文档库 最新最全的文档下载
当前位置:文档库 › 宏基因组学的一般研究策略(DOC)

宏基因组学的一般研究策略(DOC)

宏基因组学的一般研究策略(DOC)
宏基因组学的一般研究策略(DOC)

宏基因组学的一般研究策略

摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。

关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略

Strategies for accessing metagenomics for desired applications

Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field.

Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies

大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。

1 宏基因组学研究策略

1.1宏基因组学概要

宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。

1.2 微生物及其基因的富集

在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常

图 1 环境微生物宏基因组学研究策略[6]

Fig. 1 General process of metagenomic strategie[6]

用的就是上面例子中的底物选择法[5]。

每一个事物都有其两面性,富集培养虽然扩大了基因的总量,却很容易使部分微生物及其携带的基因丢失。基因水平富集中的稳定同位素探针技术(SIP)很有代表性, 它是用稳定同位素标记底物, 用相对量较大的原子掺入到具有活性的核酸里,采用密度梯度离心法将其分开, 标记的核酸可作为PCR的模板,用来构建宏基因组文库[7]。目前,SIP与宏基因组学结合的报道还不多,但其潜力与优势很明显,利用SIP可提高新基因发现的几率。

1.3 环境中总DNA的提取

宏基因组学要分析的样品成分复杂,要获得高浓度、大片段、无偏好的总DNA是宏基因组学技术的难点,也是其重点。现在提取DNA的方法大体有两种: 其一是直接提取法, 又称原位提取法,它用化学和物理方法直接裂解样品中的微生物使DNA得以释放,再抽提总DNA,并对DNA进行纯化。其中以Zhou法[8]和Tsai[9]法最为常用。该法操作简便、省时、成本低,能代表某一生境的微生物群落多样性。其缺点是会出现细胞裂解不完全或DNA 与样品杂质共沉淀而难以分离, 故一般要再进行DNA纯化这一步,它所提取的DNA片段较小(1 kb~50 kb), 适合小片段文库的构建; 其二是间接提取法, 即异位提取法,是采用差速离心等方法将细胞从样品中分离出,再提取DNA, 该法获得的DNA纯度高、DNA 片段大(20 kb~500 kb), 适合构建大片段的基因文库。但操作繁琐、成本高、DNA 产率低且有偏嗜性, 其

产率只是上一种方法的1%~10% [10], 其总DNA往往不能完全代表样品所在生境的生态学多样性。可见两种方法各有利弊,应根据具体实验灵活选择,一般较好提DNA的液体样品才用后者。本实验室通过实验研究得出:一般而言,直接裂解提取法效率较高, 不易丢失物种信息,能够获得25 kb 左右的DNA 片段。间接法提取效率较低, 容易丢失基因信息。因此我们建议采用直接提取法获取总DNA。我们还采用低熔点琼脂糖包埋法提取水样中的大片段DNA,其大小在50Kb以上。单一包埋块中的DNA含量较小,我们把多个琼脂糖包埋块放在一起后用酶法纯化浓缩,大大提高了DNA的总量,收到了很好的效果。

1.4文库的构建

1.4.1载体的选择: 现在用于DNA克隆的载体有质粒、Fosmid、Cosmid、BAC、YAC和噬菌体等,可由DNA纯度、片段大小、质粒特性、宿主菌及筛选方法等灵活选择。质粒可用于克隆小于10kb的DNA片段,对较大的基因或由多基因簇构成的DNA可以建立Fosmid 文库[11-13]和Cosmid 文库[14]。BAC和Y AC的容量可达200 kb~450 kb[15]。但YAC载体存在着比较高的嵌合体(占全部克隆的40%~60%),转化效率低,稳定性差,插入片段分离与纯化比较困难[15]。BAC、PAC、MAC和人类人工染色体HAC等载体系统克服了以上缺点。一般认为BAC是其中较好的。Fosmid 质粒上带有 E.coli F 因子单拷贝的复制原点和需诱导的高拷贝oriV 复制原点,其表达受一个严谨条件诱导的启动子的控制。我们可通过诱导Fosmid阳性克隆高效表达的方法获得大量质粒,便于提取功能DNA,进而进行序列和酶学特性的分析,而不需要再建亚克隆。我们通过大量实验摸索出了Fosmid质粒的较佳的应用条件,其效果优于其它载体。

1.4.2 宿主细胞的选择: 不同种类的微生物所产的活性物质不同。选择宿主时应考虑转化效率的高低、重组载体的稳定性、外源基因能否有效表达、目标性状是否缺陷等。目前,E. coli 是应用最多的宿主[16.17], 其背景清楚、操作简单、繁殖快、易培养。为了表达真核外源基因我们实验室改进了酵母和CHO等表达系统且效果明显,它们是表达真核修饰蛋白(如市售的很多药物蛋白)的重要研究方向。现在有人利用链霉菌、假单胞菌等作为表达新抗生素的宿主效果较好[18]。我们可根据目的产物不同灵活选择宿主菌,一般而言,若要开发新型生物催化剂则用E. coli[19],若开发的是新的抗生素等药物则选择亲缘关系很可能较近的链霉菌等。

1.5文库的筛选

活性克隆子的筛选是宏基因组学技术的又一重点和难点。高通量的筛选策略能否应用成功是实验成败的关键。由于生物的个体性很强,导入宿主菌的基因可能缺乏有效的转录、翻译以及蛋白转运分泌机制,也可能由于翻译后加工机制不完善,或宿主缺乏必要因子及存在密码子的偏嗜性等将直接影响筛选的效率和灵敏度[20],给宏基因组文库筛选带来了很大的挑战。目前筛选策略主要有一下两种:

1)基于序列的筛选方法,该法用到了生物信息学,由已知的同源性很近的基因的序列设计探针或PCR引物,再用杂交或PCR扩增等技术筛选出目的基因, 该法是筛选保守性较高的生物催化剂的有效方法。它克服了功能筛选法中对活性产物的有效表达的依赖。其中PCR 扩增技术是最常用的[21]。这一方法是根据保守和已知DNA序列设计的,所以它的缺点是被筛选出的新基因总是与已知基因相同或类似,或扩增的特异性不强,筛选效果不理想,且难以获得完整的功能基因。现在基因芯片技术和优化的随机鸟枪法筛选效果也很令人信服。序列依赖性筛选法被看作是极具潜力的一种筛选方式。很多研究者在此方面作了改进,譬如应用穿梭载体表达外源基因,从而使宏基因组DNA 利于通过多种宿主进行筛选,或者对大肠杆菌做适当修饰以增加基因表达的范围。

2) 基于功能的筛选方法,这一种方法利用外源基因表达产物的活性来筛选阳性克隆,即采用各种活性检测手段挑选有活性的克隆子,进而对其进行研究分析。现在大部分的新型生物

催化剂都是利用这种方法筛选得到的。人们已经在选择性平板上筛选到了脂肪酶、淀粉酶、蛋白酶及抗菌活性的克隆子[22,23]。本方法中有一种有效的筛选方式是构建报告融合子[24],可将提取的总DNA随机克隆到无启动子的绿色荧光蛋白基因(GFP)前面, 运用荧光激活细胞分离(FACS)技术, 在添加特定底物的情况下富集筛选阳性克隆。但该法依赖于基因的高效表达,产物有的要求较高的活性,其缺点是工作量大、效率低下, 被转化的宿主仅在少数有可见性状。最近关于底物诱导基因表达检出法的报道也不少[25]。

在实地实验中常常将上面两种方法结合起来,既避免了功能筛选鉴定不出的难表达序列,又避免了序列筛选的不足[26]。

2 宏基因组学的主要应用(图2)及其研究进展

2.1发现新的基因我们对自然界中99%以上的微生物知之甚少, 因此构建的宏基因组文库中新基因种类的数量极大。如, Tyson 等人对一个群落结构较简单的嗜酸生物膜的宏基因组进行了测序, 从76 Mbp 中鉴定出的新基因超过了4 000个[27]。利用宏基因组文库, 已发现的新基因主要有生物催化剂基因、抗生素抗性基因以及编码转运蛋白的基因[28-30]等。2.2 开发新的微生物活性物质宏基因组学技术为新的微生物活性物质的开发提供了新思路。已被广泛用于开发不可培养微生物中有商业利用价值的生物催化剂。宏基因组技术与定向进化技术(如定点突变、DNA改组)结合可以获得更适于商业应用催化剂。该策略克服了发酵限制等传统缺点。携带载体的宿主可通过基因工程地方法强化其表达产物,通过增加克隆表达强度,高效筛选感兴趣的宏基因组片段及其产物。目前,通过宏基因组技术从环境中已经筛选出多种酶如转移酶类、水解酶类、乙醇脱氢酶类、淀粉酶、过氧化氢酶、纤维素酶、几丁质酶、酯酶、脂肪酶、木聚糖酶、新的抗生素和抗菌抗肿瘤活性物质( 如紫色杆菌素) 及抗生素抗性基因( 如N-酰基酪氨酸合成酶基因)[31]等。这些酶可适应于较低的温度与较大的ph值范围[32],因此是商业用酶的首选。将宏基因组文库筛选和基因改组等基因工程技术结合起来, 在开发新的微生物活性物质方面潜力巨大。

2.3微生物分子生态学研究宏基因组学技术为认识由可培养和不可培养微生物所构成的复杂生境提供了新思路。因此也提出了环境生物宏基因组的概念。它使得研究者可绕过细菌分离培养这一步,而从基因水平进行微生物分子生态学研究。从环境中提取DNA,再通过

图2宏基因组学的应用[7]

Fig.2Application of the metagenome[7]

PCR等方法获得各种细菌rDNA,测序后进行系统学分析,即可描述环境微生物的遗传多样性,使人们对大量不可培养的微生物群体有了全新的认识[37]。例如Tyson[33]等研究了生长在流动的酸矿外排液表面的嗜酸生物膜的群落结构及其代谢途径, 从中鉴定出了5个基因, 并由微生物之间的基因的功能互补揭示了它们的碳氮固定和产生能量的代谢过程和这些微生物在极端环境中的生存策略[17]。宏基因组扩大了生态学研究的对象,随着分子生物学技术的进步,以功能基因为基础的功能生态学将成为未来的热点,这才是真正意义上的微生态[32]。

2.4生物降解作用研究微生物是适应环境能力最强的物种, 环境污染往往伴随微生态的变化[34,35]。宏基因组技术可以研究不可培养微生物,发掘它们的基因资源,获得具有某些物质降解能力的活性物质,进而了解特定环境下微生物或活性物质的耐受机理,用于污染的修复。如,我们可建立污染地域的宏基因组文库,筛选具有某污染物降解能力的克隆再用遗传工程手段,把从宏基因组中分离出的基因组编成具有其他活性成分、或可降解污染物功能的基因簇用于污染物的处理。Kube[36]等建立了黑海海床的Fosmid文库,筛选到了厌氧环境下苯甲酸盐类降解相关酶的基因,经过生物信息学分析后,完成了苯甲酸盐的厌氧代谢通路,并找到了控制此过程的关键基因。可见本技术对解决三废问题,实现可持续发展有一定的意义。

3 结语与展望

宏基因组学作为一门新兴学科,展示出强大的生命力与潜力,越来越多的科研人员将眼光投向它,其重心也从多样性分析转移到活性物质的筛选上来[37]。虽然该技术在应有上硕果累累。但由于它刚刚起步,还有些技术方法不够成熟。主要有三方面[38-43],一是DNA 的提取方法需进一步完善,外源基因表达量少和缺乏高效的筛选方法。二是对更适宜的载体的探索真核表达宿主细胞的开发,研究和探索多种真菌宿主势在必行。三是需要把宏基因组学与生物信息学和生物芯片技术等结合起来,生物信息学为宏基因组复杂的序列信息的分析提供了方便。如芯片技术已用于检测微生物群落的基因表达。随着文库构建和筛选策略的不断提高, 异源基因表达能力和产量的增加, 宏基因组学技术将成为研究环境微生物多样性, 筛选新的功能基因和生物活性物质的重要手段,它的前景是很诱人的,相信经过我们不断的摸索与创新,并结合现在先进的仪器与技术,它将会发展成为生物学中璀璨的一颗明珠,更好的发挥出它应有的潜力。

参考文献:

[1]李丽娟,张殿昌,龚世园.宏基因组技术在开发未培养微生物资源中的应用[J].水利渔业,2007,27(3):7-9.

[2]丁维俊,董婷,曾庆秋.从宏基因组学谈中医整体观的现代化[J].四川中医,2008,26(6):26-28.

[3] Suzan Pantaroto de Vasconcellos , Célio Fernando Figueiredo Angolini , Isabel Natalia Sierra García, Bruna Martins Dellagnezze , Cynthia Canedo da Silva , Anita Jocelyne Marsaioli , Eugenio Vaz dos Santos Neto , Valéria Maia de Oliveira. Reprint of: Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs. Organic Geochemistry 41 (2010) 1067-1073

[4] Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66-74.

[5] Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003, 14(3):303-310.

[6] 黄循柳,黄仕杰,郭丽琼,林俊芳宏基因组学研究进展微生物学通报2009, 36(7): 1058-1066

[7] Jeon CO, Park W, Padmanabhan P, et al. Discovery of a bacterium with distinctive dioxygenase that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA, 2003, 100(23): 13591-13596.

[8] Kavita S. Kakirde, Larissa C. Parsley, Mark R. Liles. Size does matter: Application-driven approaches for soil metagenomics. Soil Biology & Biochemistry 42 (2010) 1911-1923

[9] Nicola Segata1, Jacques Izard, Levi Waldron, Dirk Gevers, Larisa Miropolsky, Wendy S Garrett and Curtis Huttenhower. Metagenomic biomarker discovery and explanation. Genome Biology 2011, 12:R6

[10] Daniel R. The Metagenomics of soil. Nature Reviews Microbiology, 2005, 3(6): 470-478.

[11] Park HJ, Jeon JH, Kang SG, et al. Functional expression and refolding of new alkaline esterase EM2L8 from deepsea sediment metagenome. Protein Expression and Purication, 2007, 52(2): 340-347.

[12] Lee DG, Jeon JH, Jang MK, et al. Screening and characterization of a novel fibrinolyticmetalloprotease from a metagenomic library. Biotechnol Lett, 2007, 29(3):465-472. [13] Jin D, Lu W, Ping SZ, et al. Identification of a new gene encoding EPSPS with high glyphosate resistance from the metagenomic library. Curr Microbiol, 2007, 55(4):350-355. [14] Xu MX, Xiao X, Wang FP. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment. Extremophiles, 2008, 12(2):255-262.

[15] 朱雅新, 王加启, 马润林, 等. 荷斯坦奶牛瘤胃微生物元基因BAC 文库的构建与分析. 微生物学报, 2007,47(2): 213-216.

[16] Wang C, Meek DJ, Panchal P, et al. Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol, 2006, 72(1):384-391.

[17] Ono A, Miyazaki R, Sota M, et al. Isolation and characterization of naphthalene catabolic genes and plasmids from oil-contaminated soil by using two cultivation independent approaches. Appl Microbiol Biotechnol, 2007,74(2): 501-510.

[18] Martinez A, Kolvek SJ, Yipc LT, et al. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol, 2004,70(4): 2452-2463.

[19]Lammle K, Zipper H, Breuer M, et al. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning[J]. J Biotechnol, 2007, 127(4):575~592.

[20] Bell PJ et al. Microbiology, 2002, 148: 2283-2291

[21] He YZ, Fan KQ, Jia CJ, et al. Characterization of a Hyperthe-rmostable Fe-superoxide dismutase from hot spring. Appl Microbiol Biotechnol, 2007, 75(2): 367-376.

[22] P.K. Siddhapura, S. Vanparia, M.K. Purohit, S.P. Singh. Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. International Journal of Biological Macromolecules 47 (2010) 375-379

[23]RondonMR, AugustPR, BettermannAD, et al. Cloningthe Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms[J].Applied and Environmental Microbiology,2000,6(66):2541-2547.

[24]Amann RI,LudwigW,SchleiferKH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev,1995,1(59):143-169.

[25]钱莉莉,陈少欣,史炳照.宏基因组学在新型生物催化剂开发中的研究进展[J].微生物杂志,2006,26(4):68-71.

[26]欧敏功,崔晓龙,李一青.宏基因组学在未培养微生物研究中的应用[J].微生物学杂志,2007,27(2):88-91.

[27] TYSON J https://www.wendangku.net/doc/968107837.html,munity structure and metabolism through reconstruction of microbial genomes from the environment [J].Nature, 2004, 428: 37- 43.

[28] VENTER J C.Environmental genome shotgun sequencing of the Sargasso Sea[J].Science, 2004, 304: 66- 74.

[29] DANIEL R.The metagenomics of soil[J].Nature Review Microbiology, 2005, 3: 470- 478.

[30] RIESENFELD C S, GOODMAN R M, HANDELSMAN J.Uncultured soil bacteria are a reservoir of new antibiotic resistance genes[J]. Environmental Microbiology, 2004, 6: 981- 989. [31] LAMMLE K, ZIPPER H, BREUER M, et al.Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning[J].Journal of Biotechnology, 2007, 127: 575- 592.

[32]Arnaldo Glogauer, Viviane P Martini, Helisson Faoro, Gustavo H Couto1, Marcelo Müller-Santos Rose A Monteiro, David A Mitchell, Emanuel M de Souza, Fabio O Pedrosa and Nadia Krieger. Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories 2011, 10:54

[33]Brady S F, Chao C J, Handelsman J, et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA[J]. Org Lett, 2001, 3:1981-1984.

[34] WENDEROTH D F, FERSLEV B, MACARRI G, et al.Leitbakteria of microbial biofilm communities causing occlusion of biliary stents[J].Environ Microbiol, 2003, 5: 859- 866.

[35] SCHMEISSER C, STOCKIGT C, RAASCH C, et al.Metagenome survey of biofilms in drinking!water networks [J].Appl Environ Microbiol, 2003, 69: 7298- 7309.

[36] KRUGER M, MEYERDIERKS A, GLOCKNER F O, et al.A conspicuous nickel protein in microbial mats that oxidize methane anaerobically[J].Nature, 2003, 426: 878- 881.

[37]叶姜瑜,罗固源.未培养微生物的研究与微生物分子生态学的发展[J].微生物学通报, 2005, 32(1):111-115.

[38]方光伟,洪雪梅,蔡丽希,等.土壤宏基因组的提取及基于免培养技术分析细菌16S rDNA[J].江西农业大学学报,2005,27(4):505-507.

[39]Rodriguez-Brito B, Rohwer F, Edwards R A. An application ofstatistics to comparative metagenomics[J]. BMC Bioinformatics, 2006, 7:162-165.

[40]Li JunGang, Zhang KeGui, Han WenJun. Cloning and biochemical characterization of a novel lipolytic gene from activated sludge metagenome, and its gene product. Microbial Cell Factories, 2010, 9:83

[41] Nádia Skorupa Parachin, and Marie F Gorwa-Grauslund. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnology for Biofuels 2011, 4:9

[42] Wang G Y, Graziani E, Waters B, et al. Novel natural products from soil DNA libraries in a streptomycete host[J]. OrganicLetters, 2000, 2(16):2401-2404.

[43]Qing Peng, Xue Zhang, Meng Shang, Xu Wang, Guili Wang, Bingxue Li, Guohua Guan, Ying Li1 and Youshao Wang. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microbial Cell Factories 2011, 10:9

宏基因组学的研究进展

宏基因组学的研究状况及其发展 摘要:宏基因组学是近年来发展起来的一门新兴学科,主要技术包括从环境样品中提取微生物混合基因组DNA、利用可培养的宿主菌建立宏基因组文库及筛 选目的基因。该技术可以克服传统培养技术的不足,是研究未培养微生物、寻找新功能基因和开发获得新资源的重要新途径。目前宏基因组学已广泛应用于各个领域,并在医药、农业、能源开发、环境修复、生物技术、生物防御等方面有了较深入的研究。 关键词:宏基因组学、宏基因组、基因组文库构建、文库筛选、未培养微生物、研究进展 随着微生物学的发展,微生物基因组全序列测定计划正在全球被快速地推行,但现有技术条件下,自然界存在的可培养微生物不到总数的1%,阻碍了该计划 的发展,使得绝大多数的微生物资源不能被开发和利用。21世纪初,随着测序能力的提高和基因组学的发展,科学家提出了一种研究不可培养微生物基因组的新思路——直接对含有各种不可培养的微生物的群体进行基因组序列的测定。这类研究称为Metagenomics,前缀“Meta”源于希腊语。意思是“超越”。科学家选择它来表示这种基因组研究超越了传统意义上分析单一物种的基因组学,将研究对象定为由种类众多的微生物组成的整个菌落。国内的研究者也据此将该术语翻译为“宏基因组学”。 1 宏基因组的概念 宏基因组 (也称微生物环境基因组、宏基因组学、元基因组学、生态基因组学) 是由Handelsman等1998年提出的新名词, 其定义为“the genomes of the total microbiota found in nature”,即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因, 目前主要指环境样品中的细菌 和真菌的基因组总和。而所谓宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象, 以功能基因筛选和测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 克隆DNA到合适 的载体,导入宿主菌体,筛选目的转化子等工作。宏基因组文库既包含了可培养的又包含了不能培养的微生物基因,避开了微生物分离培养的问题,极大地扩展了微生物资源的利用空间,增加了获得新的生物活性物质的机会,为新的医药产业和发现新的生物技术提供丰富的基因文库,并利于环境微生物有机群体的分布和功能的研究。 2 宏基因组学的研究过程 2.1 宏基因组文库的构建 宏基因组文库的构建沿用了分子克隆的基本原理和技术方法,并根据具体环境样品的特点和建库目的采用了一些特殊的步骤和策略。一般包括样品总DNA的 提取、与载体连接和克隆到宿主中。 2.1.1样品总DNA的提取 宏基因组文库构建的关键之一是获得高质量的目的样品的总DNA。目的样品 的采集是第一步,除了需严格遵循取样规则外,取样中应尽量避免对样品的干扰,缩短保存和运输的时间,使样品能更好地代表自然状态下的微生物原貌。 根据提取样品总DNA前是否分离细胞,提取方法可以分为原位裂解法和异位 裂解法。原位裂解法主要是通过去污剂处理(如SDS)、酶解法(如蛋白酶K)、机械

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理:

宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = , 260/230 = ,电泳检测DNA 应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先通过PCR将16S/18S 序列扩增出来,再将其连接到克隆载体上,导入感受态细胞,涂平板做蓝白斑筛选,选出阳性克隆提质粒,对质粒进行测序反应,测序反应后纯化后用ABI 3130或ABI 3730进行毛细管电泳测序。 由于其测序准确率比较高,而通量非常低,现通常用做二代测序结果的验证。454 Platform: 454平台主要包括两种测序系统:454 GS FLX+ System和454 GS Junior System。454 GS FLX+ System测序读长可以达到600-1000bp,通量450-700M,GS Junior System测序读长在400bp左右,通量在35M。

病毒宏基因组学方法优缺点及意义

病毒宏基因组学方法优缺点及意义 病毒宏基因组学方法优缺点及意义 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,以下是一篇关于病毒宏基因组学探究的论文范文,供大家阅读参考。 病毒个体微小,多数病毒直径在100nm(20~200nm),较大的病毒直径300~450nm,较小仅为18~22nm,结构简单,不能独立复制需要依赖于宿主细胞复制繁殖,被许多生物学家认为是处于生命和非生命交叉区域的存在物。据估计目前对病毒的发掘还不到1%[1],对病毒的研究具有广阔的前景和现实意义。病毒独特的结构和特性给病毒的研究和鉴别带来许多困难,主要体现在两个方面:第一,病毒没有专门的宿主细胞系,60%以上的病毒无法成功的进行离体培养[2]或在培养中不能表达致病性;第二,病毒基因本身变异率高,通过与宿主间的相互作用进化,增加核酸多样性,产生新病毒,导致宿主范围扩大、跨物种传播[3].对细菌的研究可以通过保守的16sRNA的分析来定位分类信息、进化关系和种群多样性等。对于真菌有18sRNA及ITS序列。然而病毒不像细菌真菌,没有固定保守的进化标记基因。 所以一些传统研究方法的应用受到限制,不能完全满足病毒研究的需要。如电镜观察病毒的灵敏性不高,细胞培养病毒可能观察不到细胞病变,血清学反应中不但难以获得高价抗体而且容易出现交叉反应导致错误结果,传统PCR方法对未知序列及高变异的病毒研究难以发挥作用。加之近年来病毒流行病的频繁发生及其可怕的传染性,对人类及动植物的健康产生严重威胁,如HIV病毒、SARS病毒、禽流感病毒和在西非等地肆虐的埃博拉病毒[4]等,给人们造成了巨大的恐慌和经济损失。因此,对病毒基因组的研究、致病源的探索、病毒在生物体和环境中如何存在及传播、病毒病防治的研究已迫在眉睫。 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,宏基因组学(Metagenomics)的概念是1998年由Handelsman[5]首次提出,对特定环境中基因组的总和进行研究,包括培养的和未培养的.微生物。病毒宏基因组学(Viral metagenomics)就是宏基因组学在病毒领域的应用,即从环境或生物组织中浓缩病毒粒子的遗传物质进行生物学信息分析的技术。它的应用需要一些交叉学科的创新技术的支持,随机

宏基因组学的一般研究策略

宏基因组学的一般研究策略 摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。 关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略 Strategies for accessing metagenomics for desired applications Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field. Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies 大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。 1 宏基因组学研究策略 1.1宏基因组学概要 宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。 1.2 微生物及其基因的富集 在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常

宏基因组测序技术检测方法模板

宏基因组测序技术 检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,经过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就能够直接对环境中所有微生物进行测序。能够真实客观的反映环境中微生物的多样性、种群结构、进化关系等。当前又能够分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常见的微生物物种分子鉴定的标签,,经过对样品中16sDNA测序能够鉴定其中微生物物种的丰度和分布情况。当前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,能够很好的避免此类问题。 二、宏基因组全测序

在这种测序方式中,我们能够假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就能够研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。能够发现新的基因,能够进行基因的预测,甚至有可能得到某个细菌基因组的全序列。另外,该项测序不单能够针对DNA水平,也能够针对全RNA进行基因表示水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。 核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = 1.8-2.0, 260/230 = 1.8-2.0,电泳检测DNA应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先经过PCR将16S/18S序列扩增出来,再将其连接到克隆载体上,导

病毒宏基因组学方法优缺点及意义【可编辑版】

病毒宏基因组学方法优缺点及意义【可编辑版】病毒宏基因组学方法优缺点及意义病毒宏基因组学方法优缺点及意义 病毒个体微小,多数病毒直径在100nm,较大的病毒直径300~450nm,较小仅为18~22nm,结构简单,不能独立复制需要依赖于宿主细胞复制繁殖,被许多生物学家认为是处于生命和非生命交叉区域的存在物。据估计目前对病毒的发掘还不到1%,对病毒的研究具有广阔的前景和现实意义。病毒独特的结构和特性给病毒的研究和鉴别带来许多困难,主要体现在两个方面: 第一,病毒没有专门的宿主细胞系,60%以上的病毒无法成功的进行离体培养或在培养中不能表达致病性;第 二,病毒基因本身变异率高,通过与宿主间的相互作用进化,增加核酸多样性,产生新病毒,导致宿主范围扩大、跨物种传播.对细菌的研究可以通过保守的16sRNA的分析来定位分类信息、进化关系和种群多样性等。对于真菌有18sRNA及ITS序列。然而病毒不像细菌真菌,没有固定保守的进化标记基因。 所以一些传统研究方法的应用受到限制,不能完全满足病毒研究的需要。如电镜观察病毒的灵敏性不高,细胞培养病毒可能观察不到细胞病变,血清学反应中不但难以获得高价抗体而且容易出现交叉反应 导致错误结果,传统PCR方法对未知序列及高变异的病毒研究难以发挥作用。加之近年来病毒流行病的频繁发生及其可怕的传染性,对人类及动植物的健康产生严重威胁,如HIV病毒、SARS病毒、禽流感病毒和在西非等地肆虐的埃博拉病毒等,给人们造成了巨大的恐慌和经济损失。因此,对病毒基因组的研究、致病源的探索、病毒在生物体和环境中如何存在及传播、病毒病防治的研究已迫在眉睫。 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,宏基因组学的概念是1998年由Handelsman首次提出,对特定环境

宏基因组学研究方法及应用概述

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165) 摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。 关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。这种状况不利于全面认识微生物在自然界所扮演的重要角色。为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。 1 宏基因组学的研究方法 宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。 1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。DNA的提取是宏基因文库构建的关键步骤。提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。 对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。 2 宏基因组学的应用 2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得

最新 病毒宏基因组学方法优缺点及意义-精品

病毒宏基因组学方法优缺点及意义 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,以下是一篇关于病毒宏基因组学探究的,供大家阅读参考。 病毒个体微小,多数病毒直径在100nm(20~200nm),较大的病毒直径 300~450nm,较小仅为18~22nm,结构简单,不能独立复制需要依赖于宿主细胞复制繁殖,被许多生物学家认为是处于生命和非生命交叉区域的存在物。据估计目前对病毒的发掘还不到1%[1],对病毒的研究具有广阔的前景和现实意义。病毒独特的结构和特性给病毒的研究和鉴别带来许多困难,主要体现在两个方面:第一,病毒没有专门的宿主细胞系,60%以上的病毒无法成功的进行离体培养[2]或在培养中不能表达致病性;第二,病毒基因本身变异率高,通过与宿主间的相互作用进化,增加核酸多样性,产生新病毒,导致宿主范围扩大、跨物种传播[3].对细菌的研究可以通过保守的16sRNA的分析来定位分类信息、进化关系和种群多样性等。对于真菌有18sRNA及ITS序列。然而病毒不像细菌真菌,没有固定保守的进化标记基因。 所以一些传统研究方法的应用受到限制,不能完全满足病毒研究的需要。如电镜观察病毒的灵敏性不高,细胞培养病毒可能观察不到细胞病变,血清学反应中不但难以获得高价抗体而且容易出现交叉反应导致错误结果,传统PCR 方法对未知序列及高变异的病毒研究难以发挥作用。加之近年来病毒流行病的频繁发生及其可怕的传染性,对人类及动植物的健康产生严重威胁,如HIV病毒、SARS病毒、禽流感病毒和在西非等地肆虐的埃博拉病毒[4]等,给人们造成了巨大的恐慌和经济损失。因此,对病毒基因组的研究、致病源的探索、病毒在生物体和环境中如何存在及传播、病毒病防治的研究已迫在眉睫。 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,宏基因组学(Metagenomics)的概念是1998年由Handelsman[5]首次提出,对特定环境中基因组的总和进行研究,包括培养的和未培养的微生物。病毒宏基因组学(Viral metagenomics)就是宏基因组学在病毒领域的应用,即从环境或生物组织中浓缩病毒粒子的遗传物质进行生物学信息分析的技术。它的应用需要一些交叉学科的创新技术的支持,随机引物PCR 和新一代测序技术---高通量测序的应用大大提高了研究的效率和获取信息的丰度,克服大环境中病毒浓度低、易受干扰的不足,拓展了病毒宏基因组学的应用范围和现实作用,为探索未知病毒提供广阔的前景和应用空间。在人类预防疾病、开发疫苗方面具有重大贡献。 1病毒宏基因组学的研究过程 对于未知病毒的研究过程如下:SISPA方法是1991年Gregory和Jung在随机引物PCR方法的基础上创造的[6],SISPA-PCR使用含有已知片段的随机引物进行逆转录,这个已知片段在接下来的PCR反应中将作为引物[7],此方法先后经Breitbart[8]和Djikeng[9]等人的改进,在SISPA的基础上建立了

宏基因组学概述

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics Wang Ying, Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,) Key words: Metagenome; Metagenomics; The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA (也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"met a-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和Lior Pachter 将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生 物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法 宏基因组学的研究过程一般包括样品和基因(组)的富集;提取特定环境中的基因组 DNA;构建宏基因组 DNA 文库;筛选目的基因;目的基因活性产物表达(图 1)五个步骤。

宏基因组学的研究

因组学研究进展及其应用 摘要: 本文先简要介绍了当前生物化学的一些研究热点,再针对因组学展开论述,介绍了因组学的产生背景和概念,当前的研究进展及应用。 因组学尝试通过免培方法获得微生物的纯培养,主要技术包括DNA的提取、文库的构建和目标基因克隆的筛选,可用于开发新型酶、发现新基因、筛选医药等方面。 关键字:因组学;因组学基本策略;文库构建与筛选;因组学研究进展及其应用引言: 微生物是地球上种类最多、数量最大、分布最广的生物群。仅原核生物(细菌和古细菌)即构成地球生物总量的的25~50 %[1]。自然条件下,包括病毒在的微生物,通过群落广泛参与C、N、O 和S等重要元素的循环转化,在人体的食物消化、毒素降解及机体免疫反应,环境污染物降解等方面发挥着重要作用[2]。人们对于微生物的研究主要是建立在纯培养基础上,后来人们发现通过纯培养方法估计的环境微生物多样性只占总量的0.1%~1%[3],多达99%以上的微生物是不可培养的, 其中蕴含着巨大的应用潜能——其代产物中可能有众多具有应用开发价值的化合物[4]。为了研究不能培养的微生物,一个全新的理念——因组学应运而生,该技术不需预先培养就能开发这些微生物基因组,目前已广泛应用于微生物活性物质的开发与利用、环境微生物种群分布及动态变化分析等方面的研究[5]。 因组学的提出为解决上述问题提供了一个可行途径。因组学以生境中全部

DNA作为研究对象,通过克隆、异源表达来筛选有用基因及其产物。由于突破了传统研究领域无法涵盖不可培养微生物的瓶颈,因组学概念及研究方法一经提出,就被广泛接受。尽管在方法上还存在一定缺陷,但并不妨碍不同领域学者利用该方法来研究各种生境中微生物生态以及筛选功能基因的热情,有关因组学研究的文章逐年增多[4]。 1.因组学的概念 因组( metagenome) 的概念是指从生境样本中取得全部微生物的基因组, 而不是采用传统的培养微生物的基因组。因组的样本既包括可培养的微生物,也包括更大量的传统方法无法研究的不可培养微生物[6]。而所谓因组学 (也称元基因组学Metagenomics 、微生物环境基因组学Microbial Environmental Genomics、生态基因组学Ecogenomics ) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法,一般包括克隆、构建文库和功能分析筛选等工作[7]。 2.因组学的基本策略及方法 2.1因组学的基本策略 因组学的研究还处于初期发展阶段,但其研究的基本过程和基本策略已基本清楚。在此要强调的是,因组学研究有着明确的指导思想,它是在反向生物学原则指导下,基于特定生态环境基础上,依据整体、系统、动态变化和相互作用的观点,运用特殊的技术路线和方法,对研究围中所有基因组展开研究的学科。 因组学是一种整体性的研究策略,它建立在微生物基因组学的迅速发展和聚

宏基因组测序技术检测方法

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA 测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。

(完整word版)宏基因组测序讲解

宏基因组测序 目的 研究藻类物种的分类,研究与特定环境与相关的代谢通路,以及通过不同样品的比较研究微生物内部,微生物与环境,与宿主的关系。技术简介 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 进行高通量测序分析,或克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作。 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究

宏基因组测序讲解

宏基因组测序讲解

宏基因组测序 目的 研究藻类物种的分类,研究与特定环境与相关的代谢通路,以及通过不同样品的比较研究微生物内部,微生物与环境,与宿主的关系。技术简介 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 进行高通量测序分析,或克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作。 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样

宏基因组及其应用

宏基因组及其应用 学习笔记 吕涛15010906 一、宏基因组及宏基因组学 1.概念 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义为 “the genomes of the total microbiota found in nature” , 即环境中全部微小生物遗 传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境 样品中的细菌和真菌的基因组总和。 2.宏基因组学 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义 为“the genomes of the total microbiota found in nature” , 即环境中全部微小生 物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指 环境样品中的细菌和真菌的基因组总和。 3.发展历程 环境基因组学——微生物基因组学——宏基因组学——人类基因组学 人类基因组学: 把人体内所有微生物菌群基因组的总和称为“人体宏基因组”(human metagenome)。人类宏基因组学(human metagenomics)研究人体宏基因组结构和 功能、相互之间关系、作用规律和与疾病关系的学科。它不仅要把总体基因组序 列信息都测定出来,而且还要研究与人体发育和健康有关的基因功能。人类宏基 因组计划目标是:把人体内共生菌群的基因组序列信息都测定出来,而且要研究 与人体发育和健康有关的基因功能。 4.研究步骤

基因组学分析

第八章基因组学分析 基因组(Genome)指一个生物体中所有的遗传信息的载体DNA。原核生物基因组与真核生物基因组有着很大的区别,原核生物的基因组比较简单,一般由一条染色体(有些细菌有多条染色体)和若干个质粒组成。除少数细菌外,细菌的染色体一般由一条环状双链DNA组成。染色体高度折叠、盘绕聚集在一起,形成致密的类核(nucleoid),类核无核膜与胞浆分开,类核的中央部分由RNA和支架蛋白组成,外围是双链闭环的DNA超螺旋(图8-1)。染色体DNA链上与DNA复制、转录有关的信号区域优先与细胞膜结合,连接点的数量随细菌生长状况和不同生活周期而异。这种连接有助于细胞膜对染色体的固定,并在细胞分裂时将染色体均匀的分配到子代细胞中。 图8-1:大肠杆菌染色体DNA的类核结构,中间实心圆为中央类核,四周的为DNA环。 从1995年美国基因组研究所(The Institute for Genomic Research, TIGR)发表第一株细菌——流感嗜血杆菌(Haemophilus influenzae RD)的全基因组序列以来,现已发表了150多株细菌的基因组全序列(表8-1),其中包括古细菌和真细菌,既有病源微生物也有非病源微生物。这些已完成全基因组测序的细菌很具代表性,有在极端条件下生长的嗜热菌,耐盐菌,耐酸菌;有厌氧菌,兼性厌氧菌和需氧菌;有营养要求不高的大肠杆菌,较难培养的枝原体,只在活细胞内生存的衣原体和立克次体。在未来的几年时间里,还将有更多株原核生物的基因组全序列被测序,预示着原核生物基因组研究将对21世纪的生命科学研究中起着推波助澜的作用。 第一节微生物基因组概述 1、基因组大小 曾经有很多方法用于细菌基因组大小的研究,包括比色法、DNA复性动力学、酶切片段的二维胶电泳,这些方法现在都已经被脉冲场电泳(Pulsed Field Gel Electrophoresis, PFGE)技术所取代。虽然原核生物的基因组大小相对比真核生物要小,但是最大的原核生物基因组碱基数与最小的真核生物基因组碱基数大小有部分重叠(图8-2)。细菌的基因组大小相差也很大,目前已知完成全基因组序列测定的细菌中,基因组最小的生殖道支原体(Mycopalsma genitalium)只有0.58 Mb,最大的日本慢生根瘤菌(Bradyrhizobium japonicum USDA 110)有9.11 Mb(表8-1)。 2、编码密度高 与真核生物不同,原核生物基因组的编码序列占基因组总序列的比率很高,达90%左右。如果基因的

相关文档