文档库 最新最全的文档下载
当前位置:文档库 › 宁波市鄞州高中数学论文高等数学与初等数学的联系及一些应用

宁波市鄞州高中数学论文高等数学与初等数学的联系及一些应用

宁波市鄞州高中数学论文高等数学与初等数学的联系及一些应用
宁波市鄞州高中数学论文高等数学与初等数学的联系及一些应用

浙江省宁波市鄞州高中数学论文高等数学与初

等数学的联系及一些应用

摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。

关键词:高等数学;初等数学;应用

1.引言

数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。这些都是基于这种认识和理解,是有一定的道理的。

中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。

2. 国内外研究现状

大学课程学习的思维单向性很强。大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。“用”的观念淡薄了,“学”的热情自然而然的就少了。抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。比如极限定义、集合和函数等。一位新数学教师在解释从非空数集A 到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。如果他的数学分析中的映射掌握得好,完全可以既讲得轻松而学生又听得明白。法国数学家F·克莱因曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简单。”数学教育专业的学生绝不可以轻视高等数学对中学数学的指导作用。

要使高等数学课程学有所用,必须要尽可能了解中学数学教材内容,明确教材改革方向和趋势,这样才能在教学中将两者有机结合起来,从而提高学生的思维,居高临下地解决问题。

3.高等数学与初等数学的联系

高等数学是初等数学的延伸和发展,而初等数学却是高等数学的基础。作为学习和研究数学的步骤,无疑应该是先学习和掌握初等数学,然后才能学习和应用高等数学。反之,学

习高等数学能加深对初等数学的理解和掌握,可以开阔思路、提高数学修养和解决问题的能力。但由于中学数学知识几乎很难和高等数学知识直接衔接,使不少大一新生一接触到“数学分析”、“高等代数”等这些数学课程,就对数学专业课产生了畏难、抵触情绪。而且高等数学理论与中学教学需要严重脱节,许多大学师范毕业生对如何运用高等数学理论指导中学数学感到迷茫。毫无头绪。为了解决上述长期存在的问题,笔者认为研究高等数学与中学数学的联系是一项有效的措施。

4.高等数学在初等数学中的一些应用

(1).柯西——施瓦兹不等式应用

柯西——施瓦兹不等式是高等代数的一个重要不等式,它在中学数学中有广泛的应用。设欧式空间n R ,令()n a a a ,,,21 =ξ,()n n R b b b ∈= ,,21η,则2

22,ηξη

ξ≤。(等号当且仅当ηξ,线性相关时成立)在标准内积下,即()()()222212222122211n n n n b b b a a a b a b a b a ++++≤++,

若1=i b ,则得()()

22221221n n a a a n a a a ++≤++。 例[]81设c b a ,,都是正数,且1=++c b a 。求证:9111≥++c

b a 证明:在3R 中,使用标准内积。设()

c b a ,,=ξ,???? ??=c b a 1,1,1η,则

()c

b a

c b a c b a 111111

22++=??? ??++++=ηξ 由柯西不等式,得9111≥++c

b a ,(等号当且仅当ηξ,线性相关时成立) 使用柯西——施瓦兹不等式重要的是构造一个合适的欧式空间,特别是构造內积运算,并找到两个适当的向量。做到这一点是有困难的,但是只要完成这个构造,余下的问题便很容易解决。构造法就是在解决某个问题时,先构造一种数学对象,这种构造物有时看来与题意无关,但实际上恰与问题有内在的联系,而且在某种条件下正是题目所求,或者使我们可以用另一种方法求解问题,这时构造物就成了一种桥梁。

(2).矩阵的应用

要在问题中用上矩阵也必须构造出与问题有某种关系的矩阵,然后才能使用矩阵的性质和定理。

例]8[2. 已知1110,1,1-++===i i i u u u u u (1)。能不能用一个显式表达n u 呢?

解:首先把(1)式用矩阵来表示???????????

?=??????+=??????--+1110111i i i i i i i u u u u u u u (2)

设??????=+i i i u u U 1,??????=0111A 则(2)式为1-=i i AU U ,且??

????=??????=11010u u U 于是01AU U =, 0212U A AU U ==,0U A U n n =

问题转为求n A 。先求A 的特征值与特征向量,并将A 对角化得

12512

51-????????????-+=P P A 。其中????????-+=11251251P ,?????

???????+---=-5251515251511P , 于是12512

51-?????

???????-+=P P A n n 所以?????????????????? ??--???? ?

?+???? ??--???? ??+==??????=+++++11220125125125125151n n n n n n n n U A u u U 所以???

????????? ??--???? ??+=++1125125151n n n U 。 在此例中引入矩阵作为工具使用了矩阵的性质,得以求出通项。而用初等数学的方法解的话,则要经过复杂的迭代才能解出此题,不如用矩阵的知识解题一目了然。

(3).微积分的应用

例[]93. 证明:当b a <<0时a

a b a b l b a b n -<<- 证明:设x l y n =,它在区间[]b a ,满足拉格朗日中值定理的条件,有

ξ

1=--a b a l b l n n ,b a <<<ξ0,ξa b a l b l n n -=- 由于a b 111<<ξ,故a

a b a b b a b -<-<-ξ 即a

a b a b l b a b n -<<-。 若用初等数学的知识解题便会发现此题几乎无从下手,将不等号两边相减或相除来证都是比较困难的,因为有个对数函数在,而只要用拉格朗日中值定理,则此题便迎刃而解。

例[]44.设()x f y =是定义在区间[]1,1-上的函数,且满足条件:

(i )()()011==-f f ;

(ii)对任意的[]1,1,-∈v u 都有

()()v u v f u f -≤-.

(1) 证明:对任意的[]1,1-∈x ,都有()x x f x -≤≤-11;

(2) 证明:对任意的[]1,1,-∈v u ,都有()()1≤-v f u f ;

(3) 在区间[]1,1-上是否存在满足题设条件奇函数()x f y =,使得

当??????∈2

1,0,v u 时,()()v u v f u f -≤-, 当??????∈1,2

1,v u 时,()()v u v f u f -=-. 若存在,请举一例;若不存在,请说明理由。

这是03年北京高考理科数学最后一道大题(第20题),是有关抽象函数不等式的证明题,认真分析研究该题中的(2),发现这是一道具有高等数学知识背景的试题,可以将这个问题推广:

推广1. 函数()x f 定义在[]b a ,上。()()b f a f =,且对任意的[]b a x x ,,21∈,都有()()2121x x x f x f -≤-,则必有()()221a b x f x f -≤

-. 证明:(i )当221a b x x -≤-时,由()()2

2121a b x x x f x f -≤-≤-知,结论成立。 (ii )当221a b x x ->-时,不妨设21x x <,则2

21a b x x --<-,从而有 2

a b -=. 综合可知,总有()()2

21a b x f x f -≤-。 由试题中函数()x f 满足的条件(ii )可联想到高等数学中的R.Lipschitz 条件: 对于[]b a ,上定义的函数()x f 和正数()10≤<αα,若存在正常数M 使不等式 ()()α

2121x x M x f x f -≤-对[]b a x x ,,21∈都成立,则称函数()x f 在[]b a ,上满足α阶的R.Lipschitz 条件。

显然试题中的函数()x f 满足1阶的R.Lipschitz 条件。下面进一步将其推广到()x f 满足α阶的R.Lipschitz 条件

推广2. 函数()x f 定义在[]b a ,上,()()b f a f =,且()x f 满足α阶的R.Lipschitz 条件,即存在正常数M ,使得对于任意的[]b a x x ,,21∈,都有()()α2121x x M x f x f -≤-()10≤<α,则必有 ()()()ααa b M x f x f -≤--21212. ① 证明:(i)当2

21a b x x -≤-时,若21x x =,则不等式①显然成立。下设21x x ≠。由于10≤<α得110<-≤α,2211<≤-α。于是 (ii)当221a b x x ->-时,不妨设21x x <,则2

21a b x x --<- 由10<<α知函数αx y =在区间[)+∞,0上是凸函数,于是

()ααα

αa b a b -=??

? ??-=--2222, ()ααa b -<-212 ② 显然当1=α时,不等式②也成立。于是

()α

αa b M -<-212. 综上可知,总有

若把试题中的不等号“≤”改为严格不等式“<”,其推广也成立。

(4).概率论的应用

例[]

25.若,10,10<<<

证明:令B A ,是两个相互独立的事件,且使()()b B P a A P ==,

由()()()()AB P B P A P B A P -+=?

由概率的性质知,()10≤?≤B A P ,从而10≤-+≤ab b a 。

5.总结

由以上五个例子可以看出,如果用初等数学的知识解题的话,不免会繁琐无比,但只要巧妙得把高等数学中的思想和方法应用到初等数学中就会产生奇妙的结果,一些题目的本来繁杂的思考计算步骤就可以省略掉,变得既简单又明了。比如例1,原本要经过复杂的代数运算

才有可能证得的结果,但只要运用欧氏空间这一个高等数学的知识点,这一道证明题就变得简单多了。同样,其他几道例子都从不同的角度将高等数学应用到了初等数学上,而且都在一定程度上减轻了题目的难度。本文最遗憾的一点就是,作为中学教师很少能将高等数学应用到中学数学中去,最重要的原因便是大多数学生的接受能力有限,但若从另外一个角度去看,便会有趣地发现目前大学生抱怨学数学无用的话立不住脚了,因为我们可以用它来解决初等数学的题目,而且是用更简单的方法去解。另外更重要的一点是,数学是一门学问,一门有着庞大的体系而各体系之间又有着千丝万缕地联系的学问。从初等数学到高等数学,再从高等数学回归到初等数学,这样便形成了一个“圆”。这样的一个“圆”让学生体会到了数学的奇妙性,也增加了学生学习数学的兴趣,只要指引得当,也会减少大学生学习高等数学的抵触情绪,所以笔者认为本课题的研究是很有意义的。

参考文献

[1]黄艳敏.中学数学与高等数学的和谐接轨[J].中学教研,2006,11:29~31

[2]金茂明.高等数学在解中学数学题中的应用[J].涪陵师专学报,1999,15(3):61~64

[3]赵金兰.用高等数学方法解决初等数学中的某些问题[J].雁北师范学院学报,2003,19(5):

72~73

[4]李兴无.一道高观点下的数学高考压轴题[J].高中数学教与学,2004,34~35

[5]谢芳.高等数学与初等数学的联系[J].昭通师专学报,1997,19(2):41~44

[6] 崔素红.高等数学在解决初等数学中的应用[J].哈尔滨师专学报,1998,(1):159

[7]赵临龙.常微分方程的思想方法及在中学数学在的应用[J].安康师专学报,2000,12(2):47~52

[8]夏师.高等代数在中学数学的一些应用[J].广西右江民族师专学报,2002,15(3):11~13

[9]包建廷.微积分在不等式中的应用[J].承德民族师专学报,2003,23(2):4~5

.

大一上学期高数论文

合肥学院 课程论文 专业酒店管理 班级一班 学生姓名张超 学号1514061036 论文题目微积分在生活中的应用 教师王后春

微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2 和直线x=l,x=2及x轴所围成的图形的面积。 f x 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

高等数学中常用的初等数学知识(第一章)

第一章 函数、极限与连续 第一节 函数及其特性 (一)集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。 我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。 如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a ?A 。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z 。 ⑷、全体有理数组成的集合叫做有理数集。记作Q 。 ⑸、全体实数组成的集合叫做实数集。记作R 。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合中元素的个数 有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 (二)常量与变量 ⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。 区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示。 闭区间 a ≤x ≤b [a ,b] 开区间 a <x <b (a ,b ) 半开区间 a <x ≤b 或a ≤x <b (a ,b]或[a ,b ) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 ⑶、邻域:00000{}(, (,) )-----x x x x x U x x δδδδδ=-<-+=一维 以为中心,以为半径的邻域 0000000{}(, )(, )------x 0(,)x x x x x x x U x δδδδδ=-<=-?+<以为中心,以为半径的空心邻域 00(),()U x U x -----0x 的某个邻域、某个空心邻域

高数论文

关于高数的极限问题 陈懵比 极限是高数中的重要内容,极限的求法更为重要,下面就我个人的学习总结了一些极限的常见类型及其求法。极限通常分为数列的极限和函数的极限,我一一做出总结。 极限是微积分的一个重要概念,是贯穿微积分的一条主线,极限的计算又是学好微积分的重要前提条件。正因为数学之美妙不可言,数学中解题方法的多样性更是引人入胜,许多人都在探索着高等代数中求极限的方法并有所成效。在前人的基础之上我对求极限的方法作了进一步的归纳总结,希望能让读者从中受益,能让初学者懂得将静态的、内隐的教学规律转化为动态的、外显的探索性的数学活动,从而对数学学习的认知发生一个“质”的飞跃。 一、由定义求极限 极限的本质――既是无限的过程,又有确定的结果。一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。 然而并不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。 二、利用函数的连续性求极限 此方法简单易行但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x0处无定义的情况。 三、利用极限的四则运算法则和简单技巧求极限

极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件。满足条件者,方能利用极限四则运算法则进行求之,不满足条件者,不能直接利用极限四则运算法则求之。但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等。 四、利用两边夹定理求极限 定理如果X≤Z≤Y,而limX=limY=A,则limZ=A 两边夹定理应用的关键:适当选取两边的函数(或数列),并且使其极限为同一值。 注意:在运用两边夹定理求极限时要保证所求函数(或数列)通过放缩后所得的两边的函数(或数列)的极限是同一值,否则不能用此方法求极限。 五、利用两个重要极限求极限 六、利用单调有界原理求极限 单调有界准则即单调有界数列必定存在极限。使用单调有界准则时需证明两个问题:一是数列的单调性,二是数列的有界性;求极限时,在等式的两边同时取极限,通过解方程求出合理的极限值。 利用单调有界原理求极限有两个难点:一是证明数列的单调性,二是证明数列的有界性,在证明数列的单调性和数列的有界性时,我们通

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一微积分论文

我的微积分之旅 微积分知识总结及学习体会 微积分是很多专业的一门基础学科,它在现代自然科学中占有十分重要的地位,是学生学习技术知识的基础。微积分作为一门挂科率较高的学科,具有严密的逻辑性和高度的抽象性,而老师在一堂课中所传授的知识,常常是穷尽一个科学家或几个科学家一代或几代的研究成果,其知识容量之大可想而知。那么怎样在短短的四十五分钟内尽可能多的掌握这些知识呢?我将浅谈一下自己的看法。 通过一年的高数学习,我们知道在大学好微积分是必要的,也是必须的。学习是一个长期的过程,不要总是想着考试前几天突击下就可以,我们中的人多数还都是普通人,没有能力达到一看就会的程度。所以一定要听好每节课,做好每一次作业,打好基础才能在复习中查缺补漏。 1、预习是必要的,在讲多元复合函数求导的那节课前,我因为准备其他考试而没预习,导致两节课像坐在飞机一样云里雾里,于是只能课下去看老师发的视频和课件。发现了重点是“串并联法则”,弄懂这个一切难题就迎刃而解,如果当初预习一下,听课效率就会高很多。 2、一定要保质保量的完成作业,不要以为作业很无所谓,可能有的题目是很难,但我们一定要自己做出来。如果实在做不出来的话,看看老师发的答案也是可以的,前提是自己之前思考过。公式定理一定要背,这些是学习微积分的基本工具,只有弄懂练熟公式与定理的使用,我们才能更好的应用到题目中去。 3、大学里的学习课后巩固很重要,光靠一周两次课的学习,远远不够。并且, 课上老师可能会因为进度问题而讲得很快, 很多时候我们会跟不上老师的速度, 这时, 如果课后不再看例题, 课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 那么我们具体该怎么学习微积分呢?在第一章的函数,我了解了什么是函数,如何求函数的定义域、奇偶性、周期性和数值,函数复合的计算。重点是充分理解复合函数、反函数和初等函数这些特殊的函数,熟悉它们的表达式、图像和计算方法。弄懂前面的基础,就到了函数在经济学中的应用,供给、需求、总成本、总收益、总利润函数,它们的计算和之间的关系。 第二章是极限与联系。内容有证明极限,证明连续,证明间断点,无穷大与无穷小等。我觉得最主要的是求函数的极限,方法有很多(1)消去零因子法;(2)同除最高次幂;(3)分子或分母有理化;(4)利用无穷小运算性质(有限个无穷小之和仍为无穷小,无穷小与有界函数的积仍为无穷小);(5)复合函数求极限法则; (6)利用左、右极限求分段函数极限;(7)利用两类重要极限;(8) 利用等价无穷小代换;(9) 利用连续函数的性质(代入法);(10) 利用洛必达法则。具体运用哪一种方法,还需要我们通过多做题来知晓。 第三章是导数与微分。最基础的就是背好公式,然后再多加练习。反函数、复合函数、隐函数、高阶导数是比较重要的,关键还是要牢记公式定理。在这一 章我们还学习到了经济应用“边际与弹性”,边际函数 平均函数 第四章中值定理与导数有点难度,首先是三个中值定理“罗尔定理”、“拉格朗日中值定理”、“柯西中值定理”,这三个定理分别满足的条件是必须背下来的。洛必达法则是求0/0型、∞/∞型、0*∞型等未定式的极限的一个重要方法。导

高中数学教育教学论文范文2篇

高中数学教育教学论文范文2篇 高中数学教育教学论文范文一:高中数学教育与学生人文素养的培养 一、引言 数学是高中教育的重要内容,不仅是对学生逻辑、空间等思维的训练,而且使学生在以后的学习和工作中更具有条理和规律,但是很多学校在开展数学教学的过程中往往忽略了人文素养的培养,认为这是文科的主要任务,在高中数学中怎能体现出人文精神呢? 二、存在的问题 (一)高考的压力是数学教育改革的桎梏 在国内,我们存在着高考制度,我们需要通过高考取得更好教育资源的资格,因此,在高中阶段,尤其是高三的时候,很多学生的学习压力都很大,主要原因就是要应付高考.高中的数学是高考的重要组成部分,因此,数学教育很多时候都是被高考牵着鼻子走,很多地方都是针对高考中数学试题的特点和问题,有针对性地进行教学,对于高考不考查的内容基本上没有涉及,因此对于人文素养方面存在严重的缺失.对于学生和家长而言,考上一个名牌大学就意味着自己向着社会的上层迈进了一大步,很多同龄人就被自己甩在身后了,因此高考对于学生的影响有着十分特殊的意义.

(二)一些教师在人文教育方面教学方法和手段不多 新出版的高中数学标准提出了更加全面的教学内容,其中人文教育也成为了现在高中数学的一部分,很多教师在教学过程中需要不断进行知识和能力的提升,才能有效适应这种变化,因为需要讲授的知识更多了,涉及面也更广了,然而现在的高中数学教师对于人文精神这种文科内容涉及的都不是很多,在教学过程中需要不断拓展这个方面知识结构,同时在这个方面的教学手段和方法也需要不断加大观摩和学习的时间,增强自己在这个方面的认识.只有教师在数学与人文教育结合方面的知识能力有所提高,在教学过程中的手段和方法不断提升,数学与人文素养的结合才能更加紧密. (三)高中数学教材中的人文知识还是偏少 将人教版高中数学教材通读一遍之后,发现教材中关于数学历史、人物等方面的知识还是偏少,2001年出版的高中数学教材第一册只有两个内容.而且很多教师和学生反映教材中的人文知识可能过于专业化,教师讲起来没有十分枯燥,学生听起来没有什么趣味性,在教学过程中需要不断贯穿十分专业的知识,一方面是教材中缺少相应的人文知识点,另一方面教师在讲授的过程中也不是很重视,造成了现在这种数学人文知识的缺乏. 三、建议 (一)教师人文知识的提升 教师的水平高低是现在教学效果是否良好的主要因素,有了一桶水,才能讲出一碗水的东西,要想加强高中数学教学中的人文教育,需要教师不断提高自己的人文素养,有效拓展自己的人

高等数学与初等数学相关内容的比对

高等数学与初等数学相关内容的比对 高等数学与初等数学相关内容的比对作文/zuowen/经过调研了解到,2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。试图从教学内容方面解决高中数学与大学数学的衔接问题。但是,大学数学与高中数学教材内容的衔接上还存在不少问题。这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。高等数学与初等数学教材内容的有效衔接亟待解决。 1 “函数与极限”的衔接 函数,是高中数学的重点内容,高考要求较高,学生掌握也比较牢固。高等数学教材中的这部分内容基本相同,但内涵更丰富,难度也提高了。 (1)函数概念:在原有内容中,增加了几个在高等数学中经常用到的实例,如取整函数、狄利克雷函数、黎曼函数、符号函数等。因此,在学习中,函数概念部分可以简略,重点学习这几个特殊函数即可。 (2)初等函数:反三角函数要求提高,新增加了“双曲函数”和“反双曲函数”等内容。反三角函数的概念在高中已学过,但高中对此内容要求较低,只要求学生会用反三角函数表示“非特殊角”即可。而高等函数中要求较高,此处在

学习中应补充有关内容:在复习概念的基础上,要求学生熟悉其图像和性质,以达到灵活应用的目的。新增加的“双曲函数”和“反双曲函数”在高等数学中经常用到,故应特别注意。代写论文 (3)函数极限:“数列极限的定义”,高中教材用的是描述性定义,而高等数学重用的是“”定义,此处是学生在高等数本文由收集整理学的学习中遇到的第一个比较难理解的概念,因此在教学中应注意加强引导,避免影响函数极限后面内容的学习。新增内容“收敛数列的性质”虽是新增内容,但比较容易理解和掌握,教学正常安排即可。“极限四则运算”处增加了“两个重要极限”,要加强有关内容的学习。 2 “导数与微分” 的衔接 高中新教材中的一元函数微积分的部分内容,是根据高等数学内容学习需要所添加,目的是加强高中数学与高等数学的联系,让中学生初步了解微积分的思想。 (1)导数的定义:高中数学和高等数学教材中,这一内容是相同的,不同的是学习要求。高中数学要求:了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的概念和导数的几何意义;理解导函数的概念。也就是说,尽管极限与导数在高中已经学过,但主要是介绍概念和求法,对概念的深入理解不作要求。到了大学,概念上似懂非懂、不会灵活

大一下高数论文(1)

大一下高数论文 大一下学期,我们主要学了微分方程,微分方程是数学的重要分支.在这里我重点介绍了几个利用微分方程常来解决的问 题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 应用微分方程解决具体问题的主要步骤: (1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的解; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线 我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面就来介绍等角轨线的方法. 首先把问题进一步提明确一些. 设在(x,y )平面上,给定一个单参数曲线族(C ):()0,,=c y x ?求这样的曲线l ,使得l 与(C)中每一条曲线的交角都 是定角 α . 设l 的方程为 1y =)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程,也就是要求先求得x , 1y ,' 1 y 的关系式.条件告诉我们l 与(C )的曲线相交成定角 α,于是,可以想象,1y 和'1y 必然应当与(C )中的曲线 y =)(x y 及其切线的斜率'y 有一个关系.事实上,当α≠ 2 π 时,有 k y y y y ==+-αtan 1' 1 '' ' 1 或 1 ' 1' 1' +-= ky k y y 当 α= 2 π 时,有 ' 1 '1y y - = 又因为在交点处, )(x y =)(1x y ,于是,如果我们能求得x , 1y ,' 1y 的关系 () 0,,'=y y x F 采用分析法.

(完整版)大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++Q 2分 2212[]121 x y x x '∴=-++ 4分

中学数学教学论文总结报告五篇

中学数学教学论文总结报告五篇 屮学数学教学论文总结报告五篇 【篇一】 摘要:随着教育改革的不断深入,新时代教师和学生都对教 育有着更高的期望,在探索教育发展屮,深度学习逐渐受到教育工作者的重视。文章通过阐述数学深度学习的必要性,剖析高屮数学教学深度学习的影响,并提出促进数学深度学习的高屮教学策略,旨在促进教师改变以往高中数学的教学方式,引导学生进行数学深度学习,促进高屮数学教学领域改革。 关键词:深度学习;数学;教学随着课程改革的不断推进, 深度学习成为素质教育下一种新的教育理念。在数学课程教学中,为进一步提升教学质量和教学效果,深度学习模式逐步成为师生关注的焦点。在数学的深度学习屮有利于培养学生的理性思维,更有利于培养学生注重学习本身及知识间的关联性和层次性[l]o因此,文章以深度学习理论为基础,对高中深度学习的现状及影响高屮数学深度学习的因素进行了详细的论述和分析,并提出促进数学深度学习的高屮教学策略,以期促进深度学习在高屮数学教学中的应用。 一、数学深度学习的必要性 (一)深度学习可以提高学生的学习能力深度学习作为新课程倡导的一种学习方式,更注重培养学生的自主学习意识,更突岀

数学学习内容的联系性,更有利于提高学生的学习能力,从而激发学生学习的主动性和积极性,促进学习兴趣的养成,提高学习效率,学生逐步转变学习方式,培养学生数学自学、乐学的能力,进行数学深度学习能更好的适应时代的发展和进步,从而促进学生综合素质的全面发展。 (二)深度学习可以提高解决问题的能力随着时代的发展,学生具备深度学习的能力更有利于培养自身对问题的独特思考,形成独特的见解,实现思维习惯的养成。而数学深度学习一定程度上促进了学生深度思考和反复实践的过程。学生进行深度学习更有利于培养学生进行独立思考,在学习中发现问题、解决问题的能力,使学生逐步形成自主学习、自主思考、自主解决的学习习惯,从而提高解决问题的能力。 (三)深度学习促进学生全面发展随着我国教育逐步向素质教育转变,培养适应社会发展和全面发展的创新型人才,需要教师树立正确的教师观,转变以往教学模式,更新教学观念,紧跟教学改革的发展方向。高中数学的教学要注重培养学生深度学习的能力,帮助学生在学习中注重系统性和逻辑性,充分发挥学生学习的主动性,促进学生综合素质的全面发展,不断适应社会和时代的需求[2]。 二、高中数学教学深度学习的影响分析 (一)从家庭文化角度分析从目前的家庭教育形式来看,温馨的家庭环境和氛围及良好的教养方式有助于学生对学习的认知,

高等数学与初等数学的联系及一些应用

高等数学与初等数学的联系及一些应用 摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和 发展。由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。 关键词:高等数学;初等数学;应用 1.引言 数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。这些都是基于这种认识和理解,是有一定的道理的。 中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目 标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次 的研究只能在大学进行。只有通过大学高等数学各门必修课程和选修课程的学习 和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的 理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概 括性。 2.国内外研究现状 大学课程学习的思维单向性很强。大学的学习给学生的感觉是用中学知识去 学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题 或对解中学数学问题有什么帮助。“用”的观念淡薄了,“学”的热情自然而然的 就少了。抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导 作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。中学 数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。 比如极限定义、集合和函数等。一位新数学教师在解释从非空数集A到数集B 的映射是函数时常常讲不清楚函数的值域到底是不是B。如果他的数学分析中的 映射掌握得好,完全可以既讲得轻松而学生又听得明白。法国数学家F·克莱因 曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简

学习高等数学体会论文

Hefei University 大一高等数学论文 院系:电子信息与电气自动化学生姓名:孙野 学号: 1405031031 专业:自动化 班级:一班 年级:一年级 指导老师: 刘国旗 完成时期: 十二月十三号

摘要:高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。 Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress. 关键词:高等数学、总结方法、极限 一:对高中数学的回顾 高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

最新大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>? 为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分 22 π π - ?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为2 3x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 2 1 lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设y =求.y ' 3. (6分)求不定积分2 ln(1).x x dx +?

4. (6分)求 3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=? ?所确定,求.dy 6. (6分)设 2 ()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π??=- ≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线32 32419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 31 22+--=x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数( )2 1ln x y +=,则='y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1=在点?? ? ??2,21处的切线方程为 .

高中数学教学论文

高中数学教学论文:高中学生数学思维障碍的成因及突破 论文摘要:如何减轻学生学习数学的负担?如何提高我们高中数学教学的实效性?本文通过对高中学生数学思维障碍的成因及突破方法的分析,以起到抛砖引玉的作用。 关键词:数学思维、数学思维障碍 思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学的数学思维虽然并非总等于解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。 然而,在学习高中数学过程中,我们经常听到学生反映上课听老师讲课,听得很"明白",但到自己解题时,总感到困难重重,无从入手;有时,在课堂上待我们把某一问题分析完时,常常看到学生拍脑袋:"唉,我怎么会想不到这样做呢?"事实上,有不少问题的解答,同学发生困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。 一、高中学生数学思维障碍的形成原因

根据布鲁纳的认识发展理论,学习本身是一种认识过程,在这个课程中,个体的学习总是要通过已知的内部认知结构,对"从外到内"的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的"媒介点",这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的"媒介点"时,这些新知识就会被排斥或经"校正"后吸收。 因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利"交接",那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。 二、高中数学思维障碍的具体表现 由于高中数学思维障碍产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体的可以概括为: 1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:

高等数学与初等数学的区别与联系

高等数学与初等数学的区别与联系 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 高等数学与初等数学的区别与联系 摘要从产生的历史、研究对象和研究方法3个方面说明高等数学与初等数学的区别与联系,使高等数学的初学者能够在初等数学即常量数学的基础上顺利进入高等数学即变量数学的学习。 关键词高等数学;初等数学;数学史;研究对象;研究方法 中图分类号:G642 文献标识码:B 文章编号:1671-489X(2011)15-0047-02 Difference and Relation from Advanced Mathematics Comparing with Primary Mathematics//Yang Limin, Zhao Songqing Abstract This paper shows the difference and relation from advanced mathematics comparing with primary mathematics by Mathematical History, Investigative object and Investigative method. Fresher who want to study advanced mathematics need to know them. Key words advanced mathematics; primary

mathematics; mathematical history; investigative object; investigative method Author s address College of Science, China University of Petroleum, BEijing, China 102249 高等数学是理、工、经、管类各专业大学生的一门重要专业基础课,近年来有些文科专业如英语、法律也开设相应的文科高等数学课程,说明高等数学的广泛应用性得到越来越多人的认识。如何学好高等数学是人们共同关注的问题。由于高等数学与初等数学所处历史时期不同,使得它们的研究对象、研究方法有着很大的不同。这使得有些学生在开始学习高等数学时有些迷茫,不明白数学怎么突然变了样子,导致不易入门,对高等数学产生抵触情绪,学不好高等数学。注意高等数学与初等数学的区别与联系是学好高等数学的重要环节,可以让学生顺利进入高等数学的学习,为专业课程的学习打好基础。 1 初等数学与高等数学处在不同历史时期[1] 数学 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

关于高等数学论文

《高等数学》 期末课程总结 姓名:张桂花 班级: 12级采矿01班 系别:环境与城市建设学院 高等数学论文 摘要: 经过一个学期的学习,对于高数我又有了一个更深的了解,大一上学期主要是了解高数一些最基本的东西,等到了下学期,主要是对上学期所学知识进行一定的延伸和拓展,在原有学习的基础上更深入的了解其精髓,对于我们更深刻的掌握高数这门学科有很大的好处。这一学期里我们重点学习了高数中的导数、微分和积分的扩充,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。另外,这学期也新引入了无穷级数和微分方程。经过一学期的学习,我认识到了数学里一些更加新奇的东西,以前我们都很难计算的无穷数列在无穷级数的学习后得以解决了,而且还可以将一些难以求解的级数通过转化和变形成为我们熟悉的级数形式然后进行求解,这让我想到了我们生活中的很多东西都是这样的,当我们遇到困难不能解决的时候,我们就要习惯产生联想,将这种问题想方法转化为我们熟悉的能解决的东西在进行处理,这些都是我们的高数在不知不觉中一直告诉我们的真谛。数学也训练我们的逻辑思维能力,它在一方面让

我们大胆的去假设,另一方面又需要我们去小心的求证,只有我们证明确实成立的东西我们才能进一步的运用,但是不得不让人佩服的就是数学的逻辑性,同时它也在训练者我们,只有我们在每一个数学环节都严谨的去学习去证明去求解,我们的结果才会正确。 关键词:导数,微分,重积分,级数。 正文: 高等数学下册主要是围绕导数、微分、积分、无穷级数展开的。 首先,第七章主要是函数的微分,上学期我们学习的是一元函数积分,但是实际问题中,往往涉及多个因素之间的关系,反映到数学上就是表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念,这在高等数学里占据了主要的位置,这一章主要介绍了多元函数的求导、求极值。隐函数的微分方法,还介绍了方向导数、梯度等新概念,还将多元函数的微分应用在几何上,和以前所学的内容很好的结合起来了,为我们提供了更多的解题方法和更灵活的解题思路,对于我们整体的掌握好高数的精华很重要。在这一章节中我们需要重点掌握的有以下几点:1、二重极限的概念,2、可导(导数的定义),3、可微的定义。首先我们要清楚二重极限的概念,需要注意的就是定义里的定点如p0(x0,y0),这里的点p(x,y)是按照任意方式趋近于p0的。还要注意它和二次极限的区别,二次极限 是对一个函数f(x,y)先后分别对x →x0,y →y0求极限A y x f y x y x =→),(lim ) 0,0(),(而二重极限则是对函数f(x,y)当x →x0且y →y0时求极限A y x f y y x x =→→),(lim lim 0 0。求是否存在二重极限时可以用取线路的方法,若取不同的线路求得的二重极限的结果一致则存在,否则就不存在。对于可微,我们要掌握多元函数的全微分的求导,重点注意可微,可导,连续之间的关系。还有就是要知复合函数的微分法,隐函数的微分

相关文档
相关文档 最新文档