文档库 最新最全的文档下载
当前位置:文档库 › 第18讲 带传动的受力分析与应力分析

第18讲 带传动的受力分析与应力分析

第18讲 带传动的受力分析与应力分析
第18讲 带传动的受力分析与应力分析

电测法应力分析实验

第二章 电测法应力分析实验 电测法是实验应力分析中应用最广泛和最有效的方法之一,广泛应用于机械、土木、水利、材料、航空航天等工程技术领域,是验证理论、检验工程质量和科学研究的有力手段。 第一节 矩形截面梁的纯弯曲实验 一、实验目的 1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。 2.测量矩形截面梁在纯弯曲时横截面上正应力的分布规律。 3.比较正应力的实验测量值与理论计算值的差别。 二、实验设备和仪器 1.多用电测实验台。 2.YJ28A-P10R 型静态电阻应变仪。 3.SDX-I 型载荷显示仪。 4.游标卡尺。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成。在梁承发生纯弯曲变形梁段的侧面上,沿与轴线平行的不同高度的线段22-、11-、00-、11'-'、 22'-'(00-线位于中性层上,22-线位于梁的上表面,22'-'线位于梁的下表面,11-和11'-'、22-和22'-'各距00-线等距,其距离分别用1y 和2y 表 示)上粘贴有五个应变片作为工作片,另外在梁的右支点以外粘贴有一个应变片作为温度补偿片。 将五个工作片和温度补偿片的引线以半桥形式分别接入电阻应变仪后面板上的五个通道中,组成五个电桥(其中工作片的引线接在每个电桥的A 和B 端,温度补偿片接在电桥的B 和C 端)。当梁在载荷作用下发生弯曲变形时,工作片的

电阻值将随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的应变值实ε。根据胡克定律,可计算出相应的应力值 实实εσE = 式中,E 为梁材料的弹性模量。 梁在纯弯曲变形时,横截面上的正应力理论计算公式为 z I y M ?=理σ 式中:2/Fa M =为横截面上的弯矩; 123/bh I z =为梁的横截面对中性轴的惯性矩;y 为中性轴到欲求应力点的距离。 图2-1 矩形截面梁的纯弯曲 四、实验步骤 1.测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。 2.将各种仪器连接好,各应变片按半桥接法接到电阻应变仪的所选通道上。 3.逐一调节各通道的电桥平衡。 4.摇动多用电测实验台的加载机构,采用等量逐级加载(可取kN 1=?F ),每增加一级载荷,分别读出各电阻应变片的应变值。 5.记录实验数据。 6.整理仪器,结束实验。 五、实验数据的记录与计算 实验数据的记录与计算见表2-1。 六、注意事项 1.加载时要缓慢,防止冲击。 2.读取应变值时,应保持载荷稳定。 3.各引线的接线柱必须拧紧,测量过程中不要触动引线,以免引起测量误差。

带传动的受力分析和传动时的应力分析

第七章 带传动 内容: 1、带传动的受力分析和传动时的应力分析 2、带传动弹性滑动和打滑 3、带传动的设计计算 难点:带传动的受力分析和传动时的应力分析 重点:带传动的设计计算 7.1 带传动概述 一、工作原理和应用 1 、工作原理:带装在轮上后,具有初拉力0F 。轮1靠摩擦力带动带,——带靠摩擦力带动轮2。 2、带传动的特点: 1)皮带具有弹性和扰性 2)过载时可打滑 3)中心距可较大 4)传动比不准确,且效率低 5)张紧力对轴和轴承压力大 3、带传动的类型 平带、V 带、多楔带、圆带 对V 型带:2 sin 2? N Q F F = 图7-1 磨擦型带传动工作原理 图7-3 带的传动类型和横截面形状 (a) 平带;(b) V 带;(c) 多楔带;(d) 圆形带

2 sin 2? Q N F F = Q q N f fvF fF fF F == =2 sin 2? 设2 sin ? f f v = 当量摩擦系数 4、V 带结构 普通V 带 5、应用:远距离 二、普通V 带型号和基本尺寸 1、型号: 2、尺寸 基准长度尺寸d L 7-2带传动工作情况分析 一、带传动受力分析 不工作时01=T 0F 工作时 01?T 图7-4 V 带的结构 表7-2 普通V 带截面基本尺寸

摩擦力()圆周力F F F F f =-=21 310FV P = P 为功率KW 2001F F F F --= 021F 2F F =+ αf e F F 21= 对V 带αfv 21F F e = 1 e 1e 2F F f f 0max +-=αα 二、带传动的应力分析 1、由紧边和松边拉力产生应力 A F 1 1= σ A F 2 2= σ 2、由离心力产生应力 A F A qv c l ==2σ 3、由带弯曲产生应力 2 d a b d h E h E =' =ρ σ 121max b σσσσ++= 三、带传动的弹性滑动 1、含义:由于带的弹性变形而引起带与带轮之间的相对滑动称弹性滑动。 2、后果 图7-5 带传动的受力分析 图7-6 带的弯曲应力 图7-7 带工作时应力变化

圆柱齿轮受力分析

轮齿的受力分析 1. 直齿圆柱齿轮受力分析 图为直齿圆柱齿轮受力情况,转矩T1由主动齿轮传给从动齿轮。若忽略齿面间的摩擦力,轮齿间法向力Fn的方向始终沿啮合线。法向力Fn在节点处可分解为两个相互垂直的分力:切于分度圆的圆周力Ft 和沿半径方向的径向力Fr 。 式中:T1-主动齿轮传递的名义转矩(N·mm),,Pl为主动齿轮传递的功率(Kw),n1为主动齿轮的转速(r/min); d1-主动齿轮分度圆直径(mm); α-分度圆压力角(o)。 对于角度变位齿轮传动应以节圆直径d`和啮合角α`分别代替式(9.44)中的d1 和α。 作用于主、从动轮上的各对力大小相等、方向相反。从动轮所受的圆周力是驱动力,其方向与从动轮转向相同;主动轮所受的圆周力是阻力,其方向与从动轮转向相反。径向力分别指向各轮中心(外啮合)。 2. 斜齿轮受力分析 图示为斜齿圆柱齿轮受力情况。一般计算,可忽略摩擦力,并将作用于齿面上的分布力用作用于齿宽中点的法向力Fn 代替。法向力Fn 可分解为三个相互垂直的分力,即圆周力Ft 、径向力Fr 及轴向力Fa 。它们之间的关系为

式中:αn-法向压力角(°); αt-端面压力角;(°) β-分度圆螺旋角(°); 作用于主、从动轮上的各对力大小相等、方向相反。圆周力Ft 和径向力Fr 方向的判断与直齿轮相同。轴向力Fa 的方向应沿轴线,指向该齿轮的受力齿面。通常用左右手法则判断:对于主动轮,左旋时用左手(右旋时用右手),四指顺着齿轮转动方向握住主动轮轴线,则拇指伸直的方向即为轴向力Fa1 的方向。 2 计算载荷和载荷系数 名义载荷上述所求得的各力是用齿轮传递的名义转矩求得的载荷。 计算载荷由于原动机及工作机的性能、齿轮制造及安装误差、齿轮及其支撑件变形等因素的影响,实际作用于齿轮上的载荷要比名义载荷大。因此,在计算齿轮传动的强度时,用载荷系数K对名义载荷进行修正,名义载荷与载荷系数的乘积称为计算载荷。

实验应力分析考试试题及答案

共 1 页第 1 页

一、名词解释 1.电阻应变片 电阻应变片是利用电阻应变片受力后出现变形致使电阻值发生变化的原理来测量被测物理量的大小的一种传感器。 2.压电效应 物质在机械力作用理发生变形时,内部产生极化,而表面产生符号相反的电荷,而当外力消失时表面电荷也随之消失,这种现象称之为压电效应。 3.中间转换器 被测非电量参数经传感器变换后转化为电参量,通常必须经过再变换、放大、预处理等工作后才能进行显示、记录或由计算机进行数据处理。这些中间环节是测量系统不可缺少的组成部分,通称中间变换器。 4.D/A和A/D转换器 在检测与控制信号中,如位移、速度、温度等连续的物理量经传感器变换为连续的电压压或电流,通称为模拟量。在很多情况下仪表显示、数据处理要用数字来表示,这些用数字来代替的离散量称为数字量。测试仪器内将模拟量转为数字量装置即是A/D转换器,反之数字量转为模拟量装置即是D/A转换器。 5.最小二乘法 最小二乘法在误差理论中的基本含义是在具有多精度的多次测量中求最可靠(最可信赖)的值时,当各测量值的残差平方为最小时的结果。在所有拟合的方程的方法中,最小二乘法的误差最小。 6.热电偶 由两种不同的导体A和B两端相连组成回路。当两个接头端的温度不同时在回路中就有电流通过,即回路内出现了电动势,称为热电势。组成回路的A、B 导体称为热电极。整个回路则称之为热电偶。 7.电阻温度计 电阻温度计是根据导体或半导体的电阻值随温度变化而改变的性质,通过测试电阻的大小来了解温度变化的一种温度计。这种温度计可测量-200~5000℃的范围。尤其在低温测量方面性能更佳,最低可达1~3K。 8.随机振动

同步带传动受力情况的分析

同步带受力情况的分析张紧力1 。初拉同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)可能因拉力力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,带的振过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,轴和轴承上的载荷而初拉力过大则会使带的寿命降低,传动噪音增大,动噪音变大。故控制同步带传动合宜的张紧力是保证同增大,加剧轴承的发热和使轴承寿命降低。步带传动正常工作的重要条件。FFF分别为带传动工作时带 的紧边拉、、设F为同步带传动时带的张紧力,210力、松边拉力、和有效拉力。 为了保证同步带在带轮上齿合可靠、不跳齿,同步带运紧边拉力的转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,增加量应等于松边拉力的减少量,即FFFFFFFFFF1-1 式=2 、=0.5(+ -=)-或+20020011212 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1 所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q计算如下所示: K(F?F) N Q= 式2-1 2F1K?1.3时:当工况系数A K(F?F) 2-2 式Q=0.77 N 21F. K――矢量相加修正系数,如图2-2:式中:F 图2-2 矢量相加修正系数

d?d??21。为小带轮包角,上图中?57.3??180??11aK为工况系数,对于医疗 机械,其值如图2-3所示:A 图2-3 医疗机械的工况系数 KK)FF?(K值大于0.5。对于医疗机械,取=1.2,所以有压轴力Q= N,其中FA21F FFF)。+=0.5(另外由式1-1有张紧力201由此可看出压轴力大于张紧力,故设计时只需 计算传动中所受的压轴力,K(F?F) N 。Q= 21F而带的紧边 张力与松边张力分别由下面公式所得: PF?1250V/N 式2-3 d1F?250P/V2-4 式N d2. m/s;V为带速,式中: PP?KP,KW;为工况系数,为设计功率,P为需传递的名义K AddA功率(KW)。 所以压轴力为: 1500KKP AF N 式2-5 Q?V需视具体情况修正工对于频繁正反装、 严重冲击、紧急停机等非正常传动,况系数。在匀速时,减速”的过程。另外 步进电机在工作时其工作过程是“加速-匀速-如电机电机加速时主要考虑惯性负载;电机所受负载为工件与导轨的滑动负载;电机的滑动负载和惯性负载均跳到 所规定的转速时,直接启动,即转速直接从0所以对于频繁正反要考虑。一般情 况下电机传递的负载约为滑动负载的2~3倍。同步带需传递的名义功率应是同步 带正转、设计计算时:严重冲击的传动机构,倍。常传动需传递的功率的2~3? 电机在加速时的加速转矩:式2-6 ?JT?式中:T——电机加速时的加速 转矩; J——负载的运动惯量与同步轮的转动惯量折算到电机轴上的转动惯量; ?——电机在加速时的角加速度。 从结构上讲:如所需的压轴力小于步进电机轴容许的悬挂负载,即可不必加联轴器。 下表为东方马达步进电机容许悬挂负载及容许轴向负载:

实验应力分析检测题[1]

实验应力分析检测题 测试卷一 (45分钟完成) 测1.1 如图所示的平板拉伸试样受轴向力F 作用,试样上如图a 粘贴两片应变片1R 、2R , 其应变值分别为1ε、2ε。由1R 、2R 组成图b 所示的半桥测量电路,这时应变仪读数为 。 A . 11εμ)(+; B .21εμ)(+; C .11εμ)(?; D .21εμ)(? 。 测1.2 圆轴受扭矩T 的作用,用应变片测出的是 。 A . 切应变; B .切应力; C .线应变; D . 扭矩。 测1.3 图示拉杆试件,弹性模量E 、泊松比μ、横截面面积A 已知,若用电阻应变仪测得杆表面任一点处两个互成90°方向的应变为a ε、b ε,试求拉力F 。 测 1.4 如图所示,矩形截面外伸钢梁在外伸端受横向力1F 、轴向力2F 作用,弹性模量 E =200 GPa ,泊松比μ=0.3,由实验测得A 支座截面的左边,中性轴D 点的应变 (a) 测 1.1 图 (b ) 测1.3图 A 测1.4图

63010203?°×?=ε,66010343?°×=ε。求D 点主应力大小及其方向。 测试卷二(45分钟完成) 测2.1一钢制圆轴受拉扭联合作用,已知圆轴直径d =20 mm ,材料的弹性模量E =200 GPa ,现采用直角应变花测得轴表面O 点的应变值为 ,10966?×?=a ε ,105656?×=b ε 610320?×=c ε,试求载荷F 和T 的大小。 测 2.2 承受偏心拉伸的矩形截面杆如图所示,现用电测法测得该杆上、下两侧面的纵向应变1ε和2ε,试证明偏心距e 与应变1ε和2ε在弹性范围内满足下列关系:6 2121h εεεεe ×+?=。 测 2.1 图 测2.2 图

带传动的受力分析及运动特性

带传动的受力分析及运动特性 newmaker 一、带传动的受力分析 带传动安装时,带必须张紧,即以一定的初拉力紧套在两个带轮上,这时传动带中的拉力相等,都为初拉力F0(见图7–8a )。 图7-8 带传动的受力情况 a)不工作时 b)工作时 当带传动工作时,由于带和带轮接触面上的摩擦力的作用,带绕入主动轮的一边被进一步拉紧,拉力由F0增大到F1,这一边称为紧边;另一边则被放松,拉力由F0降到F2,这一边称为松边(见图7–8b )。两边拉力之差称为有效拉力,以F 表示,即 F =F1–F2 (7–4) 有效拉力就是带传动所能传递的有效圆周力。它不是作用在某一固定点的集中力,而是带和带轮接触面上所产生的摩擦力的总和。带传动工作时,从动轮上工作阻力矩T¢2所产生的圆周阻力F¢为 F¢=2 T'2 /d2 正常工作时,有效拉力F 和圆周阻力F¢相等,在一定条件下,带和带轮接触面上所能产生的摩擦力有一极限值,即最大摩擦力(最大有效圆周力)Fmax ,当Fmax≥F¢时,带传动才能正常运转。如所需传递的圆周阻力超过这一极限值时,传动带将在带轮上打滑。 刚要开始打滑时,紧边拉力F1和松边拉力F2之间存在下列关系,即 F1=F2?e f?a (7–5) 式中 e –––自然对数的底(e≈2.718); f –––带和轮缘间的摩擦系数;

a–––传动带在带轮上的包角(rad)。 上式即为柔韧体摩擦的欧拉公式。 (7-5)式的推导: 下面以平型带为例研究带在主动轮上即将打滑时紧边拉力和松边拉力之间的关系。 假设带在工作中无弹性伸长,并忽略弯曲、离心力及带的质量的影响。 如图7–9所示,取一微段传动带dl,以dN表示带轮对该微段传动带的正压力。微段传动带一端的拉力为F,另一端的拉力为F+dF,摩擦力为f·dN,f为传动带与带轮间的摩擦系数 (对于V带,用当量摩擦系数fv,,f为带轮轮槽角)。则 因da很小,所以sin(da/2)?da/2,且略去二阶微量dF?sin(da/2),得 dN=F?da 又 取cos(da/2)?1,得f?dN=dF或dN=dF/f,于是可得 F?da=dF/f 或dF/F=f?da 两边积分

同步带传动受力情况的分析

同步带传动受力情况的分析轴力与张 紧力的计算) 同步带受力情况的分析 1张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉 力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设F o为同步带传动时带的张紧力,F i、F2、F分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 F I-F°=F°-F2或F i + F2=2F。、F o=O.5(F i+ F2)式1-1

2压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q计算如下所示: Q=K F(F1 F2)N 式2-1当工况系数K A 1.3时:

式中: K F ――矢量相加修正系数,如图 2- 图2-2矢量相加修正系数 上图中1为小带轮包角,1 180 d2 di 57.3 a K A 为工况系数,对于医疗机械,其值如图 2-3所示: X 13-1-6S 工况幕 inn GB/T 11362—JB/T 7512. 3—]9

链传动受力分析

安装链传动时,只需不大的张紧力,主要是使链松边的垂度不致过大,否则会产生显著振动、跳齿和脱链。若不考虑传动中的动载荷,作用在链上的力有:圆周力(即有效拉力)F、离心拉力FC和悬垂拉力Fy 。如图所示。 链在传动中的主要作用力有: (1)链的紧边拉力为F1=F+FC+Fy(N)(12.8)(2)链的松边拉力为F2=FC+Fy(N) (12.9)(3)围绕在链轮上的链节在运动中产生的离心拉力 FC=qv2(N)(12.10)式中:q为链的每米长质量,Kg/m,见表12.1;v为链速m/s 。 (4)悬垂拉力可利用求悬索拉力的方法近似求得 Fv=Kvqga (N) (12.11) 式中:a为链传动的中心距,m ;g为重力加速度, g=9.81m/s2;Kv为下垂量y=0.02a 时的垂度系数,与安装角β有关(图12.12),见表12.3。链作用在轴上的压力FQ可近似地取为FQ=(1.2~1.3)F,有冲击和振动时取大值。 链传动的受力分析 链在传动中的主要作用力有:(1)链的紧边拉力为F1=F+FC+Fy(N)(12.8)(2)链的松边拉力为F2=FC+Fy(N)(12.9)(3)围绕在链轮上的链节在运动.. 公司动态 - 天津鼎新盛泰进口轴承销售公司 - 2009-12-16 19:15:46 轴承生产中的链传动的受力分析 (1)轴承生产中的链的紧边拉力为F1=F+FC+Fy(N) (12.8)(2)轴承生产中的链的松边拉力为F2=FC+Fy(N) (12.9)(3)围绕在链轮上的链节在运动中产生..

技术中心 - 天津进口轴承公司 - 2009-12-15 21:39:01 滚子链传动的主要失效形式 链传动的主要失效形式有以下几种: (1)链板疲劳破坏 链在松边拉力和紧边拉力的反复作用下,经过一定的循环次数,链板会发生疲劳破坏。正常润滑条件下,疲劳强度是限定链传动承载能力的主要因素。 (2)滚子套筒的冲击疲劳破坏 链传动的啮入冲击首先由滚子和套筒承受。在反复多次的冲击下,经过一定的循环次数,滚子、套筒会发生冲击疲劳破坏。这种失效形式多发生于中、高速闭式链传动中。 (3)销轴与套筒的胶合 润滑不当或速度过高时,销轴和套筒的工作表面会发生胶合。胶合限定了链传动的极限转速。 (4)链条铰链磨损 铰链磨损后链节变长,容易引起跳齿或脱链。开式传动、环境条件恶劣或润滑密封不良时,极易引起铰链磨损,从而急剧降低链条的使用寿命。 (5)过载拉断 这种拉断常发生于低速重载或严重过载的传动中。 请教链传动受力分析!! 为了校核轴的强度需要分析链轮的受力状况,查资料知链传动紧边拉力=有效圆周力+离心力引起的拉力+悬垂拉力, 1. 请问这三个力的方向都是沿圆周方向吗?? 2.往轴上平移这些力的时候还需要考虑松边受力吧?? 3.压轴力的方向怎么确定?? 现在主要是将链轮受力转到轴上来,不知道怎么分析了,书上也没,呵呵 请教各位前辈了!!!!!

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告 圆筒内作用压力的应力分析实验报告 小组成员:焦翔宇1120190146 李雪枫1120190149 宋佳1120190152 一实验目的: 1.了解薄壁容器在内压作用下,筒体的应力分布情况;验证薄壁容器筒体应力计算的理论公式。 2.熟悉和掌握电阻应变片粘贴技术的方法和步骤。 3.掌握用应变数据采集测量仪器测量应变的原理和操作方法。 二实验原理:① 理论测量原理 如右图是圆筒内作用压力的压力传感器结构简图,在压力P1作用下,圆筒外表面的周向应力σy 和轴向应力σx 分别为: 周向应变和周向应变分别为: 由上式可见,圆筒外表面的周向应变比轴向应变打,亮着又均为正值。为了提高灵敏度,并达到温度补偿的目的,将两个应变敏感元件R1、R4安装在圆筒外壁的周向;两个应变敏感元件R2、R3安装在圆筒上,见右图。四个应变敏感元件的应变分别为: 采用恒压电桥电路。输出电压为: 由上式可知:在这种情况下,采用恒压电桥电路时,压力与输出电压之间存在非线性关系。采用双恒流源电路时,输出电压为: 由上式可见:在小变形情况下,采用双恒流源电路时,压力与输出电压之间为线性关系。在大变形情况下,赢考虑变形的影响,这是周向应变为: 圆筒内的径向压力使得圆筒的半径变大,周向力使圆筒的半径减小。可得到由于径向压力引起的圆筒半径变化为: 轴向力引起的直径变化为: 圆筒半径的变化量为: 变形后,两半径的比值为: 应变敏感元件R1、R4处的应变值为: 由上式可见:考虑圆筒变形的影响后,压力与圆筒外壁应变之间为非线性关系。由于 ,因此是递增非线性。

采用恒压电桥电路时,输出电压为: 由上式可见:考虑圆筒变形的影响后,采用双恒流源电路也存在着压力与输出电压之 间的非线性。 下图是圆筒内作用压力的一种压力传感器的结构图: ② 用电阻应变仪测量应变原理: 电阻应变测量法是测定压力容器筒壁应变的常用方法之一。其测量装置由三部分组成:即电阻应变片,连接导线和电阻应变仪。常用的电阻应变片是很细的金属电阻丝粘 于绝缘的薄纸上而成。见图一所示,将此电阻片用特殊的胶合剂贴在容器壁欲测之部位。当容器受内压作用发生变形时,电阻丝随之而变形。电阻丝长度及截面的改变引起其电 阻 值的相应改变,则可以用电阻应变仪测出电阻的改变,再换算成应变,直接由应变 仪上读出。 电阻丝的应变与电阻的改变有如下的关系: 由于电阻丝的电阻R 和K 值对于一定的电阻片为一已知值,故只要测得Δ R (电阻丝电阻改变)就可以求出ε值。电阻应变仪是采用电桥测量原理测出Δ R 并换成με(即为)的 变形量。 三实验步骤: 1.了解试验装置(包括管路、阀门、容器、压力自控泵等在实验装 置中的功能和操作方法)及电阻片粘贴位置,测量电气线路,转换旋钮等。 2. 制作实验用圆筒,截下一段pvc 塑料管,在两端用哥俩好胶水粘合金属块使圆筒 形成内部气密舱。再两端金属块打孔,一段装入气压计,另一端安装打气孔,粘合使其不 漏气。 3. 应变片的安装: (1)根据选择的测点位置,用砂纸打光;再按筒体的经线和纬线方向用划针或铅笔 划出测点的位置及方向;以后再用棉球、丙酮等除去污垢。 (2)测量电阻应变片的电阻值,记录电阻片的灵敏系数,以便将应变仪灵敏系数点 放在相应的位置上(实验室已准备好)。 (3)将“502”胶液均匀分布在电阻片的背面(注意:胶液均均匀涂在电阻片反面, 不可太多,引出线须向上)。随即将电阻片粘贴在欲测部位,并用滤纸垫上,施加接触 压力,挤出贴合面多余胶水及气泡(注意:电阻丝方向应与测量方向一致,用手指按紧 一至两分钟)。(4)在电阻片引出线下垫接线端子(用胶液粘贴),用于电阻应变片的

同步带传动受力情况的分析

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥时: Q=12()F K F F + N 式2-2 式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数

上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =,所以有压轴力Q=12()F K F F + N ,其中F K 值大于。 另外由式1-1有张紧力0F =(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N 式2-4 式中: V 为带速,/m s ; d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。 所以压轴力为: 1500F A K K P Q V = N 式2-5 对于频繁正反装、严重冲击、紧急停机等非正常传动,需视具体情况修正工况系数。 另外步进电机在工作时其工作过程是“加速-匀速-减速”的过程。在匀速时,电机所受负载为工件与导轨的滑动负载;电机加速时主要考虑惯性负载;如电机直接启动,即转速直接从0跳到所规定的转速时,电机的滑动负载和惯性负载均要考虑。一般情况下电机传递的负载约为滑动负载的2~3倍。所以对于频繁正反转、严重冲击的传动机构,设计计算时:同步带需传递的名义功率应是同步带正常传动需传递的功率的2~3倍。 从结构上讲:如所需的压轴力小于步进电机轴容许的悬挂负载,即可不必加

传送带的受力分析

传送带的受力分析标准化管理部编码-[99968T-6889628-J68568-1689N]

传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。 一、依托传送带的受力分析问题 例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。设加速度为,试求两种情形下货物所受的摩擦力。 解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。物体随传送带向 下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当加速度大于这一值 时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。 当物体随传送带向上加速运动时,由牛顿第二定律得: 所以,方向沿斜面向上。 物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得: 所以。 当时,,与所设方向相同,即沿斜面向上。 当时,,即货物与传送带间无摩擦力作用。

当时,,与所设方向相反,即沿斜面向下。 小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论. 二、依托传送带的相对运动问题 例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度 开始运动,当其速度达到后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度小于传送带的加速度。根据牛顿定律,可得:设经历时间 ,传送带由静止开始加速到速度等于,煤块则由静止加速到,有由于,故,煤块继续受到滑动摩擦力的作用。再经过时间,煤块的 速度由增加到,有,此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。 设在煤块的速度从0增加到的整个过程中,传送带和煤块移动的距离分别为和,有: 传送带上留下的黑色痕迹的长度 由以上各式得 小结:对于多个物理过程问题,能否按顺序对题目给出的物体运动过程进行分段分析,是解决问题的关键所在. 三、依托传送带的临界、极值问题

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时: Q=0.7712()F K F F + N 式2-2

式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。 另外由式1-1有张紧力0F =0.5(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N 式2-4

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时: Q=0.7712()F K F F + N 式2-2

式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。 另外由式1-1有张紧力0F =0.5(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N

试分析影响带传动传动能力的主要因素

试分析影响带传动传动能力的主要因素 1. 带传动的工作原理 图1 带传动工作原理图 通过对传动带与带轮的受力情况的分析与研究, 我们可得: 102e F F F =+ (1) 202 e F F F =+ (2) 从而可知 12e F F F =- (3) 式中:0F ---带的预紧拉力 1F ---紧边拉力 2F ---松边拉力 e F ---带的有效拉力 在带传动中, 当带有打滑趋势时, 其摩擦力即达到极限值, 此时, 带传动的有效拉力也到最大值, 进而我们可求得柔体摩擦的欧拉公式: 12fa F F e = (4) 对于V 带有: sin /2 12fa F F e ?= (5) 式中:f---带与带轮之间的摩擦系数 a---带在带轮上的包角 ?---V 带轮的槽角 由上式可得到带所能传递的最大有效拉力: 01 21 fa ce fa e F F e -=+ (6) 由上式可知:带传动的有效拉力即极限摩擦力总和与 带的初拉力,包角和当量摩擦系数有关。

2. 带的初拉力 从( 3)式中可以看出, 要想提高有效圆周力Fe 最好是在增加F 1 的同时使F2 为零, 但是当F2 为零时, 欧拉公式中F1 也将为零, 所以Fe 也就为零。因此, 按一般的张紧方法都不能使F2 为零, 那么采用压紧轮压紧的方法能使F2 为零。压紧轮使带与带轮之间产生了摩擦力, 且其动、静态变化值较小, 近似为定值, 完全取代了F2 的作用, 从而使F2 为零。自然欧拉公式中F2 被摩擦力所取代, 所以F1 不为零, F e 也就不会为零了, 因此前后并不矛盾。其图如下: 把带松套在两个带轮上, 在主从带轮松边的出口和进口A 、B 处, 各加一个压紧轮1和2, 由于压紧轮的压力Q1和Q2的作用, 当带传动时, 使带与带轮之间产生摩擦力a F 和b F , 这个摩擦力完全可以代替松边拉力的作用, 且a F 和b F 在静态或工作状态时,其变化不大, 可视为定值[ 1。同时, 在紧边处, 沿两带轮切点跨距的中点C 处加一压紧轮3(轮缘有宽度大于带宽的U 形槽), 压紧轮的压力Q3 其方向垂直于两轮外公切线, 使带具备一定的预紧力0F 。 3. 包角 带与带轮接触弧所对应的中心角成为包角。21 1180*57.3d d d d a α? ?-≈- 带传动处于临界状态时F1与F2的关系 以平带为例。已知,带传动几何尺寸,摩擦系数为f 。 取微段如图。 微段受力: dFN ,F , F+dF ,fdFN 图3 微段受力图

实验应力分析考试试题及答案

共1 页第1 页 合肥工业大学土木工程学院研究生考试试题 考试科目:实验应力分析 、名词解释(每题 1.电阻应变片 3 ?中间转换器 5. 最小二乘法 7 .电阻温度计 9 .偶然误差 .压电效应 .D/A 和A/D 转换器 .热电偶 .随机振动 .温度补偿 、问答题(每题10分,共60 分) 1.非电参量测法具有哪些优点? 2 .在测量过程中产生误差的原因有哪几方面? 3 .常用的电阻应变片有哪几类? 4 .传感器有什么作用和如何分类? 5.应变片的粘结剂应满足哪些要求? 6 .应变仪由哪几个主要组成部分,各有哪些功能? 4分,共40 分) 10

一、名词解释 1.电阻应变片 电阻应变片是利用电阻应变片受力后出现变形致使电阻值发生变化的原理来测量被测物理量的大小的一种传感器。 2.压电效应物质在机械力作用理发生变形时,内部产生极化,而表面产生符号相反的电荷,而当外力消失时表面电荷也随之消失,这种现象称之为压电效应。 3.中间转换器被测非电量参数经传感器变换后转化为电参量,通常必须经过再变换、放大、预处理等工作后才能进行显示、记录或由计算机进行数据处理。这些中间环节是测量系统不可缺少的组成部分,通称中间变换器。 4.D/A和A/D转换器 在检测与控制信号中,如位移、速度、温度等连续的物理量经传感器变换为连续的电压压或电流,通称为模拟量。在很多情况下仪表显示、数据处理要用数字来表示,这些用数字来代替的离散量称为数字量。测试仪器内将模拟量转为数字量装置即是A/D 转换器,反之数字量转为模拟量装置 即是D/A转换器。 5.最小二乘法 最小二乘法在误差理论中的基本含义是在具有多精度的多次测量中求最可靠(最可信赖)的值时,当各测量值的残差平方为最小时的结果。在所有拟合的方程的方法中,最小二乘法的误差最小。 6.热电偶 由两种不同的导体A和B两端相连组成回路。当两个接头端的温度不同时在回路中就有电流通过,即回路内出现了电动势,称为热电势。组成回路的A、B 导体称为热电极。整个回路则称之为热电偶。 7.电阻温度计 电阻温度计是根据导体或半导体的电阻值随温度变化而改变的性质,通过测试电阻的大小来了解温度变化的一种温度计。这种温度计可测量-200?5000C的范围。尤其在低温测量方面性能更佳, 最低可达1?3K。 8.随机振动 随机振动是振动随时间变化过程(振动时间历程)没有确定的规律,没有确定的振动周期和频 率,各瞬时的振幅也完全不同。因此随机振动不能用时间的确定函数来表示,只能用统计特性来描述。 9.偶然误差在测试工作中有些误差可以避免,有些误差则不能避免。对于不能避免的误差称作偶然误差,或随机误

齿轮受力分析

齿轮传动受力分析: 力有三要素:大小、方向、作用点。 1、大小计算:见教科书公式 2、作用点:分度圆上齿宽中部 3、方向判断:分以下几种情况 a) 直齿轮: 画受力分析图,根据力的平行四边形法则可知,对于主动轮,径向力指向圆心,周向力方向与外加转矩方向相反,外加转矩方向与转动方向一致,主动轮判断完毕后和它配合的从动轮的受力方向自然就知道了,因为二者是作用力与反作用力,简单地说,就是无论主动轮还是从动轮,其所受径向力指向各自的圆心,主动轮所受周向力是来自于从动轮的阻力,故其方向与主动轮的转向相反,从动轮所受的周向力来自于主动轮,是使从动轮转动的动力,与其转动方向相同。直齿轮传动没有轴向力。 b) 斜齿轮: 斜齿轮传动同样受径向力、周向力,其方向的判断与直齿轮相同,所不同的是斜齿轮传动有轴向力的作用。其方向的判断有两种方法:一种是画受力分析图,比较麻烦,另一种是用左右手法则判断,使用左右手法则时,通常用于主动轮上,即左旋齿轮用左手,右旋齿轮用右手,四指方向指向外加转矩方向,则大拇指方向即为轴向力方向 (注意:是用于主动轮上) c) 圆锥齿轮传动: 圆锥齿轮传动同样受径向力、周向力和轴向力的作用。径向力和周向力的方向判断也与直齿轮一样,其轴向力的作用方向小端指向大端。 d) 蜗杆传动: 蜗杆传动也受径向力、周向力和轴向力的作用。径向力和周向力的方向判断仍然与直齿轮一样,其轴向力作用方向的判断和斜齿轮完全一样,一种是画受力分析图,另一种是用左右手法则判断,即在主动轮上,左旋用左手,右旋用右手,四指方向指向外加转矩方向,则大拇指方向即为轴向力方向,蜗杆传动中蜗杆是主动件 在蜗杆传动中,蜗轮的周向力为蜗杆的轴向力,蜗轮的轴向力为蜗杆的周向力,二者为作用力与反作用力,大小相等方向相反。 相同点: 以上几种传动中,主动轮的外加转矩方向均与其转动方向一致,周向力方向与其转动方向(或外加转矩方向)相反,径向力均指向各自的圆心。 这里要特别注意: 一对相互啮合的斜齿轮,其旋向相反,即一个斜齿轮是左旋的,与其配合的另一个斜齿轮一定是右旋的,反之亦然。而一对互相啮合的蜗轮蜗杆传动其旋向一定是相同的,即蜗杆如果是左旋的,那么与其配合的蜗轮也一定是左旋的,反之亦然。 齿轮(包括蜗轮蜗杆)旋向的判断方法: 首先使齿轮的轴线方向与站立方向一致,则表示旋向的斜线向右上方的为右旋,向左上方的为左旋。

传送带的受力分析

传送带的受力分析集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。 一、依托传送带的受力分析问题 例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。设加速度为,试求两种情形下货物所受的摩擦力。 解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。物体随传送带向下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当加速度大于这一值时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。 当物体随传送带向上加速运动时,由牛顿第二定律得: 所以,方向沿斜面向上。 物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得:

所以。 当时,,与所设方向相同,即沿斜面向上。 当时,,即货物与传送带间无摩擦力作用。 当时,,与所设方向相反,即沿斜面向下。 小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论. 二、依托传送带的相对运动问题 例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度开始运动,当其速度达到后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度小于传送带的加速度。根据牛顿定律,可得: 设经历时间,传送带由静止开始加速到速度等于,煤块则由静止加速到,有

相关文档
相关文档 最新文档