文档库 最新最全的文档下载
当前位置:文档库 › 矩阵的合同变换

矩阵的合同变换

矩阵的合同变换

摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。

关键词:矩阵 秩 合同 对角化

定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ?

定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B :

定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B =

那么就说,在数域F 上B 与A 合同。

以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似

因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q =L 。

此时711T T T

m n P Q Q Q -=L 边为一系列初等矩阵的乘积

若111T T T

T m

n m B P AP Q Q Q AQ Q -==L L 则B 由A 经过一系列初等变换得到。所以A B ?,从而知合同变换是等价变换。

定理2:合同变换与相似变换,不改变矩阵的秩

证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -=:

1||det ||del I B I P AP λλ--=-

又因为I λ为对称矩阵

所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=-

||I A λ=-

注①合同不一定有相同特征多项式

定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλL ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得

112[]Q AQ λλ-=L 11[]n P BP λλ-=L

从而有11Q AQ P BP --=

11PQ AQP B -=

由11Q Q E PP E --==

从而有1111PQ QP PEP PP E ----=== 从而111()PQ QP ---=

又由于1111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ =

1QQ -=

E =

1QP -∴为正交矩阵

所以A B :且A B ?

定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质

证明:A B ?即T P AP B =,若对称阵,则T A A =

()T T T B P AP =

T T P A P =

T P AP = B =

所以B 边为对称阵

[注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢?

引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.

证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则

||r n s n r s I A λ=-?-=?-1200

0n x x x ????????

????=??????????

??M M ,线性无关的解向量个数为n r -个,即5个

又因属不同特征根的特征向量线性无关

?n 阶对称阵A 有n 个线性无关的特征向量 ?n 阶对称阵可对角化

从定理5,引理6中我们发现了合同在应用中的侧重点, 如对二次型应用

例 求一非线性替换,把二次型

123122313(,,)262f x x x x x x x x x =-+

二次型`23(,,)f x x x 矩阵为

011103130A ??

??=-??

??-??

对A 相同列与行初等变换,对矩阵E ,施行列初等变换

212103230A -????→-????--??→2

00020006??

??-?

?????

1001111

101110

01101E ????

????→→--????

????????

112233113111001x y x y x y ????

????????=--??????????????????

可把二次型化为标准型

222123123(,,)226f x x x y y y =-+

解法(2)

212103

230A -??

??→-????--??

2101020

22??

??→-??

??--??

2001022022??

????→--????--??

2001002006??????→-??????

此时222

123123

1(,,)262

f x x x z z z =-+ 此时非线性退化替换为

11223311321112

001x z x z x z ??-??????

????????=-????????????????

??????

发现在注[1]:任意对称阵合同的对角阵及其变换阵不是唯一确定的 特性1:在合同变换中具有变换和结果的多样性

[注]:在对角阵上元素相等及其它元素元素边相等情况下又有哪些性质呢? 例3.用可逆性变换化二次型

222123123123123(,,)(2)(2)(2)f x x x x x x x x x x x x =-+++-+++-

解:222112132233:666666f x x x x x x x x x --+-+

对二次型矩阵为

6

3336333

6A --????--?

?=??--???

?

1

006006

00010999

63

30

000

002223639

9000336012211

0011112

101010

221010

101

02

10

01001A E ??

????????

????--??????-??

??????--?

??????????---

????=→→→????

??

?????

????????????

????

??

????????????

??????????

E B ??=???????标准形22

12f y y =+

,则11223310

10

1

x y x y x y ?????????????=????????????????

?????

?

PTA B =

[注]当P 改变两行的位置交换后,发现

00016 3 31000363101033600000111

1???

?????????--??

????????--=????????????--??

??????

?????

?

?

?

定理2:在A 为对角线上元素相等,其余元素也相等,则若有T P AP B =,则调整P 的任意两行,对角阵形式不变。

证明:设初等变换的对调变换矩阵为J ,显然T T T J J E J AJ JAJ A ===于是有

()()()()()()t T T T T T T T B P AP P EAEP P J J A J J P JP JA JP JP A JP =====

而P 与JP 相比仅是行的排列顺序不同, 因此任意调整P 的行,所得对角阵相同。

[注]以上为特殊条件下成立,如果在一般情况下呢?

例4.求实对称矩阵2

2

02120

2

0A -??

??=--?

???-??

求可逆阵P 使得T P AP 为对角阵

322121

32

2222

02

02

02120120100200

200

041001

101

120100100120

10

10

1c c c c r r r r A E -++--????????????-----???

??

???????--??=???→???→????????-???

???????

??

??-??????????????????

11

1

24

001

1201

0001002T P P AP B

B -????

????=-==-??????????

??

12112110

0P -??

??=-??

????

我们得到11T

P AP B = 定理7:设,T P AP B A = 对称矩阵,B 为对角矩阵,若要调换B 对角线上任意两个元素

的位置得到1B ,则只要调控B 中对左的两列,可得到P ,使得11T

P AP B =,即P 的列与B

中元素的对应性。

证明:初等调换矩阵为J ,显然T J J =

11

11()()T T T T B J BJ J P APJ PJ A PJ P AP ====Q

P ∴与1P 相比,只是列的排列顺序发生了改变 P ∴的列与B 的对角线上元素具有对应性

自己写例

定理8:如果对角线上的元素分别扩大222

12,,n C C C -得2B ,则不要将P 中对应的对应角

线元素扩大11C ,即可得到2P 使得222T P AP B =

证明:设初等变换的倍乘变换矩阵为2J (2J 对角线上第J 个元素1C )形1221C J C ??

??=??????

,则有22222()T T B J BJ J J ==

2222211()T T T T

B J P PJ PJ J APJ P AP ===Q

2B ∴中第J 个元素为B 的21C 倍而22P PJ =,且其2P 中对角线J 个元素是P 中对角线元

素CJ 倍。

例:已知对称矩阵121

1211

311311310A -????-?

?=???

?--??

求可逆矩阵P ,使T P AP 且对角形式 解101110

010

3110311113101221

1

1

011

2

0A --????????------?

??

?→→????--???

?----????

1

00

010

00100003

01030

003117770001220003330

1

2

17000

30113??

??????--???

?-???

?---????→→→??????-????????--?

???---????

????

对单位阵E 进行相应列初等变换得

1

122310

10300110

1E P ?

?

--????

??-→=??

??

-??????

则有1313733T

P AP ??

??-??==??????

-???? 141111B E ??

??

-??==??????

则此时有11122

3100300100

P ??--??????-??

??=??

-??

????

得111T P AP B = 综上所述合同变换不仅与相似变换有着某千丝万缕的联系,而且其本身也有着变换矩阵多样多样,和结果的不确性,在对其特 性与性质的联系中带来许多解题更多思路与方法。

主要参考文献

[1]北大数学系,高等代数第二版

[2]上海交大线性代数编写。线性代数(第三版)[M] [3]张禾瑞 高等代数[M]

[4]付立志《对称矩阵对角化相似变换模型》 [5]王晓玲《矩阵三种关系问联系》

[6] Brickell EF A Few Results in message Autheutication congress Numerantium 1984 43 141-154

矩阵的合同变换及性质

定义:设A ,B 是数域F 上两个阶矩阵,如果存在一个阶可逆矩阵P 使得T B P AP =成立,那么 B 与A 合同

特性:合同变换具有模型化,程序化的简便性。

引理1:在矩阵中,任意对角矩阵与合同J 对角阵 证明:①数学归纳法 当1n =时,定理显然成立

设1n >时,定理对1n -阶对称阵成立,A 上阶对称囝 若0A =则A 本身已为对角阵 不妨设0A ≠

(1)讨论A 的对角线上元素不全为0的情况,这都可通过三行或列初等变换,使得

11121121000

s s a

E E E AE E E A ??

??=??????L L 这里1A 是1n -阶对称阵,由归纳假设,存在则有1n -阶可逆阵1a ,使

2

11100

T c

Q A Q cn ??

=????

现取121

1000,0

s

Q P E E E Q Q ??

??

??==??????

L L M

则1111

21122111000000T T T T T S S T n a a P AP Q E E E AE E E Q c Q A Q c ?????????

?===??????????

????

L L L M

(2)若0,1,2,,ii a i n ==L ,由0A =,可通过对应的行列初等变换,使问题归结到i 的情怀

合同矩阵变换的应用,主要应用于二次型上,而二次型主要对积矩阵,而二次型

12(,,)T n f x x x x AX =L 化简,一般都归结为对称实矩阵A 的合同变换在

特性1:合同变换具有模型化,程序化的简便性

定理1:若在对称矩阵A 的下六并上一个单位矩阵,作列变换,则对的行与列分别六色以一系列的对称,初等变换使其式为对角阵时, 单位阵成为A 的合同变换矩阵。

特性2:合同变换具有变换和结果的多样性,采取不同的合同变换,不仅可以得到不同的对角矩阵而且还可以得到相同的对角陈

例:已知实对称矩阵0

1001

000002100

1

2A ?????

?=??????

求可逆矩阵P ,使()()T AP AP 为对角矩阵 解由于t A A =且2()()T T AP AP P A P =,可见为使()()T AP AP 为对角矩阵,实质上是使

0000010000540

45A ?????

?=??

????

合同于对角矩阵

4334

25

44

551

00

0100001000100005000549000

004551

000100001000100001

04001500

100

01A r r L c A E --??????

?

?????

??

????

???

???????=????→ ???????????

??

??

?

???????

-

????

?

?????

故可逆矩阵21

00

01

000010001

004005000159000

00015T P P A P ?????????

??

?==?

???-???

?????????????

(2

)100001

000

000

P ???????

?=???????

当 2

()()T T AP AP P A P ==10000

10000100

9?????

???????

定理3:设,T P AP B A =为对称矩阵,B 为对角矩阵,若要调换B 的对角线上任意两个

元素的位置得到1B ,则只要调换P 中对应两列,可得到1P ,使得7

111P

AP B =,即P 的列与的列与B 具有对应性。

说明:没妆等变换的对调多换矩阵为J ,显然1T J J =,

1111111111()T

B J BJ J P APJ PJ APJ P AP ''====Q

P ∴与11P PJ =相比, 列的排列顺序不同,因此,P 的列与B 的对角线上元素具

有对应性。

特性3:合同变换具有变换矩阵列但是与对角线元素的对应性。

定理4:若要将B 的对角线上第j 个元素扩大2C 得到2B ,则只要得P 中对应第j 列扩大c 倍,即得到2P ,使得222T P AP B =

证明:设初等变换的倍乘变换矩阵为2J (2J 的对角线上第j 个元素为c ,其余为1)显

然1

2

2J J = 111222222222()B J BJ J P APJ PJ APJ P AP ''====Q

2B ∴中的第j 个元素B 的

我们发现j 合同变换在对角化中有简易行,凸现其方法(变换矩阵)和结果(对角阵)的

二、合同变换的本质

在n 阶实对称阵A 和B 的正负惯性指标都一样,则(,)a S A B 有表示为A 到B 的合同变换矩车构成的集合。

引理1:假设实对称矩阵A 和B 的正负惯性指标都一样,则1()c S A B 为群

证明:对于任意的12(,),(,)c c P S A B P S A B ∈∈,则存在1020(,),(,)C S A B C S A B ∈∈,使

得111122,P c c P c c --==因此1112122(),PP c c P c c --==,因此1111

121212()()()PP c c c c c c c c ----=?=?,而11111111111111121221112222222()()()()c c c A c c c c c c Ac c c c c Bc c c Ac c Ac B ------=====,则

1120(,)c c c S A B -∈所以12(,)c P P S A B ?∈亦即有(,)c S A B ,

关于矩阵乘法封闭,易知(,)c s A B 关于矩阵乘法满足结合律,有单位矩阵,下设每个元素都有逆远,假设(,)c P S A B ∈存在

10(,)C S A B ∈,使得11P c c -=,所以11111()p c c c cc c ----==,因

11111111111111111()()()()cc A cc c c c c Acc c c c Bc c c Ac B ------====,则110(,)cc c S A B -∈所以11(,)c c c S A B -∈即1(,)c P S A B -∈,综上所述(,)c S A B 成群

注:10(,){|,,S A B c c AC B A B ==为已知的实对称矩阵},c 为可逆复矩阵,

11010(,){|(,),(,)}c S A B c c c S A B c S A B =∈为中任一给定矩阵

引理2:假设实对称阵A 和B 正负惯性指标都一样,则(,)c S A B 有表示为

1(,){|,}c S A B m m BM B m ==为可逆阵

证明:110(,)(,)(),,.c m S A B cm S A B cm Acm B mJ M BM B M ∈?∈?=?=连可逆

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q = 。 此时711T T T m n P Q Q Q -= 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得 112[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B : 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得 T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对 称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即1 2 m P Q Q Q =L 。 此时7 11 T T T m n P Q Q Q -=L 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -==L L 则B 由A 经过一系 列初等变换得到。所以A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵

从而11 1 ()PQ QP ---= 又由于1 111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ = 1 QQ -= E = 1 QP -∴为正交矩阵 所以A B :且A B ? 定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质 证明:A B ?即T P AP B =,若对称阵,则T A A = ()T T T B P AP = T T P A P = T P AP = B = 所以B 边为对称阵 [注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢? 引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=-

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A,B都是数域F上的n 阶矩阵,如果存在数域F 上的一个n阶可逆矩阵P,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以A B ?, 从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- ??? 1||||||P I A P λ-=- ? ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12 ,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵, ,Q P 使得 11 2[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

矩阵的秩变换、相似变换与合同变换的联系

龙源期刊网 https://www.wendangku.net/doc/8812107152.html, 矩阵的秩变换、相似变换与合同变换的联系作者:田洋 来源:《计算机光盘软件与应用》2012年第19期 摘要:本文应用理论研究的方法,将矩阵的秩变换、相似变换以及合同变换转换到线性变换当中去,讨论了矩阵的这三种变换之间的联系与区别,并给出证明,对矩阵的秩变换、相似变换以及合同变换的异同点做出一个综述性的描述。 关键词:初等变换;相似变换;合同变换;线性变换 中图分类号:O151.21 文献标识码:A 文章编号:1007-9599 (2012) 19-0000-02 1 绪论 矩阵的秩变换、相似变换以及合同变换是高等代数中的基本概念,也是解决某些问题的重要工具,有着十分广泛的应用领域.而矩阵的每一种变换都对应着一个线性变换,因此,在讨 论矩阵的这三种变换时,将其引入到线性变换当中去,进一步分析讨论三种变换之间的联系与区别,加深对线性变换知识的理解与掌握.本文采取理论研究的方法,将秩变换的问题归结到 初等变换上,并对三种变换之间的联系与区别做一个综述性的描述。 2 矩阵的初等变换 定义1 矩阵的行(列)初等变换即对矩阵施行下列变换: (1)交换矩阵的两列(行);(2)用一个不等于零的数乘矩阵的某一列(行),也就是用一个不等于零的数乘矩阵的某一列(行)的每个元素;(3)用某一数乘矩阵的某一列(行)后加到另一列(行),也就是用某一数乘矩阵的某一列(行)的每个元素后加到另一列(行)的对应元素上。 定理1 初等变换不改变矩阵的秩。 证明:我们对一个事实先做出一个说明:如果对于一个矩阵实施某一种行或者列初等变 换而得到一个矩阵,那么对矩阵施行同一种初等变换又可以得到矩阵 .在这里我们给出一个命题,把行列式的某一列(行)的元素乘以同一个数后加到另一列(行)的对应元素上,行列式是不变的。

矩阵的合同变换之令狐文艳创作

矩阵的合同变换 令狐文艳 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似 A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即 12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变 换得到。所以A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩

定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ,因为 A 与 B 实对称矩 阵,所以则在n 阶正 矩阵,,Q P 使得 从而有11Q AQ P BP --= 由11Q Q E PP E --== 从而有1111PQ QP PEP PP E ----=== 从而111()PQ QP ---= 又由于1111()()()QP QP T QP P TQT ----= 1QP -∴为正交矩阵 所以A B 且A B ? 定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质 证明:A B ?即T P AP B =,若对称阵,则T A A = 所以B 边为对称阵 [注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢? 引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数. 证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则 ||r n s n r s I A λ=-?-=?-1200 0n x x x ???????? ????=???? ?????? ??,线性无关的解向量个数为

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同 型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析 在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C A C =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理: 因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下 让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图 而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义 下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C A C =。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容: 双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n 阶矩阵也建立起了一种一一对应的关系,如图 1'n A n T T AT T AT -=对于任意一个级实对称矩阵,都存在一个级正交矩阵,使得 → 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上线性变换空间的一组基一个矩阵线性变换→ 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上双线性函数空间的一组基一个矩阵双线性函数

解析矩阵间的等价、相似、合同变换关系及其应用

解析矩阵间的等价、相似、合同变换关系及其应用 摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有具足轻重的地位。矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系。本文先阐述了三种关系相关的定义、定理,并进行比较得出三种关系间的区别,结合实例具体体现三种关系的差别与应用。 关键词:矩阵的等价、矩阵的相似、矩阵的合同 引言 随着技术的发展,矩阵在实际生产中发挥着越来越明显的作用,尤其是矩阵所具有的特点以及特有的变化方式,受到各行的重视。 在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系。本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致,还有矩阵的相似与合同之等价条件,并给出例子加以说明。 一、矩阵的三种关系 1)矩阵的等价关系 定义:两个S ×n 矩阵A ,B 等价的充要条件为:存在可逆的s 阶矩阵P 与可逆的n 阶矩阵Q ,使B =PAQ 。 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备两个条件: (1)矩阵A 与B 为同型矩阵,不要求是方阵; (2)存在存在可逆的s 阶矩阵P 与可逆的n 阶矩阵Q ,使B =PAQ 。 性质: (1)反身性:即A ≌A ; (2)对称性:若A ≌B ,则B ≌A ; (3)传递性:即若A ≌B ,B ≌C 则A ≌C ; 2)矩阵的合同关系 定义:设A ,B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆方阵P ,使得B AP P ='则称矩阵A 与B 为合同矩阵(若若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1)矩阵A 与B 不仅为同型矩阵,而且是方阵。 (2)存在数域p 上的n 阶矩阵P ,B AP P ='。

什么是合同矩阵

什么是合同矩阵 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B,则称方阵A合同于矩阵B. 一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 相似矩阵与合同矩阵的秩都相同。 定义 合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得 则称方阵A与B合同,记作A?B。 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 性质 合同关系是一个等价关系,也就是说满足: 1、反身性:任意矩阵都与其自身合同; 2、对称性:A合同于B,则可以推出B合同于A; 3、传递性:A合同于B,B合同于C,则可以推出A合同于C; 4、合同矩阵的秩相同。 矩阵合同的主要判别法: 设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.

设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。 正定二次型 主条目:正定二次型 半正定二次型:其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。 一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。 正定二次型:其对应的对称矩阵在实数域内合同于单位阵。 一个n元二次型是正定二次型,当且仅当它的正惯性指数是n。正定二次型对应矩阵一定是可逆矩阵,且行列式大于0。 同样的可以定义半负定、负定和不定的二次型。 合同矩阵发展史 1855 年,埃米特(C.Hermite,1822-1901) 证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如称为埃米特矩阵的特征根性质等。后来,克莱伯施 (A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并得出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。

6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型 §1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形 §3 二次型与对称矩阵的正定性

§1 二次型及其矩阵表示、合同矩阵

定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式 () n x x x f ,,,21 n n x x a x x a x x a x x a x a 1141143113211221 112222+++++= n n x x a x x a x x a x a 224224322322 22222+++++ 2n nn x a +当系数属于数域F 时,称为数域F 上的一个n 元二次型。本章讨论实数域上的n 元二次型,简称二次型。 n n x x a x x a x a 33433423 3322++++

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

矩阵的等价,相似 合同的关系及应用

目录 摘要 (1) 1引言 (2) 2矩阵间的三种关系 (2) 2.1 矩阵的等价关系 (2) 2.2 矩阵的合同关系 (3) 2.3. 矩阵的相似关系 (3) 3 矩阵的等价、合同和相似之间的联系与区别 (4) 3.1矩阵的相似与等价之间的关系与区别 (4) 3.2 矩阵的合同与等价之间的关系与区别 (5) 3.2 矩阵的合同与等价之间的关系与区别 (5) 4矩阵的等价、合同和相似的应用 (6) 4.1矩阵等价的应用 (7) 4.2矩阵相似的应用 (9) 4.3矩阵合同的应用 (9) 4.4三种关系在概率统计中的应用 (10) 5结论 (12) 结束语 (12) 参考文献 (13)

摘 要: 本文主要了解矩阵的三种的关系的性质、联系、区别及应用,总结它们之间的结论和定理并应用到各个相应的领域。并且详细说明了三者的相同点和不同点。 关键字: 矩阵的等价关系及应用,矩阵的相似关系及应用,矩阵的合同关系及应用 1.引言 高等代数中我们讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.那么为了更好的掌握它们,我们不仅要了解它们的定义、性质还要了解它们间的异同点,总结它们的规律,并且要了解它们在各个领域的应用,我们需要更好的知道在什么条件下等价、合同、相似是可以相互转化的,加什么条件才可以相互转化,如果不能相互转化,那么你能找到相应的特例吗?另外,三种矩阵的应用你知道它具体应用到什么领域吗?是如何应用的? 2.矩阵的三种关系 2.1矩阵的等价关系 定义2.1.1 : 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使得B PAQ = 矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使B PAQ =. 2.1.2矩阵等价的性质: (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ?. (3)传递性:若A B ?,B C ?,则A C ?. (4)A 等价于B 的充要条件是秩(A )=秩(B ) (5)设A 为m ×n 矩阵,秩(A )=r ,则A 等价于???? ??00 0r E ,即存在m 级可逆矩阵P ,n 级可逆矩阵Q , 使 ???? ??=00 0r E PAQ . (6)(Schur 定理) 任何n 级复方阵A 必相似于上三角形矩阵,即A 相似于????? ? ?n λλ0 *1 其中n λλ,,1 为矩阵A 的特征值. 定理2.2.1: 若A 为m n ?矩阵,并且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),

矩阵的等价,合同,相似的联系与区别

目录 摘要 ............................................................................................................... I 引言 . (1) 1矩阵间的三种关系 (1) 1.1 矩阵的等价关系 (1) 1.2 矩阵的合同关系 (1) 1.3. 矩阵的相似关系 (2) 2 矩阵的等价、合同和相似之间的联系 (3) 3矩阵的等价、合同和相似之间的区别 (5) 结束语 (6) 参考文献 (6)

摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化. 关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件

引言: 在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量. 1矩阵间的三种关系 1.1 矩阵的等价关系 定义1 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ = 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =. 性质1 (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ? (3)传递性:即若A B ?,B C ?,则A C ? 定理1 若A 为m n ?矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和 Q (n 阶),使得00 0r m n I PAQ B ??? == ???.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ?矩阵,则A B ?当且仅当()()r A r B =. 1.2 矩阵的合同关系 定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵 p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩 阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1) 矩阵A 与B 不仅为同型矩阵,而且是方阵. (2) 存在数域p 上的n 阶矩阵p ,T P AP B =

矩阵合同变换

. . 矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12 ,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩 阵,,Q P 使得 112[]Q AQ λλ-=

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质: 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系:

设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系 ①相似?等价:~A B ?A,B 同型且()()r A r B A B =?? ②合同?等价:,A B A B ?同型且()()r A r B A B =?? ③相似与合同之间一般情况不能递推,但有一下附加条件时可以 Ⅰ、若A,B 均为实对称矩阵,则有A,B 一定可以合同于对角矩阵当 ~A B 时, ||||E A E B λλ-=-?二次型()T f x X AX =与()T g x X BX =有相同的标准型,即二者有相同的正负惯性指数A B A B ??? 即有~A B A B A B ??? Ⅱ、存在一个正交矩阵P ,即T P P E =使得T P AP B =即A B 则有

矩阵的合同,等价与相似

矩阵的合同,等价与相似 一、矩阵的合同,等价与相似的定义、性质及判定条件 (一)矩阵的等价: 1、定义:若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与 B 等价,记为A B ?。 2、性质: (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ? (3)传递性:即若A B ?,B C ?,则A C ? (4) 若A 为m n ?矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶) 和Q (n 阶),使得000r m n I PAQ B ??? == ???.其中r I 为r 阶单位矩阵. (5) 设A B 、是两m n ?矩阵,则A B ?当且仅当()()r A r B = 3、判定: 矩阵等价的充要条件: 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ = 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =. (二)矩阵的合同: 1、定义: 两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则

称A,B 合同,记作A B ?该过程成为合同变换。 2、性质: (1)反身性:任意矩阵A 都与自身合同. (2)对称性:如果B 与A 合同,那么A 也与B 合同. (3)传递性:如果B 与A 合同,C 又与B 合同,那么C 与A 合同. 因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等. (4) 数域F 上两个二次型等价的充要条件是它们的矩阵合同. (5) 复数域上秩为r 的二次型,可以用适当的满秩线性变换化为标准形: 2 2 212r f y y y =++ 3、判定 定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1) 矩阵A 与B 不仅为同型矩阵,而且是方阵. (2) 存在数域p 上的n 阶矩阵p ,T P AP B = (三)矩阵的相似 1、定义: n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、性质: 性质3 (1)反身性 T A E AE = ;

矩阵的合同与相似及其等价条件汇总

矩阵的相似与合同及其等价条件研究 (数学与统计学院 09级数学与应用数学一班) 指导老师:王晶晶 引言 矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助. 1 矩阵的等价与相似及其合同的基本概念 1.1矩阵等价的定义[1] 定义 1.1 如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的. 由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到: 定义1.2 如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的. 根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述: 定义1.3 设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2] 定义 1.4 设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得 B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B . 1.2.1 n 阶矩阵的相似关系,具有下列性质[3]: 性质1.1 反身性,即任一n 阶矩阵A 与自身相似. 性质1.2 对称性,即如果A ~B ,则B ~A . 性质1.3 传递性,如果A ~B ,B ~C ,则A ~C . 性质1.4 P A k AP P k P A k A k P 221122111)(+=+--. (2 1,k k 是任意常数)

相关文档