文档库 最新最全的文档下载
当前位置:文档库 › 有限元网格划分注意事项

有限元网格划分注意事项

有限元网格划分的基本原则

划分网格是建立有限元模型的一个

重要环节,它要求考虑的题目较多,

需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目

网格数目的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化.可以看出,网格较少时增加网格数目可以使计算精度

明显进步,而计算时间不会有大的增加。当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加.所以应留意增加网格的

经济性。实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数目的变化

在决定网格数目时应考虑分析数据的类型。在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多.在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密

网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的

网格划分形式.

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔四周存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀.其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数目减小。因此,网格数目应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

图2带孔方板的四分之一模型

划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特性时则趋于采用较均匀的钢格形式。这是由于固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差.同样,在结构温度场计算中也趋于采用均匀网格.

3单元阶次

很多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元.选用高阶单元可进步计算精度,由于高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构外形不规则、应力分布或变形很复杂时可以选用高阶单元。但高阶单元的节点数较多,在网格数目相同的情况下由高阶单元组成的模型规模

要大得多,因此在使用时应权衡考虑计算精度和时间。

图3是一悬臂梁分别用线性和二次三角形单元离散时,其顶端位移随网格数目的收敛情况。可以看出,但网格数目较少时,两种单元的计算精度相差很大,这时采用低阶单元是分歧适的。当网格数目较多时,两种单元的精度相差并不很大,这时采用高阶单元并不经济。例如在离散细节时,由于细节尺寸限制,要求细节四周的网格划分很密,这时采用线性单元更合适。

图3不同阶次单元的收敛情况

增加网格数目和单元阶次都可以进步计算精度.因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数目,太多的网格并不能明显进步计算精度,反而会使计算时间大大增加。为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。

4网格质量

网格质量是指网格几何外形的公道性.质量好坏将影响计算精度。质量太差的网格甚至会中止计算.直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点四周的网格质量较好。网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量.

划分网格时一般要求网格质量能达到某些指标要求。在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。而在结构次要部位,网格质量可适当降低。当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行.图4是三种常见的畸形网格,其中a单元的节点交叉编号,b单元的内角大于180°,c单元的两对节点重合,网格面积为零。

图4几种常见的畸形网格

5网格分界面和分界点

结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件.即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。图5是具有上述几种界面的结构及其网格划分形式.

图5特殊界面和特殊点网格划分

6位移协调性

位移协调是指单元上的力和力矩能够通过节点传递相邻单元。为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点.相邻单元的共有节点具有相同的自由度性质。否则,单元之间须用多点约束等式或约束单元进行约束处理。图6是两种位移不协调的网格划分,图a中的节点1仅属于一个单元,变形后会产生材料裂缝或重叠.图b中的平面单元和梁单元节点的自由度性质不同,粱单元的力矩无法传递到平面单元。

图6位移不协调的网格划分

7网格布局

当结构外形对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称).不对称布局会引起一定误差,如在图7中,悬臂粱截面相对y轴对称,在对称载荷作用下,自由端两对称节点1、2的挠度值本应相等.但若分图b所示的不对称网格,计算出的y1=0。0346,y2=0。0350。若改用图c 所示的网格,则y1和y2完全相同.

图7网格布局对计算结果的影响

8节点和单元编号

节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存

储容量的大小,因此公道的编号有利于进步计算速度。但对复杂模型和自动分网而言,人为确定公道的编号很困难,目前很多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。

Deform网格划分原则及方法

[原]Deform网格划分原则及方法 2009-04-04 23:48 引言:划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍网格划分时的一些基本原则及方法。 关键词:Deform 网格局部细化 一、网格划分的原则 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。 划分疏密不同的网格主要用于应力分析(包括静应力和动应力),在结温度场计算中采用趋于均匀网格。 图 2 带孔方板的四分之一模型 二、网格划分的方法 1、基本网格划分方法 在Deform中划分网格方式有两种。一种是相对网格划分方法,一种是绝对网格划分方法。

有限元网格划分技术

对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。网格化有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。 定义网格的属性主要是定义单元的形状、大小。单元大小基本上在线段上定义,可以用线段数目或长度大小来划分,可以在线段建立后立刻声明,或整个实体模型完成后逐一声明。采用Bottom-Up方式建立模型时,采用线段建立后立刻声明比较方便且不易出错。例如声明线段数目和大小后,复制对象时其属性将会一起复制,完成上述操作后便可进行网格化命令。 网格化过程也可以逐步进行,即实体模型对象完成到某个阶段就进行网格话,如所得结果满意,则继续建立其他对象并网格化。 网格的划分可以分为自由网格(free meshing)、映射网格(mapped meshing)和扫略网格(sweep meshing)等。 一、自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE 命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。 对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。 如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性(一阶次)的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过大的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元(如92号单元),减少每个单元的节点数量,提高求解效率。 在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。 二、映射网格划分 映射网格划分是对规整模型的一种规整网格划分方法,映射网格要求面或体的形状是规则的,也就是说它们必须遵循一定的规则。 给面划分四边形映射网格时,必须满足3个条件: 1. 此面必须由3或4条线围成。

有限元网格划分注意事项

有限元网格划分的基本原则 划分网格是建立有限元模型的一个 重要环节,它要求考虑的题目较多, 需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数目 网格数目的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。所以应留意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数目的变化 在决定网格数目时应考虑分析数据的类型。在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,

有限元网格剖分

有限元网格剖分 有限元计算的本质在于可以将连续的场域问题转变为离散的场域问题进行求解,而在这个由连续场域向离散场域转变的过程的核心在于有限元模型的网格划分。 进行有限元计算的主要过程体现在:首先确定出能和边值问题相对应的泛函数及可以相互等价的变分问题,进行有限元网格划分,将连续的场域离散成离散场域,在有限单元上利用一个已知的函数,例如线性的或者二次的,将有限单元上的未知连续函数近似的表示出来,求解泛函数的极值,得到一系列的方程组,进行方程组的求解,求解结束后将计算的结果进行显示,如果需要其它的一些场量时需要进行后处理等。 在上述的有限元求解的过程中,有限元模型的网格划分其中最为关键的一个环节,有限元模型的网格划分直接决定了有限元法在解决实际问题中所体现的能力,更是直接决定了有限元计算软件的计算精度。一个有限元计算软件如果前处理的程序性能不够强大,则它的通用性就不会太强。有限元模型的网格划分模块时有限元计算软件的前处理部分的主要模块。 有限元模型单元的大小和疏密度的合理设置,是保证计算精确性的重要保障,而有限元网格的合理性是建立在网格自动剖分程序所形成的初步网格的基础之上的,需要进一步的细分网格环节来实现合理的网格划分。而有限元软件的自适应网格细分不需要依靠计算机用户的网格划分经验,仅仅凭借着有限元软件自带的功能就可以实现有限元网格的合理细化。 当前随着计算机的快速发展,网格剖分的算法已经得到了更大程度上的完善和发展,一些更为发展的求解域都可以进行网格的合理剖分。有限元网格的自适应剖分软件能够利用软件自身的功能属性自动决定出网格在哪一个地方需要进行网格的进一步细化,细化的具体程度是多少,进而得到一个较为合理的网格划分,并且在该模型上可以获得较为准确的计算结果。 有限元网格的进一步细分的目的在于能够使得软件根据计算场域的特征和计算场量的分布情况合理的设置网格,使得模型中的每一个单元的计算精确性基本相同。网格剖分的自适应软件彻底的改变了以往网格划分计算人员剖分经验的依赖性,而且还能够在数量较小的节点单元的情况下获取较高的计算求解精度。

ANSYS有限元网格划分的基本原则

ANSYS有限元网格划分的基本原则 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

ansys有限元网格划分技巧与基本原理

一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值汁算分析结果的精确性。网格划分涉及单元的形状及英拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平而应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的而内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一泄的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲而混合造型两种方法。Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表而形态的表示法已经大大超过了CAE 软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中苴他表示法的表面形态转换到CAE软件的表示法上,转换精度的髙低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲而的空间位苣)和拓扑关系(各图形数据的逻借关系)两个关键问题。英中几何图形的传递相对容易实现,而图形间的拓扑关系容易岀现传递失败的情况。数据传递而临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲而等。这些细肖往往不是基于结构的考虑,保留这些细肖,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负而影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于CAD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的'‘完整性检查”来修正。改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。一方而检查模型的完整性,另一方而剔除对分析无用的细卩特征。但在很多情况下,这种"回归”很难实现,模型的改造只有依靠CAE软件自身。CAE中最直接的办法是依靠软件具有的"重构”功能,即剔除细部特征、缝补而和将小而“融入”大曲而等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距CAE 分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、SAT和ParaSolid传递。现有的CAD 平台与通用有限元平台一般通过IGES、STL、Step. Parasolid等格式来数搦交换,早期IGES接口应用比较广泛,但由于该标准本身的不严格性,导致多数复杂模型的传递以失败告终,如图1所示为某汽车覆盖件在UGII中以IGES格式输出时产生的信息,可以看岀其包含大量有限元分析不必要的几何信息。而SAT与ParaSolid标准较为严格,被多数CAD程序采用。由于典型通用有限元软件(如MSC.PATRAN、MSC.MARC. ANSYS、 ABAQUS. ADINA等)的建模功能都不是很强,尤苴是在而对包含复杂空间曲而的产品结构时表现出明显的不足,同时不利于建立后续的单元网格划分模型。因此,利用现有CAD 平台(如CATIA、

网格划分要求

如果要得到精度较高的计算结果,网格的质量是是至关重要的.相对于模态分析求解网格控制如下 单元翘曲角:不大于20度 单元长度:通常按照10mm划分,但最小单元长度不要小于5mm。 单元长宽比:小于1:5 雅各比:大于0.5 最小四边形内角:大于40度 最大四边形内角:小于135度 最小三角形内角:大于15度 最大三角形内角:小于140度 三角形占全部单元比例:整个模型最好小于10%,最多不多于15%,对单个零件的要求可以放松,最多可到30%(小零件)。 Hypermesh与其它有限元软件的接口及单位 一:单位: 1.默认:tonne,mm,s, N, MPa单位系统,这个单位系统是最常用,还不易出错(吨,mm和s) 备注:长度:m;力:N;质量:kg;时间: s;应力:Pa;密度:kg/m3 长度:mm;力:N;质量:吨;时间: s;应力:MPa;密度:吨/m m 3 2.Hypermesh公英制设置:1)永久菜单里的option。 2)8.0里面可以自定义设置:control card-->DTI_UNIT中可以设置。 二:hypermesh与其他软件的几何接口问题汇总 (一)Autocad建立的模型能导入hypermesh: 因为autocad的三维建模功能不是很强,一般不建议在autocad里面进行建模。如果已经在autocad里面建好模型的话,在autocad里面存贮成*.dxf的格式就可以导入到hypermesh里面。 (二)catia的装配件导入hm: 转为step格式或者是iges格式。 (三)UG.NX3版本导入Hypermesh7.0。 用igs格式可以,但是igs容易丢失信息。一般都是把NX3的prt文件导成catia格式的model文件,然后import到hypermesh中,stp的效果还可以 (四)在hm画好的网格能导入patran继续划分: 用Nastran求解,确实在patran做前处理比较方便,先存为bdf文件,一点信息都不会丢。 hypermesh 和patran 都是前处理器,只要存成某一个求解器的文件格式(如nastran的dat/bdf文件),都可以打开的。 (五)hm划的网格导入fluent: 在hypermesh中输出bdf格式,用fluent导入即可。 (六)在hypermesh里划分的网格导到marc: 在hypermesh中输出dat格式 . 准备只用hypermesh分网,这样comp的card image、material是否要设?user profile设成哪个?是nastran吗?comp 的card image、material可以不设的,这些工作可以在marc做,user profile设成hypermesh就可以了!

有限元网格划分方法与基本原理

结构有限元分析中的网格划分技术及其应用实例 结构有限元分析中的网格划分是否直接关系到解算的效果。本文简述了网格划分应用的基本理论,并以空间自由曲面覆盖件和大型整体网络钢筋壳体产品的有限元分析中的网格划分为实例对象,详细讲述了空间自由和三维实体的网格划分基本理论及其在工程中的实际应用,非常具有现实意 义和借鉴价值。 一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。Pro/E和S oildWorks是特征参数化造型的代表,而 CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于C AD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的“完整性检查”来修正。改造模型可取的办法是回到CAD 系统中按照分析的要求修改模型。一方面检查模型的完整性,另一方面剔除对分析无用的细节特征。但在很多情况下,这种“回归”很难实现,模型的改造只有依靠 CAE软件自身。CAE中最直接的办法是依靠软件具有的“重构”功能,即剔除细部特征、缝补面和将小面“融入”大曲面等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距 CAE分析的要求相差太大时,还可利用C AE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、 SAT和ParaSolid传递。现有的CAD平台与通用有限元平台一般通过IGES、STL、Step、Parasolid等格式来数据交换,早期 IGES接口应用比较广泛,但由于该标准本身的不严格性,导致多数复杂模型的传递以失败告终,如图1所示为某汽车覆盖件在UGII中以IGE S格式输出时产生的信息,可以看出其包含大量有限元分析不必要的几何信息。而SAT与ParaSolid标准较为严格,被多数CAD程序采用。由于典型通用有限元软件(如MSC.PATRAN、MSC.MARC、ANSYS、ABAQUS、ADINA等)的建模功能都不是很强,尤其是在面对包含复杂空间曲面的产品结构时表现出明显的不足,同时不利于建立后续的单元网格划分模型。因此,利用现有CAD平台(如CATIA、UGII、PRO/E)完成网格划

ANSYS有限元网格划分浅析

ANSYS有限元网格划分浅析 ANSYS有限元网格划分浅析 有限元分析作为现代工程设计领域中不可或缺的工具,旨在通过对复杂结构进行数值模拟,预测其力学行为和性能。而有限元网格划分作为有限元分析的前提条件,直接影响着分析结果的准确性和计算效率。本文将对ANSYS有限元网格划分的原理和技巧进行浅析,并探讨其在工程设计中的应用。 一、有限元网格划分的基本原理 有限元网格划分是将连续物体离散化成有限个离散单元,构建有限元模型的过程。其原理主要涉及两个方面:几何划分和节点生成。 1.1 几何划分 几何划分是将实际结构划分为有限单元的过程,主要包括自动划分和手动划分两种方式。 自动几何划分是ANSYS通过对实际结构进行自动网格划分的功能,根据用户指定的几何参数进行自适应划分,最大程度地保持结构的准确形状。这种划分方法具有快速、高效的优点,特别适用于复杂结构的网格划分。 手动几何划分是由用户通过手动操作构建网格划分,使用ANSYS提供的几何划分工具进行几何实体的划分和组合,根据 结构形状和特点进行网格划分的方式。这种划分方法需要用户具备一定的几何划分技巧和经验,能够对结构进行合理的划分。 1.2 节点生成 节点生成是指根据坐标系和几何划分,自动生成有限元网格中的节点坐标。在划分完成后,节点将根据有限元单元的形状和尺寸进行生成。

节点生成过程中主要包括节点编号、坐标值和自由度的定义。节点编号是为每个节点赋予唯一的标识,方便在后续分析中进行节点相关的计算;坐标值是节点在几何坐标系中的坐标值,用于描述节点在空间中的具体位置;自由度的定义是为节点定义相应的位移或位移的导数,用于后续求解分析中的节点位移计算。 二、ANSYS有限元网格划分的技巧 2.1 网格密度的控制 网格密度是指网格单元数目与结构体积之比,其决定了有限元模型对结构细部行为的描述能力。合理控制网格密度能够提高分析结果的准确性和计算效率。一般来说,细节丰富的区域应采用较小的网格单元,而结构较简单的区域可以采用较大的网格单元。 2.2 网格质量的改善 网格质量是指网格划分的各个单元的形状和尺寸的合理性和规则性。良好的网格质量能够提高分析结果的准确性和计算效率。常见的改善网格质量的方法包括:增加网格密度,调整网格形状,减小网格划分的变形程度等。 2.3 网格连接的优化 网格连接是指相邻有限元单元之间的节点连接。良好的网格连接能够提高分析结果的准确性和计算效率。在进行网格划分时应尽量保持相邻单元的节点连接一致,避免节点间长距离连接和邻接面错位等情况。 三、ANSYS有限元网格划分在工程设计中的应用 3.1 结构强度分析 有限元网格划分是进行结构强度分析的基础工作。合理划分网格可以更真实地模拟结构的形状和细节,提高强度分析的

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述 几何体划分网格之前需要确定单元类型。单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。 2.单元分类 选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。 3.按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。 一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

网格划分原则

有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

ANSYS有限元分析中的网格划分

ANSYS有限元分析中的网格划分 有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 作者: 张洪才 关键字: CAE ANSYS 网格划分有限元 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1 位移精度和计算时间随网格数量的变化 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随

相关文档
相关文档 最新文档