文档库 最新最全的文档下载
当前位置:文档库 › 中考数学中二次函数压轴题分类总结

中考数学中二次函数压轴题分类总结

中考数学中二次函数压轴题分类总结
中考数学中二次函数压轴题分类总结

二次函数的压轴题分类复习

一、抛物线关于三角形面积问题

例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4

5

,若存在,求出P 点的坐标;若不存在,请说明理由;

(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习:

1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标;

(2)求抛物线的函数解析式;

(3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求出此时点N 的坐标;

2. 如图,已知抛物线42

1

2++-=x x y 交x (1)求A 、B 两点的坐标,并求直线AB (2)设),(y x P (0>x )是直线x y =上的一点,Q 线作正方形PEQF .若正方形PEQF 与直线AB (3)在(2)的条件下,记正方形PEQF 与△OAB 数解析式,并探究S 的最大值.

二、抛物线中线段长度最小问题

例题 如图,对称轴为直线x =-1的抛物线y =点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;

O

N

B

y

(2)已知a =1,C 为抛物线与y 轴的交点.

①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;

②设点Q 是线段AC 上的动点,作QD ⊥x 轴,QD 交抛物线于点D ,求线段QD 长度的最大值. 练习:

1. 如图, Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线22

3

y x bx c =++经过B 点,且顶点在直线5

2

x =上. (1)求抛物线对应的函数关系式;

(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;

(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.

三、抛物线与线段和最小的问题

例题 如图,已知抛物线()()()1

20y x x a a a =-+>与x 且点B 在点C 的左侧.

(1)若抛物线过点M (﹣2,﹣2),求实数a 的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE 的面积;

②在抛物线的对称轴上找一点H ,使CH+EH 的值最小,直接写出点H 的坐标. 练习:

1. 如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点B (0,-5).

(1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P ,使得△ABP

2. 如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A 与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 分别交于F 、G .

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)在直线EF上求一点H,使△CDH的周长最小,并求出H的坐标;

(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

四、抛物线与等腰三角形

例题:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3

物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P

(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

练习:

1. .如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C

的坐标为(0,3)它的对称轴是直线

1

2 x=-

(1)求抛物线的解析式;

(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

2. 如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.

(1)求抛物线的解析式;

(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.

①当△OPC为等腰三角形时,求点P的坐标;

②求△BOD 面积的最大值,并写出此时点D的坐标.

3. 如图,已知抛物线于x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3). (1)求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形,若存在,求出符合条件的点P的坐标;若不存在,请说明理由:

(3)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M

的坐标。

五、抛物线与直角三角形

例题如图,抛物线2

=++经过点A(﹣3,0),B(1.0),C(0,﹣3).

y ax bx c

(1)求抛物线的解析式;

(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;

(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

练习:

1. 如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.

(1)求b,c的值;

(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;

(3)在(2)的条件下:

①求以点E、B、F、D为顶点的四边形的面积;

②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.

2 如图,抛物线y=mx2―2mx―3m(m>0)与x轴交于A、B两点,与y轴交于C点. (1)请求抛物线顶点M的坐标(用含m的代数式表示),A,B两点的坐标;

(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;

(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明由.

例题 1. 如图,抛物线经过A(-1,0),B(5,0),C(0

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC

(3)点M为x轴上一动点,在抛物线上是否存在一点N

边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.

2. 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A 在y 轴上. (1)二次函数的解析式为y = ;

(2)证明点(,21)m m --不在(1)中所求的二次函数的图像上; (3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D

点.

① y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标

是 ;

②二次函数的图像上是否存在点P ,使得ABD POE S S ??=2?若存在,求出P 点坐标;若不

存在,请说明理由. 练习:

1. 如图,抛物线14

17

452++-

=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式;

(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t (3)设在(2)的条件下(不考虑点P 与点CM 何值时,四边形BCMN 为平行四边形?对于所求的请说明理由.

2. 如图所示,在平面直角坐标系x O y 轴的负半轴和x 轴的正半轴上,抛物线y =(1)求抛物线的表达式.

(2)如果点P 由点A 出发沿AB 边以2cm/s 另一点也随之停止运动,设S=2PQ (2cm ).

y

O A B C

①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;

②当S取5

4

时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行

四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标. 3. 如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;

(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M 的坐标.

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

中考数学二次函数压轴题汇编精选文档

中考数学二次函数压轴题汇编精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B. (1)求点B的坐标和抛物线的解析式; (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB 及抛物线分别交于点P,N. ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; ②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值. 2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′. (1)求抛物线C的函数表达式; (2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围. (3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动

点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由. 3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M 的关联点. (1)当⊙O的半径为2时, ①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点 是. ②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围. (2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围. 4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y 轴相交于点C. (1)求抛物线y=﹣x2+ax+b的解析式; (2)当点P是线段BC的中点时,求点P的坐标; (3)在(2)的条件下,求sin∠OCB的值.

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB = 8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交 图2

于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大并求出最大面积. 3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由. C E D G A x y O B F

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x轴于点A (3,0),交 y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S△PAB = 8 9 S △C AB,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段O A绕原点O顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△B OC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = a x2 + bx + 4与x 轴的两个交点分别为A (-4,0)、 B(2,0),与y 轴交于点C,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF 上求一点H,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A,交y 轴于点B,抛物线y=ax 2 +b x+c经过A、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE 的面积等于四边形APC E的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由 . C E D G A x y O B F

二次函数压轴题解题技巧

图1 图 2 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2 -2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2 +bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

初三数学二次函数知识点总结及经典习题含答案38540

人教版九年级下册数学二次函数知识点总结教案主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

应用题和二次函数综合题型归纳汇总

一、应用题型: 1、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间 会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客 居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340 元。设每个房间的房价每天增加x元(x为10的正整数倍)。 (1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2) 设宾馆一天的利润为w元,求w与x的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 2、近年来,政府大力投资改善学校的办学条件,并切实加强对学生的安全管理和安全教 育.某中学新建了一栋教学大楼,进出这栋教学大楼共有2道正门和2道侧门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟可以通过840名学生. (1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教 学大楼的教学室里最多有1500名学生,试问建造的这4道门是否符合安全规定? 请说明理由. 练习1:某儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元. (1)求A、B两种型号童装的进货单价各是多少元? (2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该 店准备用不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元.问该店应该怎样安排进货,才能使总获利最大?最大总获利为多少元?

中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编 2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t. (1)求抛物线的表达式; (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. (3)如图2,连接BC,PB,PC,设△PBC的面积为S. ①求S关于t的函数表达式; ②求P点到直线BC的距离的最大值,并求出此时点P的坐标. 3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC. (1)求线段OC的长度; (2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和

抛物线的解析式; (3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由. 4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式. (2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

5.如图,点P为抛物线y=x2上一动点. (1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程; (2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M. ①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由. ②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值. 6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒(1)求抛物线解析式; (2)当t为何值时,△AMN为直角三角形; (3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.

二次函数压轴题分类精选---取值范围

1.已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO= (1)求二次函数的解析式; (2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标; (3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写出x1,x2的值;若不存在,说明理由. 【分析】(1)首先根据tan∠ACO=,求出OA的值,即可判断出A点的坐标;然后把A点的坐标代入y=x2+bx﹣4,求出b的值,即可判断出二次函数的解析式.(2)首先根据Q为抛物线对称轴上的一点,设点Q的坐标为(﹣,n);然后根据∠OQC=∠CQP、∠CQP=∠OCQ,可得∠OQC=∠OCQ,所以OQ=OC,据此求出n 的值,进而判断出Q点坐标即可. (3)根据题意,分3种情况:①当x1≤x2≤﹣时;②当x1≤﹣≤x2时;③当﹣ <x1≤x2时;然后根据二次函数的最值的求法,求出满足题意的实数x1、x2(x1<x2),使得当x1≤x≤x2时,y的取值范围为≤y≤即可. 【解答】解:(1)如图1,连接AC,

, ∵二次函数y=x2+bx﹣4的图象与y轴的交点为C,∴C点的坐标为(0,﹣4), ∵tan∠ACO=, ∴, 又∵OC=4, ∴OA=1, ∴A点的坐标为(1,0), 把A(1,0)代入y=x2+bx﹣4, 可得0=1+b﹣4, 解得b=3, ∴二次函数的解析式是:y=x2+3x﹣4. (2)如图2,

, ∵y=x2+3x﹣4, ∴抛物线的对称轴是:x=﹣, ∵Q为抛物线对称轴上的一点, ∴设点Q的坐标为(﹣,n), ∵抛物线的对称轴平行于y轴, ∴∠CQP=∠OCQ, 又∵∠OQC=∠CQP, ∴∠OQC=∠OCQ, ∴OQ=OC, ∴, ∴, 解得n=±, ∴Q点坐标是(﹣,)或(﹣,﹣). (3)①当x1≤x2≤﹣时,二次函数y=x2+3x﹣4单调递减,∵y的取值范围为≤y≤,

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数知识点总结及练习题

二次函数 考点1、二次函数的概念 定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a必须为非零实数,即a ≠0, 而b 、c为任意实数。 (2)当b=c=0时,二次函数2 ax y =是最简单的二次函数。 (3)二次函数c b a c bx ax y ,,(2 ++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2 为整式) 例1: 函数y=(m +2)x2 2-m +2x-1是二次函数,则m= _______. 例2:已知函数y=ax 2 +bx +c(其中a ,b,c是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数. 例3:函数y =(m-n )x 2 +mx+n是二次函数的条件是( ) A.m 、n 为常数,且m ≠0 ?????B.m 、n 为常数,且m ≠n C .m、n 为常数,且n ≠0 ? ??D.m、n 可以为任何常数 例4: 下列函数中是二次函数的有( ) ①y=x+ x 1;②y=3(x-1)2+2;③y=(x+3)2-2x 2 ;④y=2x 1+x. A .1个 B.2个 C.3个 D .4个 考点2、三种函数解析式: (1)一般式: y=ax 2 +bx+c (a≠0),? 对称轴:直线x =a b 2- 顶点坐标:( a b a c a b 4422 --, ) (2)顶点式:()k h x a y +-=2 (a≠0), 对称轴:直线x=h 顶点坐标为(h ,k ) (3)交点式:y=a(x-x1)(x -x2)(a ≠0), ? 对称轴:直线x= 2 2 x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标). 例1:抛物线822 --=x x y 的顶点坐标为____________;对称轴是___________。 例2:二次函数y=-4(1+2x)(x-3)的一般形式是_______ 例3:已知函数2)(2 2+-+=x m m mx y 的图象关于y 轴对称,则m=________; 例4:抛物线y=x 2 -4x+3与x 轴的交点坐标是______. 例5:把方程x (x+2)=5(x-2)化为一元二次方程的一般形式后a=____,b=_____,c=_____. 考点3、用待定系数法求二次函数的解析式 (1)一般式:c bx ax y ++=2 .已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴或最值,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点 式:()()21x x x x a y --=. 例1:一个二次函数的图象顶点坐标为(-5,1),形状与抛物线y =2x 2 相同,这个函数解析式为______________. 例2:已知抛物线的顶点坐标是(-2,1),且过点(1,-2),求抛物线的解析式。

全国中考二次函数压轴题集锦

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A

二次函数最值知识点总结典型例题与习题

二次函数在闭区间上的最值 一、 知识要点: 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: 1.当[]n m a b ,∈-2时,)(x f 的最小值是)(4422x f a b a c a b f ,-=??? ??-的最大值是)()(n f m f 、中的较大者。 2.当[]n m a b ,?-2时 若m a b <-2,由)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f 若a b n 2-<,由)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

例4. 已知12≤x ,且02≥-a ,求函数3)(2 ++=ax x x f 的最值。 例5. (1) 求2 f (x )x 2ax 1=++在区间[-1,2]上的最大值。 (2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。 4. 动轴动区间 例6. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。 (二)、逆向型 例7. 已知函数2 ()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。 例8.已知函数2 ()2 x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。 例9. 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??- ???? 上的最大值为3,求实数a 的值。

二次函数压轴题总结精华

二次函数常见压轴 y=x2-2x-3(以下几种分类的函数解析式就是这个) 和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标 在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标 y B O C D A x 求面积最大连接AC,在第四象限找一点P,使得?ACP面积最大,求出P坐标 y 讨论直角三角连接AC,在对称轴上找一点P,使得?ACP为直角三角形,求出P坐标 或者在抛物线上求点△P,使ACP是以AC为直角边的直角三角形. B O C y D A x 讨论等腰三角连接AC,在对称轴上找一点P,使得?ACP B O A x 为等腰三角形,求出P坐标 C y D 讨论平行四边形1、点E在抛物线的对称轴上,点F 在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标B O A x C D

的 和最小差最大 如图所示,在平面直角坐标系 xOy 中,正方形 OABC 的边长为 2cm ,点 A 、C 分别在 y 轴的负半轴和 x 轴的正半 轴上,抛物线 y =ax 2+b x +c 经过点 A 、B 和 D (4, 2 3 ) . (1)求抛物线的解析式. (2)如果点 P 由点 A 出发沿 AB 边以 2cm /s 的速度向点 B 运动,同 时点 Q 由点 B 出发沿 BC 边以 1cm /s 的速度向点 C 运动 ,当其中一点到达终点时,另一点也随之停止运动. 设 S =PQ 2(cm 2) ①试求出 S 与运动时间 t 之间的函数关系式,并写出 t 的取值范围; ②当 S 取 5 4 时,在抛物线上是否存在点 R ,使得以 P 、B 、 (第 22 题) Q 、R 为顶点的四边形是平行四边形? 如果存在,求出 R 点的坐标; 如果不存在,请说明理由. (3)在抛物线的对称轴上求点 M ,使得 M 到 D 、A 的距离之差最大,求出点 M 的坐标. 如图 13,抛物线 y=ax 2+bx +c(a≠0) 顶点为(1,4),交 x 轴于 A 、B ,交 y 轴于 D ,其中 B 点的坐标为(3,0) (1)求抛物线的解析式 (2)如图 14,过点 A 的直线与抛物线交于点 E ,交 y 轴于点 F ,其中 E 点的横坐标为 2,若直线 PQ 为抛物线 的对称轴,点 G 为 PQ 上一动点,则 x 轴上是否存在一点 H ,使 D 、G 、F 、H 四点围成的四边形周长最小.若存 在,求出这个最小值及 G 、H 的坐标;若不存在,请说明理由. (3)如图 15,抛物线上是否存在一点 T ,过点 T 作 x 的垂线,垂足为 M ,过点 M 作直线 M N ∥BD ,交线段 AD 于点 N ,连接 △M D ,使 DNM ∽△BMD ,若存在,求出点 T 的坐标;若不存在,说明理由.

史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

精选中考二次函数压轴题[含答案及解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +- =221的图象经过点D ??? ? ? -29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =1 6 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 (第 2 (图1) ( 图

相关文档
相关文档 最新文档