。当窑温较低时,再多加煤反而更解决不了问题,因燃烧速度与温度有关,多加煤会造成火焰黑火头长,火焰温度低,窑尾温度过高。还会引起窑内还原气氛加重,结长厚窑皮,造成预热器系统结皮堵塞,从而使工艺系统进一步恶化,热工制度紊乱。 1.2 燃烧器火力不集中 我公司燃烧器的中心位于回转窑端面第四象限(+30mm,-30mm),伸入窑内300mm。在调整燃烧器的过程中,其具体位置固定不变,只调整内外风阀门开度及内外筒间隙。内风为旋流风,增加内风火焰粗短;外风为轴流风,增加外风火焰细长;内外筒间隙正常生产时调整范围为15mm--30mm,间隙越小火焰短,为超强火焰。间隙越大火焰长。另外,内外筒间隙的调整对火焰形状的影响特别大,调整不当容易烧毁窑皮及耐火砖。 在试生产期间,内风风阀臆40%,外风风阀≥80%,内外筒间隙30mm,火焰粗长,火力不集中,又不敢大幅度调整间隙。燃烧器与煤质适应上没有大胆尝试(煤的低位发热量为20 900kJ/kg)。当回转窑达到设计产量时,熟料欠烧,fCaO高达3.0,熟料立升重约1 100g/L。 1.3 熟料结粒过大 在试生产期间,由于窑头用煤量太大,窑速低,窑尾温度过高,导致液相提前出现,物料发黏形成大块,致使在烧成带无法烧透,造成出窑熟料结粒不均。 1.4 窑系统用风不当 (1)窑尾缩口闸板尺寸不合适,物料喷腾效应差,有落料现象,入窑内物料出现温差,加剧结粒现象的发生同时也加重了窑内的热负荷。 (2)为避免预热器温度高,不能拉大风,则易导致预热器内积料,当温度及风量波动较大时,积料突然塌落,窜入窑内,破坏窑内热工制度。 (3)篦冷机的风量偏低且风量不稳,篦速和喂料的关系掌握不好,料层厚度不能有效控制。风量主要通过窑和三次风管两个管道导入预热器,兼顾分解炉内煤的完全燃烧和喷腾效应的产生,一味强调

日产3000吨水泥熟料窑尾预热器与分解炉系统设计

1前言 1.1水泥产业发展概述 我国是水泥生产大国,水泥工业是我国国民经济建设的重要基础材料产业,在国民经济可持续发展中具有举足轻重的地位。随着现代化建设的持续、稳定发展,我国水泥工业正面临着更好更快地发展、完善自身、节能环保的重任[1]。 水泥生产过程中,最重要的工艺环节是将化学成分合格的生料煅烧成既定矿物组成的熟料的过程[2]。此过程所使用的设备包括旋风筒预热器、分解炉、回转窑和篦冷机等,这些设备即为构成窑尾系统的主要设备。伴随着水泥工业生产技术的发展,熟料煅烧设备经历了立窑、干法中空窑、湿法窑、立波尔窑、预热器窑以及预分解窑的变化。对于水泥工业窑炉,国内外主要研究机构均依据水泥熟料形成热、动力学机制,研究水泥窑炉工艺过程,并对各设备子系统工作机理和料气运动、换热规律进行探讨[3]。通过建立单级和多级粉体悬浮热交换器热力学理论模型和分解炉系统热稳定性理论模型,建立全系统的热效率模型,系统研究了悬浮预热器和分解炉的热效率及其影响因素、悬浮预热器系统特性组合流程、流场、温度场、浓度场的合理分布和碳酸盐分解及固液相反应动力学特性,并以此为理论指导,开发出新型干法水泥熟料生产技术装备[4]。 1.2国内外研究现状 天津水泥工业设计研究院有限公司开发的TDF分解炉,具有三喷腾和碰顶效应、湍流回流作用强、固气停留时间比大、温度场及浓度场均匀、物料分散及换热效果好、阻力系数低等特点[5]。交叉料流型预分解法在保证全系统固气比不变的前提下,可使每级预热器单体的固气比提高,从而提高系统的热效率。采用这种生产方法可提高生料入窑分解率,降低预热器出口气体温度及分解炉操作温度[6]。整个系统在相对低温下操作可以减少钾、钠、氯盐及一些低熔点矿物形成,有利于系统稳定操作,减少预热器及分解炉结皮堵塞。如西安建筑科技大学徐德龙院士团队发明的悬浮态高固气比预热分解技术[7]。以Prepol和Pyro?clon型炉[8]为代表的管道式分解炉,主要依靠“悬浮效应”加强气固换热,炉内湍流强度较小,一般以增大炉容为主要措施,保证分解炉的功效发挥,故其单位容积热负荷及单位容积产量相对其他炉型来说,都是比较小的。三菱公司设计的N一MFC预分解系统所用的旋风筒则采用了出口内筒加装导向叶片的方式,以减少循环气体量,从而在不降低收尘效率的前提下降低旋风筒阻力损失。由于采用了这种低阻旋风筒,其五级旋风预热器的阻力损失相当于或略低于四级旋风预热器的水平[9]。

水泥熟料预分解窑窑尾工艺设计说明书

5000t/d水泥分解窑窑尾(低氮氧化合物排放)工艺设计 摘要:水泥是社会经济进展最重要的建筑材料之一,在今后几十年甚 至是上百年之内仍然是无可替代的基础材料,对人;低氮排放;工 艺设计 The Process Design of the Back End of Precalciner Kiln for 5000T/D Cement Clinker(Low Nitrogen Oxide Emissions) Abstract:Cement is one of the most important building materials of the social and economic development, within the coming decades or even a century,Cement is still no substitute for basic materials, the importance of human civilization is self-evident. calciner kiln as the representatives has become leading technology and the most advanced technology of the cement industry. It has many advantages, such as high throughput, a high degree of auto mation, high quality products, low energy consumption, low emissions of harmful substances, etc. In the production process of cement will release a number of harmful substances,particularly nitrogen oxides,according

1200td预分解窑操作用风控制的体会

1200t/d 预分解窑操作用风控制的体会 2008-11-6 作者: 向安斌,青松建化集团 我厂1200t/d 熟料新型干 法水泥生产线,生料采用石 灰石、砂岩、粉煤灰、河泥、 风积沙和硫酸渣六组分进 行工艺配料,熟料烧成系统 采用成都院带CDC 分解炉 的单列五级低压损预热器 窑、回转窑规格为Φ3.3m ×52m ,设计熟料生产能力为1200t/d ,熟料冷却系统采用LBTF1400型第三代控制流篦冷机。现结合生产实际,对RF5/1200预分解系统、LBTF1400篦冷机和Φ3.3m ×52m 窑在生产过程中的操作用风控制的体会介绍如下: 1 主要工艺设备配置 主要工艺设备配置见下表1。 表1 主要工艺设备配置 序号设 备 名 称 及 主 要 技 术 参 数 单位 数量 1 中卸式生料磨机 型号: Ф3.5m×10m 台产:90t/h 功率:1250Kw 台 1 2 生料磨系统风机 型号:M6-29No.26.5F 处理风量:150000m3 /h 全压:8000Pa 功率:450Kw 台 1 3 回转窑 台 1

2 预分解窑系统总风量的操作控制和要求 2.1 系统总风量的操作控制主要依据窑炉耗煤量的大小和熟料产量的高低 系统总风量的操作控制主要依据窑炉耗煤量的大小和预分解窑熟料产量的高低。在实际生产中,注意以下要点:

1)在投料初期或熟料产量低于设计能力阶段,为保证预热器各点风速高于最低允许值,用风控制要求适当加大空气过剩系数,提高气固比(1.8Nm3/Kg生料以上),此时不要过分追求风、煤、料的配合比例关系。 2)投料前将C1级筒出口负压拉到3300~3500Pa,即采取大风量投料操作的用风控制方法,初始投料量为95t/h,在投料正常之后不需要对用风进行过多的调整、便可以满足用风要求。 3)在熟料产量达到或超过设计值时,由于上升烟道缩口(有效内径Φ1140mm)、三次风管内径(有效内径Φ1300mm)在设计时均以固定,预分解窑系统用风控制,主要以头尾煤完全燃烧所需要空气量为标准,这时候过剩空气量不要太大。 2.2 系统总风量的操作控制主要采取以下方法 1)提高头尾两煤的燃尽率,尽可能降低C1级筒出口废气温度。2)根据各级旋风筒进出口的温度、负压值以及锥体的温度、负压值,并结合窑尾高温风机进口温度来综合分析和判断风量是否匹配,以此来调节系统总风量和窑头篦冷机的用风量。 3)通过高温风机的电流值,计算拉风量,再计算出单位熟料产生的废气量,由此判断用风操作的合理性。 3 窑头操作用风及一次风量的控制 窑头操作用风控制的好与否在很大程度上影响到窑系统能否长期稳定安全运转,为了灵活调节窑内火焰的形状、强度、长度及规整性,适当减少窑头一次风的用量,应重点控制好一次风量、

新型干法预分解窑生产中重点监控的主要工艺参数

预分解窑生产中重点监控的主要工艺参数 一、烧成带物料温度二、氧化氮(No x)浓度三、窑转动力矩四、窑尾气体温度 五、分解炉或最低一级旋风筒出口气体温度六、最上一级旋风筒出口气体温度七、窑尾、分解炉出口或预热器出口气体成分八、最上一级及最低一级旋风筒出口负压九、最下一、二旋风筒锥体下部负压十、预热器主排风机出口管道负压十一、电收尘器入口气体温度十二、窑速及生料喂料量十三、窑头负压十四、篦冷机一室下压力 预分解窑工艺控制的自动调节回路 1、窑头负压∽篦冷机余风排风机风门开度; 2、篦冷机一室下压力∽篦床速度 3、分解炉加煤量∽最下一级旋风筒(或分解炉)出口温度 4、增湿xxxx压力∽增湿xx出口阀门开度 5、增湿塔出口气温∽增湿塔水泵回水阀门开度 6、窑尾主排风机风门开度∽最上一级旋风筒出口气体O 2含量及压力; 7、电收尘器进口风压∽电收尘器出口风机风门开度; 8、喂料称测重负荷传感器∽喂料仓自动调节计量阀门开度 9、生料计量标准仓重量∽均化库出口阀门开度 10、其他可根据需要设置; 预分解窑系统的调节控制原则

从悬浮预热器窑到预分解窑生产的客观规律可以看出,均衡稳定运转是悬浮预热器窑及预分解窑生产状态良好的重要标志。运转不能均衡稳定,调节控制变化频繁,甚至出现恶性“周期循环”,则是窑系统生产效率低、工艺和操作混乱的明显迹象。因此,调节控制的目的就在于使窑系统保持最佳的热工制度,实现持续均衡稳定地运转。 对水泥窑的调节控制,概括地说,往往有两种不同的方法。 第一种,将烧成带温度作为调节控制的主要依据。通过风、煤(或其他燃料)料以及窑速等调节,来达到保证烧成温度正常的目的。这是一种不完备的调节方法。其缺点在于调节控制只注意烧成带温度,而忽视了预烧带的状况,忽视了全窑系统的热力平衡分布,容易导致恶性“周期循环”。第二种,对全窑系统“前后兼顾”,从热力平衡分布规律出发,综合平衡,力求稳定各项技术参数,做到均衡稳定地运转。例如,当烧成带温度降低,需要增加燃料喂入量时,同时要考虑燃料能否完全燃烧,以及对窑系统各部位热力平衡影响等。 在现代化水泥企业中,窑7系统一般是在中央控制室集中控制、自动调节,并且同生料磨系统联合操作。窑系统各部位装有各种测量、指示、记录、自控仪器仪表,自动调节回路,有的则是用电子计算机监控。指示和可调的工艺参数有几十项,从各个工艺参数的个别角度观察,这个工艺参数是独立存在的,各有作用,但是从窑系统整体观察,各个参数又是按热工制度要求,按比例平衡分布,互相联系,互为因果。因此,实际生产中,只要根据工艺规律要求,抓住关键,监控若干主要参数,便可控制生产,满足要求。就是采用计算机对窑系统自动控制,其输入的应用程序设计,也是按此指导思想进行。 控制方式及内容 一、控制方式 全厂采用计算机集散控制系统,即分散控制集中管理,该控制方式是集集中控制与分散控制的各自优点,即系统功能分散设备分散,又有具有高度的灵活性、易扩性,并可实现全厂计算机管理。 二、控制内容

中国预分解窑

中国预分解窑(旋窑)的发展与机立窑的淘汰 一、世界水泥行业概况 水泥生产是物理化学过程,最重要的化学反应是在水泥窑中完成的。 水泥从1824年投入工业生产以来,水泥窑的发展经历了立窑、干法中空窑、湿法窑、悬浮预热器窑、预分解窑五个阶段。我国所说的新型干法窑是对悬浮预热器窑和预分解窑的总称。 二、中国水泥工业概况 中国的第一袋水泥是1892年由唐山启新洋灰公司生产出来的,中国是 亚洲最早生产水泥的国家之一。 新中国成立以后,水泥工业的发展可分为两个历史时期。第一个历史时期是1949~1995年,这是个高速发展时期,45年间年均增长速度达17.5%,创世界水泥发展速度之最。在这个时期内,按投资性质分类,大致又可分三个阶段: 1950~1979年为第一阶段,主要特点是依靠中央投资为主,以引进东欧设备为主,以行政区域布局为主,以发展湿法回转窑为主,建设了一批中型水泥厂,成为我国国有水泥企业的主体。1979年末全国旋窑水泥的产量占60%。 1980~1992年为第二个阶段,主要特点是国民经济快速发展,乡镇企业异军突起,水泥供求矛盾十分突出,各行各业、各级政府、民间集资办水泥厂的积极性空前高涨,立窑得以爆炸性的发展,中央投资只是围绕确保国家重点工程所需水泥的目的,建设了几个大中型水泥厂。 1993~1995年为第三个阶段,即从小平南巡讲话到亚洲金融风暴,是外商来华直接投资建设水泥厂的最活跃时期。在这期间由中央批准建设的大中型水泥项目中,90%以上是“三资”企业。

1995年末,全国有水泥企业8435个,水泥窑9093座,其中立窑占89 %,预分解窑只有86座,仅占1%;水泥生产能力5.93亿吨,产量4.76 亿吨,立窑水泥占81%,500号及以上水泥仅占9%。 1996年,中国水泥工业进入了第二个历史时期,即结构调整时期,或稳定发展时期。6年来,年均增长速度5.6%;累计淘汰小水泥窑4894 座,淘汰生产能力9450万吨,新增预分解窑生产线84条,熟料生产总能力已经达到7790万吨,全行业规模以上水泥企业4507家,总生产能力7. 18亿吨,产量6.4亿吨。 中国是水泥生产大国,也是消费大国,但是并没有获得相应的国际地位和应有的市场份额,突出问题表现在以下几个方面: 一是生产集中度太低2000年世界水泥产量16.5亿吨(含中国2亿吨),1470家水泥厂(含中国1 50家),150家粉磨站,其中前5名企业Lafarge、Holcim、Cemex、Heidelberg、It alcementi的产能占世界产能的37%。 日本水泥年产量8330万吨,只有19家企业,太平洋公司就占40%左右。印度水泥年产量10400万吨,前五家企业的产量占总量的47.6%。泰国水泥年产量4780万吨,只有6家企业,平均规模是800万吨。韩国水泥年产量5990万吨,只有10家企业,“东洋”与“双龙”两家企业的生产能力占总量的48%。台湾岛内水泥年生产能力已经达到2300万吨,而消费市场的容量只有1800万吨左右,目前尚有两条7000t/d生产线正在建设,年内投产。中国水泥行业前10名企业的年产能只占全行业的6%,占预分解窑产能的50%。由此可见,我国水泥行业的集中度不要说与发达国家比,就是与世界平均水平比,与周边国家比,均存在较大的差距。二是低标号水泥比重过大2001年我国按新标准42.5号及以上和特种水泥的产量只占总量的15%,其中还有20%出口了,这不仅反映了我国建筑材

预分解窑操作体会

预分解窑操作体会 1、看火操作的具体要求 1)作为一名回转窑操作员,首先要学会看火。要看火焰形状、黑火头长短、火焰温度及是否顺畅有力,要看熟料结粒、带料高度和翻滚情况以及后面来料的多少,要看烧成带窑皮的平整度和厚度等。 2)操作预分解窑窑坚持前后兼顾,要把预分解系统情况与窑头烧成带情况结合起来考虑,要提高窑的快转率。在操作上,要严防大起大落、顶火逼烧,要严禁跑生料或停窑烧。 3)监视窑和预分解系统的温度和压力变化、废气中O2和CO含量变化和全系统热工制度的变化。要确保燃料的完全燃烧,减少黄心料。尽量使熟料结粒细小均齐。 4)严格控制熟料F-CaO含量小于1.5℅,立升重波动±50g/L以内。 5)在确保孰料产量的前提下,保持适当的废气温度,缩小波动范围,降低燃料消耗。 6)确保烧成带窑皮平整,厚薄均匀,坚固。操作中要努力保护好窑衬,延长安全运转周期。

2、预热器系统的调整 2.1撒料板的调节 撒料板一般都置于旋风筒下料的底部。经验告诉我们,通过排灰 阀的物料都是成团的,一股一股的。这种团状或股状物料,气流不能带起而直接入旋风筒中造成短路。撒料板的作用就是将团状或股状物料撒开,是物料均匀分散地进入下一级旋风筒进口管道的气流中。在预热器系统中,气流与均匀分散物料间的传热主要在管道内进行的。尽管预热器系统的结构形式有较大的差别,但下面一组数据基本相同。一般情况下,旋风筒进出口气体温度之差在20℃左右,出旋风筒的 物料温度比出口气体温度低10℃左右。这说明在旋风筒中的物料与 气体的热交换是微乎其微的。因此撒料板将物料散开程度的好坏,决定了生料的受热面积的大小,直接影响热交换效率。撒料板的角度太小,物料分散不好不好;反之,板易被烧坏,而且大股物料下塌时,由于管路截面较小,容易产生堵塞。与此同时,注意观察各级旋风筒进出口温度差,直至调到最佳位置。 2.2排灰阀平衡杆角度及其配重的调整

日产4000吨水泥熟料预分解窑熟料粉磨系统的初步设计文献综述

文献综述 一、毕业设计的目的、意义、范围及所要达到的技术要求 毕业设计的目的和意义在于培养我们综合运用所学的基础理论、专业知识和基本技能,提高分析、解决问题的能力;提高查阅文献和收集资料的能力,计算机加护和外语应用能力;使我们系统、熟练的掌握好水泥厂工艺流程相关的知识及应用,并具有进行水泥厂主要车间初步设计计算、编写设计说明书等工作能力;进而培养我们的创新精神和实践能力,为今后的实际工作打好基础。 我的毕业设计题目是日产4000t水泥熟料预分解窑熟料粉磨系统的初步设计。 物料受外力作用的粉碎机理既与物料的颗粒形态、粉磨特性、入磨粒度与产品细度等有关,也与粉磨设备、生产工艺等密切相关,而且不同生产条件的影响因素各不相同,所以应该有针对性的选择生产工艺和设备。 总之,在满足生产线日产的基础上,对设备的大型化和工艺的先进性进行慎重的选用,在降低能耗和保护环境方面也要给予足够的重视。 二、国内外对于熟料磨系统使用现状及问题 目前,以悬浮预热和窑外分解为核心的新型干法水泥生产技术已经成为当今水泥工业发展的主导技术和最先进的工艺。目前,日本、德国、法国等发达国家新型干法技术已占 95% 以上,其他的发达国家也达到 80% 以上,而我国的新型干法技术只占到 55% ,其余的全是立窑和其他落后的生产方法,因此发展我国的新型干法水泥技术任重道远。在我国,新型干法水泥起步于上世纪70年代,至今已有30多年,但发展步伐较小,速度缓慢。进入新世纪以来,随着我国国民经济的飞速发展,我国新型干法水泥生产的发展进入了快车道。通过技术引进、科研开发等一系列措施,生产线的技术装备水平和规模得到长足发展。装备上从完全进口到现在日产4000t、5000t以下生产线的完全国产化达到95%及日产8000t、10000t 生产线的基本国产化,表明我国建材机械工业发展已经进入了发展的新阶段。一批自行设计建设的3000 t/d、4000 t/d、5000t/d及10000 t/d熟料生产线已投入运行,建设投资和生产耗能大大降低。截止2007年上半年,新型干法的比重已达到53%。随着我国新型干法水泥设备与工艺的日臻完善、大型水泥装备国产化的解决和国家节能检排政策的实施,新型干法水泥技术将占据主导地位。 伴随着20世纪70年代初期日本石川公司(IHI)预分解窑的诞生,新型干法水泥技术

1200td预分解窑操作用风控制的体

1200t/d预分解窑操作用风控制的体会 我厂1200t/d熟料新型干法水泥生产线,生料采用石灰石、砂岩、粉煤灰、河泥、风积沙和硫酸渣六组分进行工艺配料,熟料烧成系统采用成都院带CDC分解炉的单列五级低压损预热器窑、回转窑规格为Φ3.3m×52m,设计熟料生产能力为1200t/d,熟料冷却系统采用LBTF1400型第三代控制流篦冷机。现结合生产实际,对RF5/1200预分解系统、LBTF1400篦冷机和Φ3.3m×52m窑在生产过程中的操作用风控制的体会介绍如下: 1 主要工艺设备配置 主要工艺设备配置见下表1。 表1 主要工艺设备配置

2 预分解窑系统总风量的操作控制和要求 2.1 系统总风量的操作控制主要依据窑炉耗煤量的大小和熟料产量的高低 系统总风量的操作控制主要依据窑炉耗煤量的大小和预分解窑熟料产量的高低。在实际生产中,注意以下要点: 1)在投料初期或熟料产量低于设计能力阶段,为保证预热器各点风速高于最低允许值,用风控制要求适当加大空气过剩系数,提高气固比(1.8Nm3/Kg生料以上),此时不要过分追求风、煤、料的配合比例关系。 2)投料前将C1级筒出口负压拉到3300~3500Pa,即采取大风量投料操作的用风控制方法,初始投料量为95t/h,在投料正常之后不需要对用风进行过多的调整、便可以满足用风要求。 3)在熟料产量达到或超过设计值时,由于上升烟道缩口(有效内径Φ1140mm)、三次风管内径(有效内径Φ1300mm)在设计时均以固定,预分解窑系统用风控制,主要以头尾煤完全燃烧所需要空气量为标准,这时候过剩空气量不要太大。 2.2 系统总风量的操作控制主要采取以下方法

工作总结 水泥厂预分解窑岗位工作经验总结范本 精品

水泥厂预分解窑岗位工作经验总结 在水泥厂中,烧成车间相对而言要比其它车间复杂得多。这主要是熟料烧成有严格的热工制度,要求风、煤、料和窑速进行合理匹配,出现异常情况要及时调整。否则,短时间内影响一点产质量事小,如果处理不当还会出现红窑或预分解系统堵塞等问题。通过生产实践体会到,当一个好的窑操作员,既要在中控室操作自如,判断正确、果断,又要解决好烧成现场出现的实际问题,实属不易。下面就预分解窑的操作谈一些体会。 1、作为一名回转窑操作员,首先要学会看火。要看火焰形状、黑火头长短、火焰亮度及是否顺畅有力,要看熟料结粒、带料高度和翻滚情况以及后面来料的多少,要看烧成带窑皮的平整度和窑皮的厚度等。 2、操作预见性要好、要坚持前后兼顾,炉窑协调,确保预分解窑系统的热工制度的合理与稳定。要把预分解系统情况与窑头烧成带情况结合起来考虑,要提高快转率。在操作上,要严防大起大落、顶火逼烧,要严禁跑生料或停窑烧。 3、监视窑和预分解系统的温度和压力变化、废气中O2和CO含量变化和全系统热工制度的变化。要确保燃料的完全燃烧,减少黄心料。尽量使熟料结粒细小均齐。 4、严格控制熟料fCaO含量低于1.5%,立升重波动范围在±50g/L以内。 5、在确保熟料产质量的前提下,保持适当的废气温度,缩小波动范围,降低燃料消耗。 6、确保烧成带窑皮完整坚固,厚薄均匀,坚固。操作中要努力保护好窑衬,延长安全运转周期。 7、预分解窑的发热能力来源于两个热源,即窑头和分解炉,对物料的预烧主要由分解炉完成,熟料的烧结主要由回转窑来决定。因此在操作中必须做到以炉为基础,前后兼顾,炉窑协调,确保预分解窑系统的热工制度的合理与稳定。调节分解炉的喂煤量,控制分解炉出口温度在870~900度,确保炉内料气的温度范围,保证入窑生料的分解率。影响煤粉充分燃烧的因素有几个方面:一是炉内的气体温度;二是炉内氧气量;三是煤粉细度。因此,一要提高燃烧的温度;二要保证炉内的风量;三要控制煤粉的细度。在燃烧完全的条件下,通过分解炉加减煤的操作,控制分解炉出口气体温度。如果加煤过量,分解炉内燃烧不完全,煤粉就会带入C5燃烧,形成局部高温,使物料发粘,积在锥部,到一定成都造成下料管堵塞。相反,如果加煤过少,分解用热不够,导致分解炉此刻气温下降,分解率低,导致窑热负荷增加,熟料质量下降。在具体操作中,要避免上述两种情况,要对不同的情况进行具体分析。 8、合理调节窑头的喂煤量:窑头喂煤量是否合理,可以通过观察窑头火焰情况和分解炉出口温度的稳定性。如果窑头喂煤偏少,窑口发暗,火焰发红,分解炉出口温度不稳定,分解炉喂煤量频繁加、减;如果窑头喂煤过多,窑口火焰白亮,分解炉出口温度不稳定,分解炉喂煤量不稳定,这种情况也不利于操作。出现以上两种情况要及时对窑

RF窑尾预热器系统安装使用

2RF5/5000窑尾预热器系统安装、使用 2018-8-13作者: c ) 有利于烧成制度地稳定; d ) 便于烧劣质煤,单位熟料地热耗较低; e ) 对于含碱、氯和硫较高地原、燃料适应能力强; f ) 排放废气中地 NOX 含量较低,对环境污染较小; g ) 利于旧窑地技术改造,占地面积小,设备费用较低,产量可成倍增加。 鉴于上述优点,预分 解窑系统已经得到广泛应用。 我院在消化和吸收国外先进技术地基础上 ,结合本院长期地工程经验,现已开发设计出预分 解窑、预热器窑、立筒窑等新型干法生产线及湿磨干烧窑尾系统 ,以满足国内外用户地不同 需^<。 本说明书是5000t/d 双系列窑尾预热器系统地安装、使用说明书。 1.用途 旋风预热器和分解炉共同完成水泥生料地预热和碳酸钙地分解任务 ,入窑生料分解率可达 90%以上,回转窑主要完成烧成 <煅烧)功能,因此回转窑地规格可大大减小。正因为如此 , 旋 风预热器和分解炉是水泥熟料煅烧地关键设备 ,它直接关系到烧成制度地稳定和产、质量地 提高。它与回转窑、冷却机组成水泥熟料生产地三大主机设备。 2?主要技术性能 2RF5/5000窑尾预热器系统主要技术参数: 产量 <t/d ) 5000 系统阻力<Pa ) 4500?5000 生料入窑分解率<%) >90 出一级筒废气温度<C ) 340 南京施立議型机械 * - 前言 旋风预热器带分解炉是水泥熟料煅烧 地主要设备之一,是预分解窑系统中地 重要设备,它已被世界水泥同仁公认为 水泥工业地新技术,被称为新型干法生 产设备。 预分解窑系统具有如下优点: a ) 可以大幅度地提高窑地产量; b ) 能减轻窑烧成带地热负荷,因而延长 了衬砌地使用寿命和提高了运转率;

提高早期预分解窑产量的措施

提高早期预分解窑产量的措施 摘要:提高早期预分解窑产量的措施 我国在上世纪80年代引进和自行设计开发的一些预分解窑生产线,限于当时的技术水平,存在一些缺点与不足。其中有的已在生产实践中解决,如原来的预分解窑设计为烧油或优质煤,因此分解炉偏小,许多厂已将分解炉加高加大,以改善煤粉特别是劣质煤的燃烧条件;对分解炉内气流的流速、流场分布、燃料的悬浮和燃烧,生料的悬浮和分解的研究和认识也已深化,生料入窑的分解率也逐渐提高。但有些生产线至今仍沿用老的喷煤管,回转窑仍维持着原来较低的转速。据报道[1],广东地区上世纪80年代及90年代初建设的4家预分解窑的转速分别为2.87r/min、2.5r/min、3.0r/min 及2.5r/min,明显低于当今预分解窑3.0~3.5r/min的水平。当时的喷煤管虽也是三风道的,但其一次风大多数在15%左右,而目前的三风道喷煤管的一次风量多在10%以下,一般为5%~6%。由于一次风量减少可提高火焰温度,即提高熟料煅烧温度,而窑的转速提高可提高回转窑的产量。因此,笔者认为通过改用一次风量小的大推力高风速喷煤管和提高回转窑转速可提高早期建设的预分解窑的产量。 1 提高预分解窑转速的技术可行性 早期建设的预分解窑窑速可以提高,其关键是目前的许多技术使预分解窑的火焰温度提高,另一个因素是分解炉技术成熟,生料入窑分解率提高。 1.1 更换新的喷煤管,火焰温度可以提高 早期建设的预分解窑所用的喷煤管一次风量占总风量的15%左右。当今的喷煤管多为大推力、小风量、高风速的三风道或四风道喷煤管,其一次风用量最少的只占总风量的5%~6%,煤风的风速约为20m/s,而内、外风的风速达170m/s,国外有些喷煤管的外风风速更高,甚至高达350m/s,加上结构合理,黑火头短、火焰短粗、火焰温度高。由于一次风温只有50℃左右,而二次风温一般都在1000℃以上甚至更高,一次风的减少将提高火焰温度。加上火焰短粗,热力集中,物料煅烧温度提高,熟料形成反应速度加快。据文献[2],熟料烧成阶段,C3S的形成主要是CaO在高温液相中溶解以Ca2+ 形式在液相中向C2S扩散来完成。C3S形成过程中,Ca2+的扩散系数为(2.62~5.31)×10-5cm2/s,C3S 的结晶速度为5×10-5cm/s,CaO的溶解速度只有(6.95~22.5)×10-6cm/s,因此C3S的形成被CaO的溶解过程所控制。CaO的溶解和Ca2+的扩散均与温度有关。温度提高CaO的溶解速度加快,Ca2+的扩散速度也加快。当煅烧温度从1400℃分别提高到1450℃和1500℃时,0.1mm粒径的CaO的溶解完毕的时间从15min分别降至5min和1.8min;0.05mm粒径的则从5.5min分别下降至2.3min和1.7min;而 0.025mm粒径的则从1400℃的3min下降至1450℃的1min。从上述数据估计,温度每提高50℃,CaO溶解时间约减少66%,即溶解时间减少至原来的1/3。由于CaO溶解时间缩短,C3S形成速度将大为加速。煅烧温度提高,也使Ca2+的扩散速度加快。如当煅烧温度从1400℃提高至1450℃时,Ca2+在饱和溶液中扩散系数从3.77×10-5cm2/s增大至5.31×10-5cm2/s,增大了40%,这意味着Ca2+在液相中扩散时间缩短了40%,也就意味着C3S形成速度加快。C3S形成时间缩短。因此,物料在窑内停留的时间可以缩短,回转窑的转速可以加快。目前,新设计的预分解窑正常运行转速多在3.2r/min,甚至高达3.5r/min。 1.2 篦冷机用厚料层,提高一室风压使二次风温提高,从而提高火焰温度 篦冷机用厚料层操作,并将一室或二室的风压提高,可提高二次风温。例如,广西鱼峰水泥有限公司[3]将篦冷机二室的风压从原来的5.6~5.9kPa提高至7.8kPa,二次风温达1000℃,三次风温达850℃。江西万年青水泥有限公司[4]4号窑曾出现黄心料,采用厚料层并将一室风压从4.2kPa提高至4.6kPa,提高了二次风温,解决了产生黄心料的问题。二次风温提高,使火焰温度提高,从而为加快窑速提供条件。 1.3 生料入窑分解率提高 早期建设的预分解窑,由于对分解炉内燃料的悬浮、燃烧以及生料的悬浮分解技术认识不够,致使当时的生料入窑分解率要求只大于85%即可。随着对分解炉技术认识的深入,分解炉的操作技术日趋成熟,现在生料入窑分解率都在90%以上,不少已达95%以上。生料入窑分解率的提高,将有利于窑的转速提高。

相关文档
相关文档 最新文档