文档库 最新最全的文档下载
当前位置:文档库 › 三次函数

三次函数

三次函数
三次函数

三次函数

百科名片

三次函数

基本概念与性质形如y=ax^3+bx^2+cx+d(a≠0,b,c,d为常数)的函数叫做三次函数(cubics function)。三次函数的图像是一条曲线----回归式抛物线(不同于普通抛物线),具有比较特殊性。

目录

1二.零点求法1.盛金公式

12.盛金判别法

13.盛金定理

14.传统解法

三.三次函数性态的五个要点

1四.三次函数对称中心1.三次函数有对称中心

12.推广

五.其他性质

展开

编辑本段二.零点求法

求函数的零点可用盛金公式、盛金判别法、或传统解法盛金公式与盛金判别法及盛金定理的运用从这里向您介绍三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

1.盛金公式

一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,总判别式:

Δ=B^2-4AC。当A=B=0时,盛金公式①:X1=X2=X3=-b/(3a)=-c/b=-3d/c。当Δ=B^2-4AC>0时,盛金公式②:X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);X2,3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±i3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))/(6a),其中Y1,2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。当Δ=B^2-4AC=0时,盛金公式③:X1=-b/a+K;X2=X3=-K/2,其中K=B/A,(A≠0)。当Δ=B^2-4AC<0时,盛金公式④:X1= (-b-2A^(1/2)cos(θ/3))/(3a);X2,3= (-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),其中θ=arccosT,T= (2Ab-3aB)/(2A^(3/2)),(A>0,-1

2.盛金判别法

①:当A=B=0时,方程有一个三重实根;②:当Δ=B^2-4AC>0时,方程有一个实根和一对共轭虚根;③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根;④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。

3.盛金定理

当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答:盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-10时,不一定有A<0。盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。

4.传统解法

此外,一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p 和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

编辑本段三.三次函数性态的五个要点

1.三次函数y=f(x)在(-∞,+∞)上的极值点的个数

2.三次函数y=f(x)的图象与x 轴交点个数

3.单调性问题

4.三次函数f(x)图象的切线条数

5.融合三次函数和不等式,创设情境求参数的范围

编辑本段四.三次函数对称中心

1.三次函数有对称中心

(-b/3a,d+2*b^3/27a^2-b*c/3a).即(-b/3a,f(-b/3a)). 证明:因为f(x)=a(x-x0)^3+b(x-x0)+y0的对称中心是(x0,y0),即(x0,f(x0)) 所以f(x)=ax^3+bx^2+cx+d如果能写成f(x)=a(x-x0)^3+b(x-x0)+y0那么三次函数的对称中

心就是(x0,f(x0)). 所以设f(x)=a(x+m)^3+p(x+m)+n 得f(x)=ax^3+3amx^2+(3am^2+p)x+am^3+pm+n 所以3am=b; 3am^2+p=c; am^3+pm+n=d; 所以m=b/3a; p=(3ac-b^2)/3a; n=d+(2b^3)/(27a^2)-bc/(3a) 所以f(x)=a(x+b/3a)^3+(c-B^2/3a)(x+b/3a)+d+2b^3/27a^2-bc/3a 得证

2.推广

如果f(x)是一个n次多项式,n>=2(因为直线的对称中心从狭义上讲是没有对称中心而在广义上讲是无数个对称中心),其n次项系数是a0,n-1次项系数是a1,则有(1):如果y=f(x)的图像是中心对称图形,其对称中心是(-a1/n/a0,f(-a1/n/a0));

(2):如果y=f(x)的图像是轴对称图形,其对称轴是x=-a1/n/a0.

编辑本段五.其他性质

三次函数专题

三次函数——导数应用中永恒的经典 【考点定位 】 考试说明: 了解导数概念及其几何意义;会用常见基本初等函数的导数公式及导数的四则运算法则求简 单函 数和简单复合函数的导数;了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数 的单调区间,会用导数求函数的极值和闭区间上函数的最值 . 问题概述: 三次函数 y ax 3 bx 2 cx d(a 0) 一直是中学阶段一个重要的函数,在高考和一些重大考试中 频繁出现有关它的单独命题 .2014 年高考,在全国卷、浙江卷、天津卷、安徽卷、北京卷、辽宁卷、陕西 卷、江西卷、广东卷中都出现了这个函数的单独命题,特别是浙江卷(理) 、北京卷(文) 、广东卷(文) 以压轴题的形式出现,更应该引起我们的重视 .单调性和对称性最能反映这个函数的特性 .通常以它为素材 来研究函数的单调性、极值、最值等性质,还可沟通函数、方程、不等式、等知识之间的有机联系 .本文以 2014 年高考为例,例谈高考中的三次函数问题 . 【考量基础】 三次函数的单调区间及闭区间上的最值 例 1【 2014高考安徽卷第 18题】设函数 f (x) 1 (1 a)x x 2 x 3,其中 a 0. (1) 讨论 f (x) 在其定义域上的单调性; (2) 当 x [0,1]时,求 f ( x)取得最大值和最小值时的 x 的值. 解析: 2' (x) 1 a 2x 3x 2 .令 f '(x) 0 ,得 x 1 x 1 x x 2时, f '(x) 0.故 f (x)在( ,x 1)和 (x 2, ) 内递减,在 (x 1,x 2)内递增 . 2)因为 a 0,所以 x 1 0,x 2 0.当a 4时, x 2 1 ,由( 1)知, f (x)在[0,1] 上递增,所以 f(x) 在 x 0和 x 1处分别取得最小值和最大值 .当0 a 4时, x 2 1,由(1)知, f (x)在[0,x 2]上递增, 1 4 3a 在[ x 2 ,1]递减,所以 f(x)在 x x 2 处取得最大值 .又 f (0) 1, f (1) a ,所以当 0 a 1 3 时, f (x)在 x 1处取得最小值;当 a 1时, f(x)在 x 0和 x 1处同事取得最小值;当 1 a 4时, 1 4 3a 1) f (x) 的定义域为 ( , ) , x 2 1 4 3a 3 x 1 x 2,所以 f (x) 3(x x 1)(x x 2).当 x x 1或 x x 2时, (x) 0 ;当

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数在自变量x允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论:1、如果,那么有最大值或最小值(如图1):当时,,;当时,,。 图1 2、如果,那么有最小值或最大值(如图2):当 时,;当时,。 图2

3、如果,那么有最大值或最小值(如图3)当 时,;当,。 图3 4、如果,那么既没有最大值也没有最小值。凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A楼,B楼,C楼,其中A楼与B楼之间的距离为40m,B楼与C楼之间的距离为60m,已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置?

(2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A楼xm处,所有取奶的人到奶站的距离总和为ym.。 ①当时, ∴当x=40时,y的最小值为4400。 ②当时, , 此时y的值大于4400。 因此按方案一建奶站,取奶站应建在B楼处。 (2)设取奶站建在距A楼xm处。 ①当时, , 解得(舍去)。 ②当时, 解得x=80, 因此按方案二建奶站,取奶站应建在距A楼80m处。

2016届高考专题三次函数高考题及模拟题

2016届高考复习·三次函数高考题及模拟题 1.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 图1-2 A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15 x 答案:A 2. [2014·江西卷] 在同一直角坐标系中,函数y =ax 2-x +a 2 与y =a 2x 3-2ax 2+x +a (a ∈R )的图像不可能是( ) 答案:B 3. [2014·陕西卷文科] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( ) 图1-2 A .y =12x 3-12x 2-x B .y =12x 3+12x 2-3x C .y =14x 3-x D .y =14x 3+12 x 2-2x 答案:A 4. 设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( ) A .y =-2x B .y =3x C .y =-3x D .y =4x 【解析】由已知得f ′(x )=3x 2+2ax +a -2,因为f ′(x )是偶函数,所以a =0,即f ′(x )=3x 2-2,从而f ′(0)=-2,所以曲线y =f (x )在原点处的切线方程为y =-2x .【答案】A 5. [2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2) D .(-∞,-1) 答案:C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.

最新导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数 ()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函 数y=f (x )的 图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若 函 数 2()f x x bx c =++的图象的顶点在第 四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图 像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) 知函数 象可能是 7. 函数)(x f 的定 义域 为开区间( ,3)2 - ,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的 图象可能是 ( ) A . B . C . D .

9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) A B C D 10.(选做)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是 ( ) 类型四:根据实际问题判断图像。 9. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图象是( ) 10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过? 90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图 像大致是( ) 11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图 象. 10. 已知函数 )(x f y =的导函数)(x f y '=的图像如下, 则( ) 函数)(x f 有1个极大值点,1个极小值点 函数 )(x f 有2个极大值点,2个极小值点 函数)(x f 有3个极大值点,1个极小值点 函数)(x f 有1个极大值点,3个极小值点 11. (2008珠海质检理)函数)(x f 的定义域为 ),(b a , 其导函数),()(b a x f 在'内的图象如图所示,则函数)(x f 在区间),(b a 内极小值点的个 数 是( ) (A).1 (B).2 (C).3 (D).4 12. 已知函数3 2 ()f x ax bx cx =++在点0x 处取得极大值5, 其 导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求: (Ⅰ)0x 的值; (Ⅱ),,a b c 的值. 13. 函数()y f x =在定义域3 (,3)2 - 内可导, 其图象如图,记 ()y f x =的导函数为/()y f x =,则不等式 /()0 f x ≤的解集为_____________ 14. 如图为函数32()f x ax bx cx d =+++的图象, '()f x 为函 数()f x 的导函数,则不等式'()0x f x ?<的解集为_____ _ 15. 【湛江市·文】函数2 2 1ln )(x x x f - =的图象大致是 A . B . C . D . 16. 【珠海·文】如图是二次函数a bx x x f +-=2 )(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区 间是 ( )

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。

5.(2007年广东佛山)设) (x f'是函数) (x f的导函数,) (x f y' =的图 象如右图所示,则) (x f y=的图象最有可能的是() 6.(2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2 f x ax bx c '=++ ()的图象如右图,则 f x()的图象可能是( ) 7.函数) (x f的定义域为开区间 3 (,3) 2 -,导函数) (x f'在 3 (,3) 2 -内的图象如图所示,则函数) (x f的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y ) (x f y' = x o y

8.( 2009湖南卷文) 若函数() y f x =的导函数 ...在区间[,] a b上是增函数,则函数() y f x =在区间[,] a b上的图象可能是( ) A .B.C.D. 9.若函数) ('x f y=在区间) , ( 2 1 x x内是单调递减函数,则函数) (x f y=在区间) , ( 2 1 x x内的图像可以是() A B C D 10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是 () 类型四:根据实际问题判断图像。 9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器 中匀速注水,容器中水面的高度h随时间t变化的可能图象是() o x o x y b a o x y o x y b y

三次函数专题.doc

三次函数专题一全解全析 一、定义: 定义1、形如y = a^^bx2^cx^d(a^0)的函数,称为“三次函数”(从函数解析式的结构上命名) 定义2、三次函数的导数/ = 3a? + 2Z>x+c(a^0),把△ = 42?-12ac叫做三次函数导函数 的判別式 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 二、三次函数图象与性质的探究: 1、单调性 般地,当沪-纭SO时,三次函数y = ax3 ^bx2 ^cx^d(a^0)在R上是单调函数;当沪一如>0时,三次函数尹=ax3 +cx + N(a工0)在R上有三个单调区间 (根据。> 0,。< 0两种不同情况进行分类讨论) 2、对称中心 三次函数/(x) = ax3# 0)是关于点对称,且对称屮心为点(-$,?/(-纟■)), 3a 3a 此点的横坐标是其导函数极值点的横坐标。 证明:设函数/(X)= +0戏+cx + d(aM0)的对称中心为(ni, n)。 按向量了?(-加,-刃)将函数的图象平移,则所得函数是奇函数,所以 /(x+w) +/(-x +w)- 2n = 0化简得:+ +cm十d -n = 0 _ b 上式对x € A ffi成立,故3wa + b = 0,得w=,

3a

am+cM+d = /(一一)。 3a 所以,函数y = ax3 +Z>x2 +cx+rf(a^O)的对称中心是(一£,,(-冷)。 可见,y=f(x)图象的对称中心在导函数y =广(力的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当厶=4b2-12ac<0时,由于不等式/^)>0恒成立,函数是单调递增的,所以原方程仅有一个实根。 (2)当厶=4沪-12ac >0时,由于方程/W=0有两个不同的实根心,乃,不妨设心<乃,可知,(兀/(心))为函数的极大值点,(乃,/(乃))为极小值点,且函数y = /(z)在(一8/J和(X2,-KO)上单调递增,在[x p X2]上单调递减。 此时: %1若/(心)?/(乃)>0,即函数y = f⑴极大值点和极小值点在兀轴同侧,图象均与x轴只有一个交点,所以原方程有且只有一个实根。 %1若/(心)?/(兀2)<0,即函数y = /(x)极大值点与极小值点在x轴异侧,图象与%轴必有三个交点,所以原方程有三个不等实根。 %1若/(心)?/仗2)= 0,即/(心)与/(X2)中有且只有一个值为0,所以,原方程有三个实根,其中两个相等。 4、极值点问题 若函数f(x)在点X。的附近恒有f (xo)^f(x)(或f(x°)Wf(x)),则称函数f(x)在 点 Xo处取得极大值(或极小值),称点Xo为极大值点(或极小值点)。

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论: (1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。 图1 (2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。 图2 (3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。 图3 (4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。 凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供同学们参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站

方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A 楼xm 处,所有取奶的人到奶站的距离总和为ym.。 ①当40x 0≤≤时, 8800 x 110)x 100(60)x 40(70x 20y +?-=-+-+= ∴当x=40时,y 的最小值为4400。 ②当100x 40≤<时, )x 100(60)40x (70x 20y -+-+= 3200x 30+=, 此时y 的值大于4400。 因此按方案一建奶站,取奶站应建在B 楼处。 (2)设取奶站建在距A 楼xm 处。 ①当40x 0≤≤时, )x 40(70)x 100(60x 20-=-+, 解得03 320x <- =(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x 20-=-+ 解得x=80, 因此按方案二建奶站,取奶站应建在距A 楼80m 处。 (3)设A 楼取奶人数增加a (22a 0≤≤)人, ①当40x 0≤≤时, )x 40(70)x 100(60x )a 20(-=-++, 解得30 a 3200x +-=(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x )a 20(-=-++, 解得a 1108800x -=,当a 增大时,x 增大。 ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

.三次函数专题

三次函数专题讲义 一、定义: 定义1、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义2、三次函数的导数2 32(0)y ax bx c a '=++≠,把2412b ac ?=-叫做三次函数导函数的判别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经 成为高考命题的一个新的热点和亮点。 二、三次函数图象与性质的探究: 1、单调性。 一般地,当032 ≤-ac b 时,三次函数)0(2 3 ≠+++=a d cx bx ax y 在R 上是单调函数;当 032>-ac b 时,三次函数)0(23≠+++=a d cx bx ax y 在R 上有三个单调区间。 (根据0,0<>a a 两种不同情况进行分类讨论) 2、对称中心。 三次函数)0()(2 3 ≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点))3(,3(a b f a b --,此点的横坐标是其导函数极值点的横坐标。 证明:设函数的对称中心为(m ,n )。 按向量 将函数的图象平移,则所得函数 是奇函数,所以 化简得: 上式对 恒成立,故 ,得, 。 所以,函数 的对称中心是( )。 可见,y =f(x)图象的对称中心在导函数y =的对称轴上,且又是两个极值点的中点,同时也 是二阶导为零的点。 3、三次方程根的问题。 (1)当△=01242 ≤-ac b 时,由于不等式0)(≥'x f 恒成立,函数是单调递增的,所以原方程仅有一个实根。 (2)当△=01242 >-ac b 时,由于方程0)(='x f 有两个不同的实根21,x x ,不妨设21x x <,可知, ))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数)(x f y =在),(1x -∞和),(2+∞x 上单 调递增,在[]21,x x 上单调递减。 此时: ①若0)()(21>?x f x f ,即函数)(x f y =极大值点和极小值点在x 轴同侧,图象均与x 轴只有一个交点,所以原方程有且只有一个实根。 若0)()(21时,三次函数()y f x =在(),-∞+∞上的极值点要么有两个。 当0?≤时,三次函数()y f x =在(),-∞+∞上不存在极值点。 5、最值问题。 函数 若 ,且,则: ()()()(){}max 0,,f x f m f x f n =; 。 三、例题讲解: 例1、(函数的单调区间、极值及函数与方程的)已知函数f (x )=x 3 -3ax 2 +3x+1。 (Ⅰ)设a=2,求f (x )的单调期间; (Ⅱ)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围。 解:

三次函数切线专题

三次函数切线专题

过点P 一定有直线与)(x f y =图象相切。 (1)若,30a b x - =则过点P 恰有一条切线; (2) 若 ,30a b x -≠且)3()(0a b g x g -0>,则过点P 恰有一条切线; (3) 若,30a b x -≠且)3()(0a b g x g -=0,则过点P 有两条不同的切线; (4)若,30a b x - ≠且)3()(0a b g x g -0<,则过点P 有三条不同的切线。 其中).)(()()(0/0x x x f x f y x g -+-= 证明 设过点P 作直线与)(x f y =图象相切于点),,(11y x Q 则切线方程为 ),)(23(11211x x c bx ax y y -++=- 把点),(00y x P 代入得: 02)3(2001021031=--+--+cx d y x bx x ax b ax , 设.2)3(2)(000203cx d y x bx x ax b ax x g --+--+= ,2)3(26)(002/bx x ax b ax x g --+= ,)3(448)3(420020b ax abx ax b +=+-=? 令,0)(/=x g 则.3,0a b x x x -== 因为0)(=x g 恰有一个实根的充要条件是曲线)(x g y =与X 轴只相交一次,即)(x g y =在R 上为单调函数或两极值同号,所以 ,30a b x -=或,30a b x -≠且)3()(0a b g x g -0>时,过点P 恰有一条切线。 0)(=x g 有两个不同实根的充要条件是曲线)(x g y =与X 轴有 两个公共点且其中之一为切点,所以 ,30a b x -≠且)3()(0a b g x g -=0时,过点P 有两条不同的切线。 )(=x g 有三个不同实根的充要条件是曲线)(x g y =与X 轴有

八年级数学-一次函数最值的应用例说

八年级数学-一次函数最值的应用例说 在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率. 谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛. 一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值. 例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下: 问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高? 解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得: x+y+z=50, (1) W=1100x+750y+600z. (3) 由(1)、(2)可得: y=90-3x (4) z =2x-40 (5) 把(4)、(5)代入(3)得: W=50x+43500. 由x≥0,y =90-3x≥0,z=2x-40≥0得: 20≤x≤30. 所以当x=30时,W取最大值45000元 此时y =0,z =20.

即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元. 例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元? 解设用x只大船,y只小船;要付租金W元. 由题意可知: 5x+3y =48, (1) W =3x+2y. (2) 把(3)代入(2)得: W=3x+2y 由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x应取最大整数值.即当x =9时,W的值最小. 答:最少要付租金29元. 例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题) 解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5, 即 5x+3y=35。 (1) 由题意可知x>0,y>0且 14×5-(5+2)x≤14×3 即x≥4.

5-4三次函数的图象和性质

专题4 三次函数的图像和性质 第一讲 三次函数的基本性质 设三次函数为()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠),其基本性质有: 性质一:定义域为R . 性质二:值域为R ,函数在整个定义域上没有最大值、最小值. 性质三:单调性和图象. a > a < 图像 0?> 0?≤ 0?> 0?≤ 当0a >时,先看二次函数()32f x ax bx c =++,4124(3)b ac b ac ?=-=- ①当224124(3)0b ac b ac ?=-=->,即230b ac ->时,()f x '与x 轴有两个交点1x ,2x ,)(x f 形成三个单点区间和两个极值点1x ,2x ,图像如图1,2. ②当224124(3)0b ac b ac ?=-=-=,即230b ac -=时,)(x f '与x 轴有两个等根1x ,2x ,)(x f 没有极值点图像如图3,4. ③当224124(3)0b ac b ac ?=-=-<,即230b ac -<时,()f x '与x 轴没有交点,)(x f 没有极值点,图像如图5,6. 图1 图2 图3 图4 图5 图6 当0-=-=?ac b ac b ,即032>-ac b 时,)(x f '与x 轴有两个交点1x ,2x ,)(x f 形成三个单点区间和两个极值点1x ,2x . ②当224124(3)0b ac b ac ?=-=-=,即230b ac -=时,)(x f '与x 轴有两个等根1x ,2x ,)(x f 没有极值点. ③当224124(3)0b ac b ac ?=-=-<,即230b ac -<时,)(x f '与x 轴没有交点,)(x f 没有极值点. 性质四:三次方程()0f x =的实根个数 对于三次函数()32 f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠),其导数为c bx ax x f ++='23)(2 当032 >-ac b ,其导数0)(='x f 有两个解1x ,2x ,原方程有两个极值2123b b ac x x -±-、

一次函数的专题复习~最经典最全

函数的概念及表示方法 知识点 1.概念:在某一个变化过程中,设有两个变量x 和y ,如果对于x 的每一个确定的值,在y 中都有唯一确定的值与其对应,那么我们就说y 是x 的函数,也就是说x 是自变量,y 是因变量。 2.确定函数自变量取值范围的方法(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题精讲 考点1.函数的概念 例1.下列图象中,表示y 是x 的函数的个数有( ) A .1个 B .2个 C .3个 D .4个 考点2.函数的表示法 例2.如图是广州市某一天内的气温变化图, 根据图象,下列说法中错误的是( ) A .这一天中最高气温是24℃ B .这一天中最高气温与最低气温的差为16℃ C .这一天中2时至14时之间的气温在逐渐升高 D .这一天中只有14时至24时之间的气温在逐渐降低 考点3.求自变量的取值范围 例3.(2014?上海)函数y= 的自变量的取值x 范围是 . 例4.(2014四川省内江市)在函数2 x y += 中,自变量x 的取值范围是 . 例5.等腰△ABC 周长为10cm ,底边BC 长为y cm ,腰AB 长为x cm . (1)写出y 与x 的函数关系式; (2)求x 的取值范围; (3)求y 的取值范围. 4.下列函数中,自变量x 的取值范围是x ≥ 2的是( ) A .y=2x - B .y= 2 x - C .y=24x - D .y=2x +·2x -

三次函数专题

三次函数专题 一、定义: 定义1、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义2、三次函数的导数2 32(0)y ax bx c a '=++≠,把2 412b ac ?=-叫做三次函数 导函数的判别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 二、三次函数图象与性质的探究: 1、单调性。 一般地,当032 ≤-ac b 时,三次函数)0(2 3 ≠+++=a d cx bx ax y 在R 上是单调函数;当032 >-ac b 时,三次函数)0(2 3 ≠+++=a d cx bx ax y 在R 上有三个单调区间。 (根据0,0<>a a 两种不同情况进行分类讨论) 2、对称中心。 三次函数)0()(2 3 ≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 证明:设函数的对称中心为(m ,n )。 按向量将函数的图象平移,则所得函数是奇函数,所以 化简得: 上式对恒成立,故,得, 。 所以,函数的对称中心是()。 可见,y =f(x)图象的对称中心在导函数y =的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点。 3、三次方程根的问题。 (1)当△=01242 ≤-ac b 时,由于不等式0)(≥'x f 恒成立,函数是单调递增的,所以原 方程仅有一个实根。

(2)当△=01242 >-ac b 时,由于方程0)(='x f 有两个不同的实根21,x x ,不妨设 21x x <,可知,))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数) (x f y =在),(1x -∞和),(2+∞x 上单调递增,在[]21,x x 上单调递减。 此时: ①若0)()(21>?x f x f ,即函数)(x f y =极大值点和极小值点在x 轴同侧,图象均与x 轴只有一个交点,所以原方程有且只有一个实根。 若0)()(21时,三次函数()y f x =在(),-∞+∞上的极值点要么有两个。 当0?≤时,三次函数()y f x =在(),-∞+∞上不存在极值点。 5、最值问题。 函数若,且,则:()()()(){}max 0,,f x f m f x f n =; 。 三、例题讲解: 例1、(函数的单调区间、极值及函数与方程的)已知函数f (x )=x-3ax+3x+1。 (Ⅰ)设a=2,求f (x )的单调期间; (Ⅱ)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围。 解: ①式无解,②式的解为, 因此的取值范围是. 例2、已知函数)(x f 满足C x x f x x f +-?? ? ??+=2332')((其中C 为常数). (1)求函数)(x f 的单调区间; (2)若方程0)(=x f 有且只有两个不等的实数根,求常数C ;

试求三次样条插值S(X)

给定数据表如下: 试求三次样条插值S(X),并满足条件: i)S’(0.25)=1.0000, S’(0.53)-0.6868; ii) S”(0.25)= S”(0.53)=0; 解: 由给定数据知: h0 =0.3-0.25 - 0.05 , h 1=0.39-0.30-0.09 h 2=0.45-0.39-0.06, h 3=0.53-0.45-0.08 由μ i=h i/(h i1+h i), λ i= h i/(h i1+h i) 得: μ1= 5/14 ; λ 1= 9/14 μ2= 3/5 ; λ 2= 2/5 μ3= 3/7 ; λ 3=4/7 0.25 0.5000 ﹨ ﹨ 1.0000 ∕﹨ 0.25 0.5000 ∕ -0.9200-f[x 0,x 0, x 1 ] ﹨∕ 0.9540 ∕﹨ 0.30 0.5477 -0.7193-f[x 0,x 1,x 2 ] ﹨∕

0.8533 ∕﹨ 0.39 0.6245 -0.5440-f[x1,x2,x 3 ] ﹨∕ 0.7717 ∕﹨ 0.45 0.6708 -0.4050-f[x 2,x 3,x 4 ] ﹨∕ 0.7150 ∕﹨ 0.53 0.7280 -0.3525-f[x 3,x 4,x 5 ] ﹨∕ 0.6868 ∕ 0.53 0.7280 i)已知一节导数边界条件,弯矩方程组 ┌┐┌┐ │ 2 1 │┌M 0 ┐│-0.9200 ︳ ︳5/14 2 9/14 ︳︳M ︳︳-0.7193 ︳ 1 ︳3/5 2 2/5 ︳︳M 2 ︳_6 ︳-0.5440︳ ︳ 3/7 2 4/7 ︳︳M ︳︳-0.4050 ︳ 3

(完整版)一次函数的实际应用(经典)

一次函数的应用 用一次函数解决实际生活问题: 常见类型: (1)求一次函数的解析式; (2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等. 一次函数解决实际问题的步骤: (1)认真分析实际问题中变量之间的关系; (2)若具有一次函数关系,则建立一次函数的关系式; (3)利用一次函数的有关知识解题 探究类型之一利用一个一次函数的方案选择 例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件. (1)求这两种商品的进价; (2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少? 类似性问题 1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元. (1)求购买一套A型课桌凳和一套B型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,

并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低? 2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表: 设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题: (1)写出y(元)与x(棵)之间的函数关系式; (2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵? 探究类型之二利用两个一次函数的方案选择 例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会

相关文档
相关文档 最新文档