文档库 最新最全的文档下载
当前位置:文档库 › 状态空间分解法计算公式分析

状态空间分解法计算公式分析

状态空间分解法计算公式分析
状态空间分解法计算公式分析

B1W1B2小车B4

W4

同批工件间同时到达的耦合关系?

工件本来是一个个到达,如C-C+1-C+2,但考虑为批次同时到达,C 可以直接到C+2;

基于更新过程的关键更新定理,将小车与B2、B4间的耦合关系用节点间的批量到达速率、批量离开速率变化替代?B2的输出与B4的输入之间相互依赖 节点二:

两次小车装载之间通常会有多个工件到达B2,在小车两次到达的间隔中B2内的工件数量曲线是单调非减的。因此,实际上小车回到B2时B2拥有的工件数量的期望(锯齿的上尖点)远远比稳态后(稳态后不变,中间水平线)计算的期望要大

节点四:

实际上小车来到B4时B4拥有的工件数量的期望远远比稳态后计算的期望要小,当小车容量C 越大、小车速度越慢(保持当量运载能力不变)的时候这个偏差越明显,这样将提高小车由于阻塞停留在B4处的计算概率(实际堵塞概率比计算值要小),降低前环节的处理能力。

平均在制品数量:

()()()()

()121112223331122334444444441112123

,,,01

01

11

11C

4,,201

1

WIP=;

N N C

S w b S w b S w b b w b w b w N i S w b S w b w w P w P w P w P

w P N +======+===?+?+?+?+?∑∑∑∑∑∑∑

∑∑

第4项改为乘以W4;第五项(节点四在制品数期望)就是小车阻塞的概率乘以节点4的个数

(N4+1)

状态之间的转换速率:存在概率路径,则用概率路径乘以速率,不存在概率路径,则直接用速率。实际上概率路径之和一定=1

1

i b =-0

i b =1

i b =2

i b =

B2

B4

节点3:2C+2个状态对应2C+2个方程

()()()33333*

(3,4)340,01,2,0111(,);

i

w C

S S S w w j P V P PB w j P μ==???=?-+? ???∑∑

右边第一项:上标为W3,漏了V ,第二项是只可能是从小车上只有一个变为空车返回状态

()()33*

220,10,0(0);

S S P P VP λ-?=?

右边VP3load (0)=VP2(0),节点2空闲

节点S3(1,1)-与S(i ,1)的状态平衡方程不一样,所以要分开写:

()()()()

333*2321,10,00,11(0)(1);load S S S P V P V P P P λ-?=?-?+?

首先不是0个,并且只是1个,所以概率累乘;一出两进 如果运输2个或以上,则不可能经过状态S3(0,-1)

()()()33323330,0,11(0)(),2;

load S S w P V P V P P w w C ?=?-?≤≤

C-1出C-1进

()()3333*

4

(3,4)31,2,11

(,1);

C

S S w w P P V PB w μ=?=??∑

()()3333*4

(3,4)33,2,1(,),2;

C

S i S w w i

P P V PB w i w C μ=?=??≤≤∑

上述两式合并?1<=i<=C 节点三2C+2个方程

()()()33333*

(3,4)340,01,2,0111(,);

i

w C

S S S w w j P V P PB w j P μ==???=?-+? ???∑∑

()()33*

220,10,0(0);

S S P P VP λ-?=?

()()()()

333*2321,10,00,11(0)(1);load S S S P V P V P P P λ-?=?-?+? ()()()33323330,0,11(0)(),2;

load S S w P V P V P P w w C ?=?-?≤≤

()()3333*

4

(3,4)31,2,11(,1);

C

S S w w P P V PB w μ=?=??∑

()()3333*4

(3,4)33,2,1(,),2;

C

S i S w w i

P P V PB w i w C μ=?=??≤≤∑

V ,u4已知 需要求P

式中,()333,S w b P 为系统稳态后,节点三处于状态 ()33,w b 的概率;

V 为小车从B2到B4的运载速率,同时也是B4到B2的空车返回速率;

λ

2*为

B2的到达速率()

()

1*

21121P0PV 1PB μλ?---=

P01,PV1分别表示W1处于空闲与阻塞的概率

而此时B2不可能处于堵塞状态,所以分母为1-阻塞的概率 μ

4*为

W4的加工速率*

4

4μμ=;

(3,4)(,)i i PB w w k -为当小车将i w 个工件运达B4时,B4的剩余空间为k 的概率。

小车在B2、B4间来回移动,是一个再生过程。在每个循环中,依次经历

(){}3,1,1i i S w w C ≤≤(b i =1)、B4停留(){}3,2,1i i S w w C ≤≤(b i =2)、空车返回()

30,0S (b i =0)、B2停留()30,1S -(b i =-1)四个阶段。通过上文中节点平衡方程可以求出:当系统稳态时,小车处于各状态的概率()3,1,0,1,2i i S b P b =-。又根据模型假设知,运输

(){}3,1,1i i S w w C ≤≤与空车返回()30,0S 的速率均为V ,即每个循环中处于此两类状态

的平均时间为011

T T V

==

。根据更新过程相关定理我们可以得到当系统稳态后,小车每个循环中在B2、B4处平均等待时间为:()

()

3301,1,2S i i S P T i V P =?

=-。

----------------------------------------------------------------------------------------------------

2b 0

节点2:状态空间2S 总共有223N ?+个状态,根据图5(b )本文可以建立状态空间S 2的状态平衡方程:

()()()()222*

*12

2

0,10,1,01

;C

S S S k k P DA P P V λλ-=?+=?+?∑

()()()()222222*

*12222,11,1,0,1;S w S w S w C P DA P P V w N C λλ-+?+=?+?≤≤-

()()()2222**122222,11,1,11;

S w S w P DA P N C w N λλ-?+=?+-≤≤-

(N2,0)只可能变为(N2-C ,1),有工件的情况下,满载运输,因此从N2+1-C 到N2-1均只有一个输入)

()()2222*12,11,1;

S N S N P DA P λ-?=?

右侧

()()()22*

210,00,1;S S P V P DA λ?+=?

()()()()222222**21222,0,11,0,11;S w S w S w P V P DA P w N λλ-?+=?+?≤≤-

()()()222222*12,0,11,0;S N S N S N P V P DA P λ-?=?+?左侧只有一个出

()()22*20,10,0;

S S P P V λ-?=?

223N ?+个方程

V 已知

式中,()222,S w b P 为系统稳态后,节点二处于状态 ()22,w b 的概率;

*

为节点的到达速率

()

()

1*21121P0PV 1PB μλ?---=

V 为小车从B4到B2的运载速率;

DA 1为小车从B2到B4的运载速率, DA 1包括小车状态中的运输

(){}3,1,1

i i S w w C ≤≤(b i =1)与B4停留(){}3,2,1i i S w w C ≤≤(b i =2),由上文可知DA 1的表达式:

()

()

()

()()3

33331

21111211;S S S S S P VP DA V V P P P -?? ?=+?= ?+??

式中,V 为小车将工件从B2运送到B4的运输速度与小车从B4空车返回B2的返回速度;

()3i S b P 为系统稳态时,小车处于运输(){}3,1,1i i S w w C ≤≤(b i =0)与B4停留

(){}3,2,1i i S w w C ≤≤(b i =2)的概率。

节点4:状态空间4S 总共有424N C ?++个状态,根据图6(b )本文可以建立状态空间S 4的状态平衡方程:

()()()444*

420,11,10,0;S S S P V P P DA μ?=?+?左侧有多个概率路径,但是和为1,因此省略掉

()()()()444444**44244,11,1,0,1;S w S w S w P V P P DA w N μμ+?+=?+?≤≤

()()()4444*42,1,0;

S w S w P V P DA μ?+=?该公式W4=N4+1

()()44*240,01,0;S S P DA P μ?=?

()()()()4444441

*

*4

23444,0,11,00

(),1;

w unload S w S i S w i P DA P VP w i P w C μμ-+=?+=?-+?≤≤∑?

()()()()

44444441**

4

234444,0,11,0(),1;w unload S w S i S w i w C

P DA P VP w i P C w N μμ-+=-?+=

?-+?+≤≤∑

()()()()

4

44444**

4

23441,0,11,21(1);N unload S N S i S i N C

P DA P VP N i P μμ+=+-?+=

?+-+?∑

()()()

444444441**

4

34444,2,11,21(1+),11;N unload S w S i S w i N w C

P P VP N w i P w C μμ++=++-?=

?+-+?≤≤-∑

()()444*

43,21,1();unload S C S N P P VP C μ+?=?

式中,()44,i S w b P 为系统稳态后,节点四处于状态 ()44,w b 的概率;

μ

4*

W4的加工速率*

4

4μμ=;

V 为小车从B2到B4的运载速率;

3()unload P i 为小车每次送达工件个数为i 的概率;

DA 2为小车从B4到B2的运载速率, DA 2包括小车状态中的空车返回()

30,0S (b i =0)、B2停留()30,1S -(b i =-1),由上文可知DA 2的表达式:

()

()

()

()()3

33331

10200111;S S S S S P VP DA V V P P P ---?? ?=+?= ?+??

式中,V 为小车将工件从B2运送到B4的运输速度与小车从B4空车返回B2的返回速度;

()3i S b P 为系统稳态时,小车处于空车返回()30,0S (b i =0)与B2停留()30,1S -(b i =-1)的概率。

实验 6 极点配置与全维状态观测器的设计(优.选)

实验 6 极点配置与全维状态观测器的设计 一、实验目的 1. 加深对状态反馈作用的理解。 2. 学习和掌握状态观测器的设计方法。 二、实验原理 在MATLAB 中,可以使用acker 和place 函数来进行极点配置,函数的使用方法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 [K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。 三、实验内容 1.已知系统 (1)判断系统稳定性,说明原因。 (2)若不稳定,进行极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。 (3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进行极点配置? (4)使用状态反馈进行零极点配置的前提条件是什么? 1. (1) (2) 代码: a=[-2 -1 1;1 0 1;-1 0 1]; b=[1,1,1]'; p=[-1,-2,-3]'; K=acker(a,b,p) K = -1 2 4 (3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进行极点配置?

在经典控制理论中,一般只考虑由系统的输出变量来构成反馈律,即输出反馈。在现代控制理论的状态空间分析方法中,多考虑采用状态变量来构成反馈律,即状态反馈。从状态空间模型输出方程可以看出,输出反馈可视为状态反馈的一个特例。状态反馈可以提供更多的补偿信息,只要状态进行简单的计算再反馈,就可以获得优良的控制性能。 (4)使用状态反馈配置极点的前提是系统的状态是完全可控的。 2.已知系统 设计全维状态观测器,使观测器的极点配置在12+j,12-j 。 (1)给出原系统的状态曲线。 (2)给出观测器的状态曲线并加以对比。(观测器的初始状态可以任意选取)观察实验结果,思考以下问题: (1)说明反馈控制闭环期望极点和观测器极点的选取原则。 (2)说明观测器的引入对系统性能的影响。 (1)A=[0 1;-3 -4]; B=[0;1]; C=[2 0]; D=[]; G=ss(A,B,C,D); x=0:0.001:5; U=0*(x<0)+1*(x>0)+1*(x==0); X0=[0 1]'; T=0:0.001:5; lsim(G,U,T,X0);

ARCGIS10.0 空间分析方法与GIS典型应用例证

一、实验目的 1、掌握ArcGIS缓冲区分析、叠置分析、网络分析方法。 2、熟悉ArcGIS的空间统计、栅格计算方法。 3、综合利用矢量数据空间分析中的缓冲区分析和叠置分析解决实际问题。 4、学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。 5、熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:lenovoideapadY460N 计算机软件:ArcGIS10.0软件 实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘的第七章、第八章等 三、实验内容与要求 1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。

图2 线状缓冲区信息设置1 图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置

2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。 具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

空间分析方法

班级:交工1102 姓名:高志波学号:201111010212 简析几种空间分析方法 空间分析是对分析空间数据有关技术的统称。空间分析赖以进行的基础是地理空间数据库,其运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段,最终的目的是解决人们所涉及到地理空间的实际问题,提取和传输地理空间信息,特别是隐含信息,以辅助决策。 缓冲区分析 一、定义 缓冲区分析是指根据分析对象的点、线、面实体,自动建立其周围一定距离的带状区,用以识别这些实体或者主体对邻近对象的辐射范围或者影响程度,是解决临近度问题的空间分析工具之一。它在交通、林业、资源管理、城市规划中有着广泛的应用。 二、分类 (1)基于点要素的缓冲区:通常以点为圆心、以一定距离为半径的圆; (2)基于线要素的缓冲区:通常是以线为中心轴线,距中心轴线一定距离的平行条带多边形;(3)基于面要素的缓冲区:向外或向内扩展一定距离以生成新的多边形。 三、空间缓冲区分析模型 (1) 缓冲区分析的三要素 在进行空间缓冲区分析时,通常要将研究的问题抽象为以下三类要素: ①主体 表示分析的主要目标,一般分为点源、线源和面源三种类。 ②邻近对象 表示受主体影响的客体,例如行政界线变更时所涉及的居民区、森林遭 砍伐时所影响的水土流失范围等。 ③对象的作用条件 表示主体对邻近对象施加作用的影响条件或强度。 (2) 缓冲区分析模型 根据主体对邻近对象作用性质的不同,一般可采用以下三种不同的分析模型: 线性模型、二次模型、指数模型 线性模型 二次模型

指数模型 四、空间缓冲区分析在林业上的应用 已知一伐木公司,获准在某林区采伐,为防止水土流失,规定不得在河流周围 1km 内采伐林木。另外,为便于运输,决定将采伐区定在道路周围 5km 之内。请找出符合上述条件的采伐区,输出森林采伐图。 解题过程 首先要以区域的道路分布图、河流分布图、森林分布图为数据源。解题流程见图所示。 (1)将该地区具有相同比例尺且进行配准的道路分布图、河流分布图、森林分布图,进行预处理和数字化; (2)利用河流分布图生成1km的等距离缓冲区;

资料分析计算公式大全

统计图表知识收集与分析 产业 第一、第二、第三产业,是根据社会生产活动历史发展的顺序对产业结构的划分。它大体反映了人类生活需要、社会分工和经济发展的不同阶段,基本反映了有史以来人类生产活动的历史顺序,以及社会生产结构与需求结构之间相互关系,是研究国民经济的一种重要方法。 产品直接取自自然界的部门称为第一产业,即农业,包括种植业、林业、牧业和渔业;对初级产品进行再加工的部门称为第二产业,即工业(包括采掘工业、制造业、自来水、电力蒸汽、热水、煤气)和建筑业;为生产和消费提供各种服务的部门称为第三产业,即除第一、第二产业以外的其他各业。根据我国的实际情况,第三产业可以分为两大部门:一是流通部门,二是服务部门。 此外,通常说的办“三产”,其内容并不一定都是第三产业,把企事业单位创办的主业之外的营利性的经济实体都称之为“三产”是不确切的。例如:所办的实体如是养牛场则属于第一产业,如果是工厂、施工队则属于第二产业,如果是商店、招待所、咨询机构、游艺厅等才属于第三产业。 三次产业各年度的比重(%) 1991 1992 1993 1994 1995 1996 1997 1998 1999 第一产业 8.1 6.9 6.2 6.9 5.8 5.2 4.7 4.3 4.0

第二产业 52.2 48.7 48.0 46.1 44.1 42.3 40.8 39.1 38.9 第三产业 39.7 44.4 45.8 47.0 50.1 52.5 54.5 56.6 57.1 第三产业是由流通部门和服务部门的有关行业组成,它的基本属性决定了第三产业必须为第一产业和第二产业提供各种配套服务 。在我国,由于长期受计划经济的影响,第三产业没有受到足够的重视,以致长期处于滞后状态。80年代以来,随着我国改革开放的不断深入,第三产业迅速恢复和发展起来,成为国民经济的重要组成部分。但第三产业的发展和其它经济产业一样,也必须遵循客观发展的规律。就现阶段来看,在我国第一和第二产业仍占经济的主导地位,对国民经济的支配作用并没有改变,而第三产业正处在培育和发展阶段。因此,还不能说第三产业在国民经济中的比重越高越好,而应该和其它产业保持适当的比例关系,相互协调,共同促进国民经济的健康发展。如果片面强调第三产业的作用,不切实际地提高第三产业增加值占国内生产总值的比重,就可能出现“泡沫”经济现象,难以保持国民经济持续、稳定、健康发展。同时,第三产业的发展还必须同国民经济的整体实力相适应,从世界范围来看,经济发达地区第三产业比重较高,而经济欠发达地区则比重较低。北京199 5年第三产业增加值占全市GDP的比重突破50%,1998年达到56.6%,在全国30个省会城市中居第一位。“九五”期间,北京经济继续坚持“三、二、一”产业发展方针,大力发展第三产业,努力提高第三产业在全市GDP的比重,这是一个长远的发展战略。 第三产业增加值占国内生产总值比重(%) 总产值、净产值、增加值与国内生产总值究竟有什么区别与联系?

ARCGIS空间分析操作步骤

ARCGIS空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、面积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。 有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。

空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。 空间分析的基本步骤: a)确定问题并建立分析的目标和要满足的条件 b)针对空间问题选择合适的分析工具 c)准备空间操作中要用到的数据。 d)定制一个分析计划然后执行分析操作。 e)显示并评价分析结果

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

资料分析公式汇总

资料分析公式汇总

速算技巧 一、估算法 精度要求不高的情况下,进行粗略估值的速算方式。选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。 二、直除法 在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。 常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数 2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。 难易梯度:1.基础直除法:①可通过直接观察判断首位的情形; ②需要通过手动计算判断首位的情形。 2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。 三、插值法 1.“比较型”插值法 如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B; 2.“计算型”插值法 若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A; 若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。

四、放缩法 当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。 常用形式: 1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C; 2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C 五、割补法 在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。 常用形式: 1.根据该组数据,粗略估算一个中间值; 2.将该组值分别减去中间值得到一组数值;

行测资料分析计算公式汇总

资料分析计算公式汇总 考点 已知条件 计算公式 方法与技巧 基期量计算 (1)已知现期量,增长率x% x%1+= 现期量 基期量 截位直除法,特殊分数法 (2)已知现期量,相对基期量增加M 倍 M += 1现期量 基期量 截位直除法 (3)已知现期量,相对基期量的增长量N N -现期量基期量= 尾数法,估算法 基期量比较 (4)已知现期量,增长率x% 比较:x% 1+= 现期量 基期量 (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它 现期量计算 (5)已知基期量,增长率x% ) (基期量基期量基期量现期量x %1 x %+?=?+= 特殊分数法,估算法

(6)已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 (7)已知基期量,增长量N N +=基期量现期量 尾数法,估算法 增长量计算 (8)已知基期量与现期量 基期量现期量增长量-= 尾数法 (9)已知基期量与增长率x% x%?=基期量增长量 特殊分数法 (10)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) (11)如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法 增长量比较 (12)已知现期量与增长率x% x%x% 1?+=现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量 (2)公式可变换为: % 1%x x +? =现期量增长量,其中

GIS空间分析方法

地理信息系统(GIS)具有很强的空间信息分析功能,这是区别于计算机地图制图系统的显著特征之一。利用空间信息分析技术,通过对原始数据模型的观察和实验,用户可以获得新的经验和知识,并以此作为空间行为的决策依据。 空间信息分析的内涵极为丰富。作为GIS的核心部分之一,空间信息分析在地理数据的应用中发挥着举足轻重的作用。 叠置分析(Overlay Analysis) 覆盖叠置分析是将两层或多层地图要素进行叠加产生一个新要素层的操作,其结果将原来要素分割生成新的要素,新要素综合了原来两层或多层要素所具有的属性。也就是说,覆盖叠置分析不仅生成了新的空间关系,还将输入数据层的属性联系起来产生了新的属性关系。覆盖叠置分析是对新要素的属性按一定的数学模型进行计算分析,进而产生用户需要的结果或回答用户提出的问题。 1)多边形叠置 这个过程是将两层中的多边形要素叠加,产生输出层中的新多边形要素,同时它们的属性也将联系起来,以满足建立分析模型的需要。一般GIS软件都提供了三种多边形叠置: (1)多边形之和(UNION):输出保留了两个输入的所有多边形。 (2)多边形之积(INTERSECT):输出保留了两个输入的共同覆盖区域。 (3)多边形叠合(IDENTITY):以一个输入的边界为准,而将另一个多边形与之相匹配,输出内容是第一个多边形区域内二个输入层所有多边形。 多边形叠置是个非常有用的分析功能,例如,人口普查区和校区图叠加,结果表示了每一学校及其对应的普查区,由此就可以查到作为校区新属性的重叠普查区的人口数。 2)点与多边形叠加 点与多边形叠加,实质是计算包含关系。叠加的结果是为每点产生一个新的属性。例如,井位与规划区叠加,可找到包含每个井的区域。 3)线与多边形叠加 将多边形要素层叠加到一个弧段层上,以确定每条弧段(全部或部分)落在哪个多边形内。 网络分析(Network Analysis) 对地理网络(如交通网络)、城市基础设施网络(如各种网线、电力线、电话线、供排水管线等)进行地理分析和模型化,是地理信息系统中网络分析功能的主要目的。网络分析是运筹学模型中的一个基本模型,它的根本目的是研究、筹划一项网络工程如何按排,并使其运行效果最好,如一定资源的最佳分配,从一地到另一地的运输费用最低等。其基本思想则在于人类

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。 生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布 2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

资料分析计算公式整理

资料分析计算公式整理 考 点 已知条件计算公式方法与技巧 去年量计算(1)已知今年量, 增长率x% x% 1+ = 现期量 基期量截位直除法,特殊分数法 (2)已知今年量, 相对去年量增加 M倍 M + = 1 现期量 基期量截位直除法 (3)已知今年量, 相对去年量的增 长量N N - 现期量 基期量=尾数法,估算法 去 年量比较(4)已知今年量, 增长率x% 比较: x% 1+ = 现期量 基期量 (1)截位直除法(2)如果今年量 差距较大,增长率相差不大,可直 接比较今年量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比 较) (2)化同法,差分法或其它 今年量计算(5)已知去年量, 增长率x% ) ( 基期量 基期量 基期量 现期量 x% 1 x% + ? = ? + = 特殊分数法,估算法 (6)已知去年量, 相对去年量增加 M倍 ) ( 基期量 基期量 基期量 现期量 M M + ? = ? + = 1 估算法 (7)已知去年量, 增长量N N + =基期量 现期量尾数法,估算法 增长量计算(8)已知去年量 与今年量 基期量 现期量 增长量- =尾数法 (9)已知去年量 与增长率x% x% ? =基期量 增长量特殊分数法 (10)已知今年量 与增长率x% x% x% 1 ? + = 现期量 增长量 (1)特殊分数法,当x%可以被视 为 n 1 时,公式可被化简为: n + = 1 现期量 增长量; (2)估算法(倍数估算)或分数 的近似计算(看大则大,看小则小)(11)如果去年量 为A,经N期变为 B,平均增长量为x N A B x - =直除法

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

辛苦整理的资料分析方法(完整)希望大家有用咯!

行测资料分析 十对专用术语大家好好看,我刚刚整理的!觉得蛮好的! 觉得有用就回个帖! ★【速算技巧一:估算法】 要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑 能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算 方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方 式多样,需要各位考生在实战中多加训练与掌握。 进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决 定了"估算"时候的精度要求。 ★【速算技巧二:直除法】 李委明提示: “直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。 “直除法”从题型上一般包括两种形式: 一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数; 二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。 “直除法”从难度深浅上来讲一般分为三种梯度: 一、简单直接能看出商的首位; 二、通过动手计算能看出商的首位; 三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。 【例1】 56 .10134 .489294.13343.559310.7454.813222.0349.738、 、、中最大的数是( )。 【解析】直接相除:3 0.2294.837=30+ , 1 0.7454.8132=30-, 9 4.13343.5593=30-, 56 .10134.4892=30-, 明显 3 0.2294.837为四个数当中最大的数。 【例2】324094103、328954701、239553413、128941831中最小的数是( )。 【解析】 32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小, 因此四个数当中最小的数是32895/4701。

资料分析计算公式整理

资料分析计算公式整理 现期量=现在的量,或者是今年的量。 基期量=原始的量,或者是上年的量。 考点 已知条件 计算公式 方法与技巧 基期量计算 (1)已知现期量,增长率x% x%1+= 现期量 基期量 截位直除法,特殊分数法 (2)已知现期量,相对基期量增加M 倍 M += 1现期量 基期量 截位直除法 (3)已知现期量,相对基期量的增长量N N -现期量基期量= 尾数法,估算法 基期量比较 (4)已知现期量,增长率x% 比较:x% 1+= 现期量 基期量 (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它

现期量计算 (5)已知基期量,增长率x% ) (基期量基期量基期量现期量x %1 x %+?=?+= 特殊分数法,估算法 (6)已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 (7)已知基期量,增长量N N +=基期量现期量 尾数法,估算法 增长量计算 (8)已知基期量与现期量 基期量现期量增长量-= 尾数法 (9)已知基期量与增长率x% x%?=基期量增长量 特殊分数法 (10)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) (11)如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法 增长量比较 (12)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量

资料分析计算公式

资料分析计算公式 考点 已知条件 计算公式 方法与技巧 基期量计算 已知现期量,增长量 增长量-现期量基期量= 直接做差、简单估算 已知现期量,增长率x% x% 1现期量基期量+= ()x %1-≈现期量 截位直除法,特殊分数法 当X<5,才可使用约等于号之后的公式 已知现期量,相对基期量增加M 倍 M += 1现期量基期量 截位直除法 基期量比较 已知现期量,增长率x% x% 1现期量基期量+= (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它 计算基期量时,如果给出现期量和增长率: 若增长率< 5%,建议使用公式法化除为乘进速算; 若5%≤增长率<10%,那么在答案精度要求不高的情况下也可使用化除为乘近似公式; 若增长率没有什么特殊特征,则考虑直接进行直除或估算。

现期量计算 已知基期量,增长量 量增长基期量 现期量+= 尾数法,估算法 已知基期量,增长率x% () %1%x x +?=?+=基期量现期量基期量基期量现期量 特殊分数法,估算法 已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 现期量的计算常和年均增长率结合考查,求年均增长率时可利用的近似计算公式为())5%(1%1<+≈+x nx x n ,估算结果比真实值偏小 增长量计算 已知基期量与现期量 基期量现期量增长量-= 尾数法、直接做减法 已知基期量与增长率x% x%?=基期量增长量 特殊分数法、估算 已知现期量与增长率x% x%x%1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为n 1时,公式 可被化简为:n +=1现期量增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) 如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

一、直线一级倒立摆建模 根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示: 倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。 虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性 倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。 2) 不确定性 主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。 3) 耦合性 倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。 4) 开环不稳定性 倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。 由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点: (1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度; (2)为保证倒立摆能顺利起立,要求初始偏角小于20°;

状态空间分析法

第9章 线性系统的状态空间分析与综合 ?重点与难点 —、基本概念 1. 线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动 状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上 的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是 关于系统的一阶微分(或差分)方程组。 输出方程输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空 间表达式一般用矩阵形式表示: x y (2) 状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、 传递函数等其他形式的数学模型导出。 (3) 状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数) 是 确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作 为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性 变换的目的在于使系统矩阵 A 规范化,以便于揭示系统特性,利于分析计算。满秩线性 变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵 A 化为三种规范形式: 对角形、约当形和模式矩阵。 (4) 线性定常系统状态方程解。状态转移矩阵 Bu Du (9.1) Ax Cx 结构 图、 (t )(即矩阵指数e At )及其性质:

x(k) 1 UkT )) Dkk)G(T)u(k) (9.8) i . (0) I ii . (t) A (t) (t)A iii . (t 1 t 2 ) (t 1 ) ( t 2) (t 2)(t 1) iv. 1 (t) ( t) v. [(t)]k (kt) vi. exp(At) exp(Bt) exp[( A B)t] (AB B vii . exp(P 1APt) P 1 exo( At)P (P 非奇异) 求状态转移矩阵 (t)的常用方法: 拉氏变换法 (t) L[(sl A)1] 级数展开法 At , ", 1 A 2 2 1"k,k e I At A t A t k! 齐次状态方程求解 x(t) (t)x(0) 非齐次状态方程式(9.1)求解 t x(t) (t)x(0) 0 (t )Bu( )d (5) 传递函数矩阵及其实现 传递函数矩阵G(s):输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 1 G(s) C(sl A) 1B D (9.6) 传递函数矩阵的实现:已知传递函数矩阵 G(s),找一个系统{代B,C, D }使式(9.6) 成立,则将系统{A, B,C,D }称为G(s)的一个实现。当系统阶数等于传递函数矩阵阶数 时,称该系统为 G(s)的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标 准形实现、对角形实现和约当形实现等。 (6) 线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述 为 其中 (T) (t)tT T (9.2) (9.3) (9.4) (9.5)

相关文档
相关文档 最新文档