文档库 最新最全的文档下载
当前位置:文档库 › 高中数学论文 高等数学与初等数学的联系及一些应用

高中数学论文 高等数学与初等数学的联系及一些应用

高中数学论文 高等数学与初等数学的联系及一些应用
高中数学论文 高等数学与初等数学的联系及一些应用

高等数学与初等数学的联系及一些应用

摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。

关键词:高等数学;初等数学;应用

1.引言

数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。这些都是基于这种认识和理解,是有一定的道理的。

中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。

2. 国内外研究现状

大学课程学习的思维单向性很强。大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。“用”的观念淡薄了,“学”的热情自然而然的就少了。抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。比如极限定义、集合和函数等。一位新数学教师在解释从非空数集A 到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。如果他的数学分析中的映射掌握得好,完全可以既讲得轻松而学生又听得明白。法国数学家F·克莱因曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简单。”数学教育专业的学生绝不可以轻视高等数学对中学数学的指导作用。

要使高等数学课程学有所用,必须要尽可能了解中学数学教材内容,明确教材改革方向和趋势,这样才能在教学中将两者有机结合起来,从而提高学生的思维,居高临下地解决问题。

3.高等数学与初等数学的联系

高等数学是初等数学的延伸和发展,而初等数学却是高等数学的基础。作为学习和研究数学的步骤,无疑应该是先学习和掌握初等数学,然后才能学习和应用高等数学。反之,学

习高等数学能加深对初等数学的理解和掌握,可以开阔思路、提高数学修养和解决问题的能力。但由于中学数学知识几乎很难和高等数学知识直接衔接,使不少大一新生一接触到“数学分析”、“高等代数”等这些数学课程,就对数学专业课产生了畏难、抵触情绪。而且高等数学理论与中学教学需要严重脱节,许多大学师范毕业生对如何运用高等数学理论指导中学数学感到迷茫。毫无头绪。为了解决上述长期存在的问题,笔者认为研究高等数学与中学数学的联系是一项有效的措施。 4.高等数学在初等数学中的一些应用 (1).柯西——施瓦兹不等式应用

柯西——施瓦兹不等式是高等代数的一个重要不等式,它在中学数学中有广泛的应用。设欧式空间n

R ,令()n a a a ,,,21 =ξ,()n n R b b b ∈= ,,21η,则2

22

,ηξη

ξ≤。

(等号当且仅当ηξ,线性相关时成立)在标准内积下,即

()()()222212222122211n n n n b b b a a a b a b a b a ++++≤++,

若1=i b ,则得()()

2

2

22

12

21n n a a a n a a a ++≤++。

例[]

81设c b a ,,都是正数,且1=++c b a 。求证:

91

11≥++c

b a 证明:在3

R 中,使用标准内积。设(

)

c b a ,,=

ξ,???

?

??=c b a 1,1,1η,则

()c

b a

c b a c b a 111111

2

2

++=??? ??++

++=ηξ 9111

,2

2

=??? ???+?+?=c c b b a

a η

ξ

由柯西不等式,得

91

11≥++c

b a ,

(等号当且仅当ηξ,线性相关时成立) 使用柯西——施瓦兹不等式重要的是构造一个合适的欧式空间,特别是构造內积运算,并找到两个适当的向量。做到这一点是有困难的,但是只要完成这个构造,余下的问题便很容易解决。构造法就是在解决某个问题时,先构造一种数学对象,这种构造物有时看来与题意无关,但实际上恰与问题有内在的联系,而且在某种条件下正是题目所求,或者使我们可以用另一种方法求解问题,这时构造物就成了一种桥梁。 (2).矩阵的应用

要在问题中用上矩阵也必须构造出与问题有某种关系的矩阵,然后才能使用矩阵的性质和定理。 例]

8[2

. 已知1110,1,1-++===i i i u u u u u (1)。能不能用一个显式表达n u 呢?

解:首先把(1)式用矩阵来表示??

?

????

?????=??????+=????

??--+1110111i i i i i i i u u u u u u u (2) 设????

??=+i i i u u U 1,???

???=0111A 则(2)式为1-=i i AU U ,且??

????=??????=11010u u U 于是01AU U =, 0212U A AU U ==,0U A U n n =

问题转为求n

A 。先求A 的特征值与特征向量,并将A 对角化得

1

2512

5

1-?????

?

??????-+=P P A 。其中??

?

?

???

?-+=112512

51P ,??

???

?

??????+-

--=-5251515251511P , 于是12512

51-?????

?

??????-+=P P A n

n

所以?

?

??

??

?

??????????? ??--?

??? ?

?+???

? ??--????

??+==??????=+++++112

2

0125125125125151n n n n n n n n U A u u U

所以???

?

???

??

??

?

??--???? ??+=++1

1

25125

151n n n U 。 在此例中引入矩阵作为工具使用了矩阵的性质,得以求出通项。而用初等数学的方法解的话,则要经过复杂的迭代才能解出此题,不如用矩阵的知识解题一目了然。 (3).微积分的应用

例[]93. 证明:当b a <<0时

a

a

b a b l b a b n -<

<- 证明:设x l y n =,它在区间[]b a ,满足拉格朗日中值定理的条件,有

ξ

1=--a b a l b l n n ,b a <<<ξ0,ξa

b a l b l n n -=- 由于

a b 111<<ξ,故a

a b a b b a b -<

-<-ξ 即

a

a

b a b l b a b n -<

<-。

若用初等数学的知识解题便会发现此题几乎无从下手,将不等号两边相减或相除来证都是比较困难的,因为有个对数函数在,而只要用拉格朗日中值定理,则此题便迎刃而解。 例[]44.设()x f y =是定义在区间[]1,1-上的函数,且满足条件: (i )()()011==-f f ; (ii)对任意的[]1,1,-∈v u 都有

()()v u v f u f -≤-.

(1) 证明:对任意的[]1,1-∈x ,都有()x x f x -≤≤-11; (2) 证明:对任意的[]1,1,-∈v u ,都有()()1≤-v f u f ; (3) 在区间[]1,1-上是否存在满足题设条件奇函数()x f y =,使得 当??

????∈21,0,v u 时,()()v u v f u f -≤-,

当??

????∈1,21,v u 时,()()v u v f u f -=-.

若存在,请举一例;若不存在,请说明理由。

这是03年北京高考理科数学最后一道大题(第20题),是有关抽象函数不等式的证明题,认真分析研究该题中的(2),发现这是一道具有高等数学知识背景的试题,可以将这个问题推广:

推广1. 函数()x f 定义在[]b a ,上。()()b f a f =,且对任意的[]b a x x ,,21∈,都有

()()2121x x x f x f -≤-,则必有()()2

21a

b x f x f -≤

-. 证明:(i )当221a b x x -≤

-时,由()()2

2121a

b x x x f x f -≤-≤-知,结论成立。 (ii )当221a b x x ->-时,不妨设21x x <,则2

21a

b x x --<-,从而有

()()()()()()2121x f b f a f x f x f x f -+-=-

()()()()21x f b f a f x f -+-≤ 21x b a x -+-≤

21x b a x -+-=

21x x a b -+-= 2

a

b a b ---< 2

a

b -=

. 综合可知,总有()()2

21a

b x f x f -≤

-。 由试题中函数()x f 满足的条件(ii )可联想到高等数学中的R.Lipschitz 条件: 对于[]b a ,上定义的函数()x f 和正数()10≤<αα,若存在正常数M 使不等式

()()α

2121x x M x f x f -≤-对[]b a x x ,,21∈都成立,则称函数()x f 在[]b a ,上满足α阶的

R.Lipschitz 条件。

显然试题中的函数()x f 满足1阶的R.Lipschitz 条件。下面进一步将其推广到()x f 满足

α阶的R.Lipschitz 条件

推广2. 函数()x f 定义在[]b a ,上,()()b f a f =,且()x f 满足α阶的R.Lipschitz 条件,即存在正常数M ,使得对于任意的[]b a x x ,,21∈,都有

()()α

2

121x x M x f x f -≤-()10≤<α,则必有

()()()α

αa b M x f x f -≤--21212. ①

证明:(i)当2

21a

b x x -≤

-时,若21x x =,则不等式①显然成立。下设21x x ≠。由于10≤<α得110<-≤α,2211<≤-α。于是

()()α

2

121x x M x f x f -≤-

α

α

α

??

? ??-≤??? ??-≤-2221a b M a b M

()α

αa b M -=-212

(ii)当221a b x x ->

-时,不妨设21x x <,则2

21a

b x x --<- 由10<<α知函数α

x y =在区间[)+∞,0上是凸函数,于是

()()2

21α

αx b a x -+-

()()α

??

????-+-≤221

x b a x ()α

α212x x a b -+-=-

α

α

??? ?

?

---<-22a b a b

()αα

α

αa b a b -=??? ??-=--2222,

()()α

α

21x b a x -+-∴

()α

αa b -<-212 ②

显然当1=α时,不等式②也成立。于是

()()()()()()2121x f b f a f x f x f x f -+-=- ()()()()21x f b f a f x f -+-≤ α

α

21x b M a

x M -+-≤

()()[]

α

α

21x b a x M -+-= ()α

αa b M -<-212.

综上可知,总有 ()()()α

α

a b M x f x f -≤--21212

若把试题中的不等号“≤”改为严格不等式“<”,其推广也成立。 (4).概率论的应用

例[]

25.若,10,10<<<

证明:令B A ,是两个相互独立的事件,且使()()b B P a A P ==, 由()()()()AB P B P A P B A P -+=? ()()()()B P A P B P A P -+= ab b a -+=

由概率的性质知,()10≤?≤B A P ,从而10≤-+≤ab b a 。 5.总结

由以上五个例子可以看出,如果用初等数学的知识解题的话,不免会繁琐无比,但只要巧妙得把高等数学中的思想和方法应用到初等数学中就会产生奇妙的结果,一些题目的本来繁杂的思考计算步骤就可以省略掉,变得既简单又明了。比如例1,原本要经过复杂的代数运算才有可能证得的结果,但只要运用欧氏空间这一个高等数学的知识点,这一道证明题就变得简单多了。同样,其他几道例子都从不同的角度将高等数学应用到了初等数学上,而且都在一定程度上减轻了题目的难度。本文最遗憾的一点就是,作为中学教师很少能将高等数学应用到中学数学中去,最重要的原因便是大多数学生的接受能力有限,但若从另外一个角度去看,便会有趣地发现目前大学生抱怨学数学无用的话立不住脚了,因为我们可以用它来解决初等数学的题目,而且是用更简单的方法去解。另外更重要的一点是,数学是一门学问,一门有着庞大的体系而各体系之间又有着千丝万缕地联系的学问。从初等数学到高等数学,再从高等数学回归到初等数学,这样便形成了一个“圆”。这样的一个“圆”让学生体会到了数学的奇妙性,也增加了学生学习数学的兴趣,只要指引得当,也会减少大学生学习高等数学的抵触情绪,所以笔者认为本课题的研究是很有意义的。

参考文献

[1]黄艳敏.中学数学与高等数学的和谐接轨[J].中学教研,2006,11:29~31

[2]金茂明.高等数学在解中学数学题中的应用[J].涪陵师专学报,1999,15(3):61~64

[3]赵金兰.用高等数学方法解决初等数学中的某些问题[J].雁北师范学院学报,2003,19(5):

72~73

[4]李兴无.一道高观点下的数学高考压轴题[J].高中数学教与学,2004,34~35

[5]谢芳.高等数学与初等数学的联系[J].昭通师专学报,1997,19(2):41~44

[6] 崔素红.高等数学在解决初等数学中的应用[J].哈尔滨师专学报,1998,(1):159

[7]赵临龙.常微分方程的思想方法及在中学数学在的应用[J].安康师专学报,2000,12(2):47~52

[8]夏师.高等代数在中学数学的一些应用[J].广西右江民族师专学报,2002,15(3):11~13

[9]包建廷.微积分在不等式中的应用[J].承德民族师专学报,2003,23(2):4~5

.

大一上学期高数论文

合肥学院 课程论文 专业酒店管理 班级一班 学生姓名张超 学号1514061036 论文题目微积分在生活中的应用 教师王后春

微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2 和直线x=l,x=2及x轴所围成的图形的面积。 f x 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

数学分析教学与三种基本数学能力的培养

第26卷第6期大 学 数 学V ol.26, .6 2010年12月COLLEGE M AT H EM AT ICS Dec.2010数学分析教学与三种基本数学能力的培养 钱晓元 (大连理工大学数学科学学院,大连116024) [摘 要]基本的专业数学能力可分为三个方面:数学发现能力,数学论证能力和数学表达能力.本文结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. [关键词]教学;数学分析;数学能力 [中图分类号]G642.0 [文献标识码]C [文章编号]1672 1454(2010)06 0203 04 1 引 言 数学类专业教育主要有两大目标,一是掌握数学知识,二是培养数学能力.由于当今知识内容的爆炸性增长,知识更新周期的加快,以及现代社会的学习型特点和创新性要求,对数学能力的重视程度则日益提高,成为数学专业教育的主导价值. 数学能力是一个笼统的概念,目前还没有公认的严格定义.就教育方面而言,数学能力,就是运用数学基本理论和方法解决数学及其应用中遇到的实际问题的能力.这种能力的培养,从初等教育甚至学前教育已经开始,但是作为大学数学类专业教育的目标,在质和量方面必然有更高的层次和追求.具体地说,就是在掌握数学科学遵循的游戏规则基础上,从事包括数学的研究、应用和教学在内的各种专业数学工作的能力. 我们认为,基本的专业数学能力可以分为以下三个方面:数学发现能力,数学论证能力和数学表达能力.数学发现能力,指的是发现未知数学事实和联系,包括理解和模仿前人发现的能力.数学论证能力,是运用逻辑演绎方法证明数学命题的能力.而数学表达能力,是用合乎数学通用规范的学术语言,准确、清晰、简洁地陈述有关数学发现和论证内容的能力.显然,要有效地解决数学及其应用问题,必须同时具备这三种能力并加以综合运用,缺一不可.从另一个角度来看,一个合格的数学类专业毕业生,其专业训练带来的技能优势,主要就体现在这三个方面. 数学分析是数学类专业最重要的一门基础课,数学类专业开设的多数专业课程都可以看成数学分析的后续课.在数学分析的教学中,系统地培养数学发现、论证和表达能力,是理所当然的.本文将就这一课题,结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. 2 数学分析教学与数学发现能力的培养 数学科学具备特有的思维模式,它以形式逻辑为基础,以演绎推理为手段,建立了坚固宏伟的知识体系.数学分析以实数理论奠基,首先建立严格的极限理论,次第展开微分、积分、无穷级数等内容.数学以逻辑演绎为基础的特性得到充分的体现,而数学定理基于直观、经验和数值实验的发现过程,反倒容易被忽略.数学学科的一些重大的发展,一些重要的数学思想、概念、方法及理论的提出和形成,却并 [收稿日期]2008 01 11 [基金项目]大连理工大学教改基金

高等数学中常用的初等数学知识(第一章)

第一章 函数、极限与连续 第一节 函数及其特性 (一)集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。 我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。 如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a ?A 。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z 。 ⑷、全体有理数组成的集合叫做有理数集。记作Q 。 ⑸、全体实数组成的集合叫做实数集。记作R 。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合中元素的个数 有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 (二)常量与变量 ⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。 区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示。 闭区间 a ≤x ≤b [a ,b] 开区间 a <x <b (a ,b ) 半开区间 a <x ≤b 或a ≤x <b (a ,b]或[a ,b ) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 ⑶、邻域:00000{}(, (,) )-----x x x x x U x x δδδδδ=-<-+=一维 以为中心,以为半径的邻域 0000000{}(, )(, )------x 0(,)x x x x x x x U x δδδδδ=-<=-?+<以为中心,以为半径的空心邻域 00(),()U x U x -----0x 的某个邻域、某个空心邻域

高数论文

关于高数的极限问题 陈懵比 极限是高数中的重要内容,极限的求法更为重要,下面就我个人的学习总结了一些极限的常见类型及其求法。极限通常分为数列的极限和函数的极限,我一一做出总结。 极限是微积分的一个重要概念,是贯穿微积分的一条主线,极限的计算又是学好微积分的重要前提条件。正因为数学之美妙不可言,数学中解题方法的多样性更是引人入胜,许多人都在探索着高等代数中求极限的方法并有所成效。在前人的基础之上我对求极限的方法作了进一步的归纳总结,希望能让读者从中受益,能让初学者懂得将静态的、内隐的教学规律转化为动态的、外显的探索性的数学活动,从而对数学学习的认知发生一个“质”的飞跃。 一、由定义求极限 极限的本质――既是无限的过程,又有确定的结果。一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。 然而并不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。 二、利用函数的连续性求极限 此方法简单易行但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x0处无定义的情况。 三、利用极限的四则运算法则和简单技巧求极限

极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件。满足条件者,方能利用极限四则运算法则进行求之,不满足条件者,不能直接利用极限四则运算法则求之。但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等。 四、利用两边夹定理求极限 定理如果X≤Z≤Y,而limX=limY=A,则limZ=A 两边夹定理应用的关键:适当选取两边的函数(或数列),并且使其极限为同一值。 注意:在运用两边夹定理求极限时要保证所求函数(或数列)通过放缩后所得的两边的函数(或数列)的极限是同一值,否则不能用此方法求极限。 五、利用两个重要极限求极限 六、利用单调有界原理求极限 单调有界准则即单调有界数列必定存在极限。使用单调有界准则时需证明两个问题:一是数列的单调性,二是数列的有界性;求极限时,在等式的两边同时取极限,通过解方程求出合理的极限值。 利用单调有界原理求极限有两个难点:一是证明数列的单调性,二是证明数列的有界性,在证明数列的单调性和数列的有界性时,我们通

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一微积分论文

我的微积分之旅 微积分知识总结及学习体会 微积分是很多专业的一门基础学科,它在现代自然科学中占有十分重要的地位,是学生学习技术知识的基础。微积分作为一门挂科率较高的学科,具有严密的逻辑性和高度的抽象性,而老师在一堂课中所传授的知识,常常是穷尽一个科学家或几个科学家一代或几代的研究成果,其知识容量之大可想而知。那么怎样在短短的四十五分钟内尽可能多的掌握这些知识呢?我将浅谈一下自己的看法。 通过一年的高数学习,我们知道在大学好微积分是必要的,也是必须的。学习是一个长期的过程,不要总是想着考试前几天突击下就可以,我们中的人多数还都是普通人,没有能力达到一看就会的程度。所以一定要听好每节课,做好每一次作业,打好基础才能在复习中查缺补漏。 1、预习是必要的,在讲多元复合函数求导的那节课前,我因为准备其他考试而没预习,导致两节课像坐在飞机一样云里雾里,于是只能课下去看老师发的视频和课件。发现了重点是“串并联法则”,弄懂这个一切难题就迎刃而解,如果当初预习一下,听课效率就会高很多。 2、一定要保质保量的完成作业,不要以为作业很无所谓,可能有的题目是很难,但我们一定要自己做出来。如果实在做不出来的话,看看老师发的答案也是可以的,前提是自己之前思考过。公式定理一定要背,这些是学习微积分的基本工具,只有弄懂练熟公式与定理的使用,我们才能更好的应用到题目中去。 3、大学里的学习课后巩固很重要,光靠一周两次课的学习,远远不够。并且, 课上老师可能会因为进度问题而讲得很快, 很多时候我们会跟不上老师的速度, 这时, 如果课后不再看例题, 课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 那么我们具体该怎么学习微积分呢?在第一章的函数,我了解了什么是函数,如何求函数的定义域、奇偶性、周期性和数值,函数复合的计算。重点是充分理解复合函数、反函数和初等函数这些特殊的函数,熟悉它们的表达式、图像和计算方法。弄懂前面的基础,就到了函数在经济学中的应用,供给、需求、总成本、总收益、总利润函数,它们的计算和之间的关系。 第二章是极限与联系。内容有证明极限,证明连续,证明间断点,无穷大与无穷小等。我觉得最主要的是求函数的极限,方法有很多(1)消去零因子法;(2)同除最高次幂;(3)分子或分母有理化;(4)利用无穷小运算性质(有限个无穷小之和仍为无穷小,无穷小与有界函数的积仍为无穷小);(5)复合函数求极限法则; (6)利用左、右极限求分段函数极限;(7)利用两类重要极限;(8) 利用等价无穷小代换;(9) 利用连续函数的性质(代入法);(10) 利用洛必达法则。具体运用哪一种方法,还需要我们通过多做题来知晓。 第三章是导数与微分。最基础的就是背好公式,然后再多加练习。反函数、复合函数、隐函数、高阶导数是比较重要的,关键还是要牢记公式定理。在这一 章我们还学习到了经济应用“边际与弹性”,边际函数 平均函数 第四章中值定理与导数有点难度,首先是三个中值定理“罗尔定理”、“拉格朗日中值定理”、“柯西中值定理”,这三个定理分别满足的条件是必须背下来的。洛必达法则是求0/0型、∞/∞型、0*∞型等未定式的极限的一个重要方法。导

数学分析学年论文

学年论文 题目: 学生: 学号: 院(系): 专业: 指导教师: 2011 年月日

浅谈微积分以及如何学好数学分析 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分的基本原理告诉我们求导和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?经过研究思考和总结,我认为,微积分的基本方法在于:先微分,后积分。 定理:如果函数F(x)是连续函数,则f(x)在区间[a,b]上的一个原函数.牛顿--莱布尼兹公式公式进一步揭示了定积分与原函数(不定积分)之间的联系。它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数在[a,b]上的增量。因此它就给定积分提供了一个有效而简便的计算方法。通常也把牛顿--莱布尼兹公式称作微积分基本公式 微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。 要学好微积分,我觉得应该注意以下3个方面: 1、基本概念 常常是这样,理解概念比理解定理更困难,而且更基本.概念不清前进.理解概念要从两个方面入手.一是概念的内涵,一是概念的外延.概念的内涵就是概念的基本属性.概念的外延就是概念所概括的一切对象.微积分的基本概念有五个:函数,极限,导数,微分和定积分. 函数概念讲的是两个实数集合间的对应关系.首先使用函数一词的是莱布尼兹,在1692年的论文中他第一次提出函数这一概念.随着数学的发展,函数的定义不断改进和明确.最先将函数概念公式化的是约翰.伯努利,他在1718年说:"一个变量的函数是指由这个变量和常量以任意一种方式组成的一种量."欧拉将伯努利的思想进一步解析化.在《无限小分析引论》(1748)中,他将函数定义为"变量的函数是一个由该变量与一些常数以任意方式组成的解析表达式.并明确宣布:"数学分析是关于函数的科学."微积分被视为建立的微分基础上的函数论.欧拉的函数定义在18世纪后期占据了统治地位.在这一定义的基础上,函数概念本身大大丰富了.欧拉还明确区分了代数函数与超越函数.他把超越函数看成是用无穷多次算术运算得到的表达式,即用无穷级数表示的函数.第一个给出函数一般定义的是

高等数学与初等数学相关内容的比对

高等数学与初等数学相关内容的比对 高等数学与初等数学相关内容的比对作文/zuowen/经过调研了解到,2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。试图从教学内容方面解决高中数学与大学数学的衔接问题。但是,大学数学与高中数学教材内容的衔接上还存在不少问题。这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。高等数学与初等数学教材内容的有效衔接亟待解决。 1 “函数与极限”的衔接 函数,是高中数学的重点内容,高考要求较高,学生掌握也比较牢固。高等数学教材中的这部分内容基本相同,但内涵更丰富,难度也提高了。 (1)函数概念:在原有内容中,增加了几个在高等数学中经常用到的实例,如取整函数、狄利克雷函数、黎曼函数、符号函数等。因此,在学习中,函数概念部分可以简略,重点学习这几个特殊函数即可。 (2)初等函数:反三角函数要求提高,新增加了“双曲函数”和“反双曲函数”等内容。反三角函数的概念在高中已学过,但高中对此内容要求较低,只要求学生会用反三角函数表示“非特殊角”即可。而高等函数中要求较高,此处在

学习中应补充有关内容:在复习概念的基础上,要求学生熟悉其图像和性质,以达到灵活应用的目的。新增加的“双曲函数”和“反双曲函数”在高等数学中经常用到,故应特别注意。代写论文 (3)函数极限:“数列极限的定义”,高中教材用的是描述性定义,而高等数学重用的是“”定义,此处是学生在高等数本文由收集整理学的学习中遇到的第一个比较难理解的概念,因此在教学中应注意加强引导,避免影响函数极限后面内容的学习。新增内容“收敛数列的性质”虽是新增内容,但比较容易理解和掌握,教学正常安排即可。“极限四则运算”处增加了“两个重要极限”,要加强有关内容的学习。 2 “导数与微分” 的衔接 高中新教材中的一元函数微积分的部分内容,是根据高等数学内容学习需要所添加,目的是加强高中数学与高等数学的联系,让中学生初步了解微积分的思想。 (1)导数的定义:高中数学和高等数学教材中,这一内容是相同的,不同的是学习要求。高中数学要求:了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的概念和导数的几何意义;理解导函数的概念。也就是说,尽管极限与导数在高中已经学过,但主要是介绍概念和求法,对概念的深入理解不作要求。到了大学,概念上似懂非懂、不会灵活

大一下高数论文(1)

大一下高数论文 大一下学期,我们主要学了微分方程,微分方程是数学的重要分支.在这里我重点介绍了几个利用微分方程常来解决的问 题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 应用微分方程解决具体问题的主要步骤: (1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的解; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线 我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面就来介绍等角轨线的方法. 首先把问题进一步提明确一些. 设在(x,y )平面上,给定一个单参数曲线族(C ):()0,,=c y x ?求这样的曲线l ,使得l 与(C)中每一条曲线的交角都 是定角 α . 设l 的方程为 1y =)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程,也就是要求先求得x , 1y ,' 1 y 的关系式.条件告诉我们l 与(C )的曲线相交成定角 α,于是,可以想象,1y 和'1y 必然应当与(C )中的曲线 y =)(x y 及其切线的斜率'y 有一个关系.事实上,当α≠ 2 π 时,有 k y y y y ==+-αtan 1' 1 '' ' 1 或 1 ' 1' 1' +-= ky k y y 当 α= 2 π 时,有 ' 1 '1y y - = 又因为在交点处, )(x y =)(1x y ,于是,如果我们能求得x , 1y ,' 1y 的关系 () 0,,'=y y x F 采用分析法.

(完整版)大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++Q 2分 2212[]121 x y x x '∴=-++ 4分

数学分析

第一讲 微积分思想的产生与发展历史 在微积分产生之前,数学发展处于初等数学时期。人类只能研究常量,而对于变量则束手无策。在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。前者导致了微分的概念;后者导致了积分的概念。两者都包含了极限与无穷小的思想。 1.极限、无穷小、微分、积分的思想在中国古代早已有之 公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。”其中大一和小一就是无穷大和无穷小的概念。而“一尺之棰,日取其半,万世不竭。”更是道出了无限分割的极限思想。 公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。他用圆内接正多边形的边长来逼近圆周,得到了 142704.3141024.3<<π , 并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。”

我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。 利用祖暅原理求球体的体积:取一个几何体为上半球体 {};将圆柱体 {2222,x y z R z ++≤≥0222x y R +≤,0z R ≤≤}减去 (即挖去)倒立的圆锥{222x y z +≤,0z R ≤≤}视为另一个几何体。则对任意的0z R ≤≤,过(0,0,)z 点作水平截面,得到的截口面积相等, 都为,由此得到球体的体积为(22R z π?)34 3 V R π=。 2.十七世纪前微分学与积分学的发展历史 公元前5世纪,古希腊数学家安提丰(Antiphon )创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。公元前2世纪,古希腊数学家阿基米德(Archimedes )对“穷竭法”作出了巧妙的应用,他在《论抛物线求积法》中用“穷竭法”求抛物弓形的面积,他构造一系列三角形使它们的面积和不断接近抛物弓形的面积,这就是极限理论的最初形式。在《论球和柱体》一书中,阿基米德首先得到了球和球冠的表面积、球和球缺的体积的正确公式。阿基米德的著作代表了古希腊数学的顶峰。 1615年,德国数学家开普勒(J. Kepler, 1571-1630)用无穷小微元来确定曲边形的面积与体积。他把圆看作边数无限多的多边形,圆

高等数学与初等数学的联系及一些应用

高等数学与初等数学的联系及一些应用 摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和 发展。由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。 关键词:高等数学;初等数学;应用 1.引言 数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。这些都是基于这种认识和理解,是有一定的道理的。 中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目 标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次 的研究只能在大学进行。只有通过大学高等数学各门必修课程和选修课程的学习 和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的 理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概 括性。 2.国内外研究现状 大学课程学习的思维单向性很强。大学的学习给学生的感觉是用中学知识去 学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题 或对解中学数学问题有什么帮助。“用”的观念淡薄了,“学”的热情自然而然的 就少了。抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导 作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。中学 数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。 比如极限定义、集合和函数等。一位新数学教师在解释从非空数集A到数集B 的映射是函数时常常讲不清楚函数的值域到底是不是B。如果他的数学分析中的 映射掌握得好,完全可以既讲得轻松而学生又听得明白。法国数学家F·克莱因 曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简

学习高等数学体会论文

Hefei University 大一高等数学论文 院系:电子信息与电气自动化学生姓名:孙野 学号: 1405031031 专业:自动化 班级:一班 年级:一年级 指导老师: 刘国旗 完成时期: 十二月十三号

摘要:高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。 Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress. 关键词:高等数学、总结方法、极限 一:对高中数学的回顾 高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

最新大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>? 为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分 22 π π - ?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为2 3x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 2 1 lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设y =求.y ' 3. (6分)求不定积分2 ln(1).x x dx +?

4. (6分)求 3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=? ?所确定,求.dy 6. (6分)设 2 ()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π??=- ≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线32 32419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 31 22+--=x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数( )2 1ln x y +=,则='y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1=在点?? ? ??2,21处的切线方程为 .

高等数学与初等数学的区别与联系

高等数学与初等数学的区别与联系 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 高等数学与初等数学的区别与联系 摘要从产生的历史、研究对象和研究方法3个方面说明高等数学与初等数学的区别与联系,使高等数学的初学者能够在初等数学即常量数学的基础上顺利进入高等数学即变量数学的学习。 关键词高等数学;初等数学;数学史;研究对象;研究方法 中图分类号:G642 文献标识码:B 文章编号:1671-489X(2011)15-0047-02 Difference and Relation from Advanced Mathematics Comparing with Primary Mathematics//Yang Limin, Zhao Songqing Abstract This paper shows the difference and relation from advanced mathematics comparing with primary mathematics by Mathematical History, Investigative object and Investigative method. Fresher who want to study advanced mathematics need to know them. Key words advanced mathematics; primary

mathematics; mathematical history; investigative object; investigative method Author s address College of Science, China University of Petroleum, BEijing, China 102249 高等数学是理、工、经、管类各专业大学生的一门重要专业基础课,近年来有些文科专业如英语、法律也开设相应的文科高等数学课程,说明高等数学的广泛应用性得到越来越多人的认识。如何学好高等数学是人们共同关注的问题。由于高等数学与初等数学所处历史时期不同,使得它们的研究对象、研究方法有着很大的不同。这使得有些学生在开始学习高等数学时有些迷茫,不明白数学怎么突然变了样子,导致不易入门,对高等数学产生抵触情绪,学不好高等数学。注意高等数学与初等数学的区别与联系是学好高等数学的重要环节,可以让学生顺利进入高等数学的学习,为专业课程的学习打好基础。 1 初等数学与高等数学处在不同历史时期[1] 数学 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

关于高等数学论文

《高等数学》 期末课程总结 姓名:张桂花 班级: 12级采矿01班 系别:环境与城市建设学院 高等数学论文 摘要: 经过一个学期的学习,对于高数我又有了一个更深的了解,大一上学期主要是了解高数一些最基本的东西,等到了下学期,主要是对上学期所学知识进行一定的延伸和拓展,在原有学习的基础上更深入的了解其精髓,对于我们更深刻的掌握高数这门学科有很大的好处。这一学期里我们重点学习了高数中的导数、微分和积分的扩充,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。另外,这学期也新引入了无穷级数和微分方程。经过一学期的学习,我认识到了数学里一些更加新奇的东西,以前我们都很难计算的无穷数列在无穷级数的学习后得以解决了,而且还可以将一些难以求解的级数通过转化和变形成为我们熟悉的级数形式然后进行求解,这让我想到了我们生活中的很多东西都是这样的,当我们遇到困难不能解决的时候,我们就要习惯产生联想,将这种问题想方法转化为我们熟悉的能解决的东西在进行处理,这些都是我们的高数在不知不觉中一直告诉我们的真谛。数学也训练我们的逻辑思维能力,它在一方面让

我们大胆的去假设,另一方面又需要我们去小心的求证,只有我们证明确实成立的东西我们才能进一步的运用,但是不得不让人佩服的就是数学的逻辑性,同时它也在训练者我们,只有我们在每一个数学环节都严谨的去学习去证明去求解,我们的结果才会正确。 关键词:导数,微分,重积分,级数。 正文: 高等数学下册主要是围绕导数、微分、积分、无穷级数展开的。 首先,第七章主要是函数的微分,上学期我们学习的是一元函数积分,但是实际问题中,往往涉及多个因素之间的关系,反映到数学上就是表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念,这在高等数学里占据了主要的位置,这一章主要介绍了多元函数的求导、求极值。隐函数的微分方法,还介绍了方向导数、梯度等新概念,还将多元函数的微分应用在几何上,和以前所学的内容很好的结合起来了,为我们提供了更多的解题方法和更灵活的解题思路,对于我们整体的掌握好高数的精华很重要。在这一章节中我们需要重点掌握的有以下几点:1、二重极限的概念,2、可导(导数的定义),3、可微的定义。首先我们要清楚二重极限的概念,需要注意的就是定义里的定点如p0(x0,y0),这里的点p(x,y)是按照任意方式趋近于p0的。还要注意它和二次极限的区别,二次极限 是对一个函数f(x,y)先后分别对x →x0,y →y0求极限A y x f y x y x =→),(lim ) 0,0(),(而二重极限则是对函数f(x,y)当x →x0且y →y0时求极限A y x f y y x x =→→),(lim lim 0 0。求是否存在二重极限时可以用取线路的方法,若取不同的线路求得的二重极限的结果一致则存在,否则就不存在。对于可微,我们要掌握多元函数的全微分的求导,重点注意可微,可导,连续之间的关系。还有就是要知复合函数的微分法,隐函数的微分

相关文档
相关文档 最新文档