文档库 最新最全的文档下载
当前位置:文档库 › 钢铁热处理中英文对照外文翻译文献

钢铁热处理中英文对照外文翻译文献

中英文对照外文翻译

(文档含英文原文和中文翻译)

原文:

Heat Treatment of Steel

Types of Heat Treating Operations Five Operations are detailed in this lesson as the basis of heat treatment. Explanations of these operations follow.

Full annealing Full annealing is the process of softening steel by a heating and cooling cycle, so that it may be bent or cut easily. In annealing, steel is heated above a transformation temperature and cooled very slowly after it has reached a suitable temperature. The distinguishing characteristics of full annealing are: (a) temperature above

the critical temperature and (b) very slow cooling, usually in the furnace.

Normalizing Normalizing is identical with annealing, except that the steel is air cooled; this is much faster than cooling in a furnace. Steel is normalized to refine grain size, make its structure more uniform, or to improve machinability.

Hardening Hardening is carried out y quenching a steel, that is, cooling it rapidly from a temperature above the transformation temperature. Steel is quenched in water or brine for the most rapid cooling, in oil for some alloy steels, and in air for certain higher alloy steels. After steel is quenched, it is usually very hard and brittle; it may even crack if dropped. To make the steel more ductile, it must be tempered.

Tempering Tempering consistes of reheating a quenched steel to a suitable temperature below the transformation temperature for an appropriate time and cooling back to room temperature. How this process makes steel tough will be discussed later.

Stress relieving Stress relieving is the heating of steel to a temperature below the transformation temperature, as in tempering, but is done primarily to relieve internal stress and thus prevent distortion or cracking during machining.

This is sometimes called process annealing.

Reasons for Heat Treating Heat treatment of steel is usually intended to accomplish any one of the following objectives:

●Remove stresses induced by cold working or to

remove stresses set up by nonuniform cooling of hot metal

objects;

●Refine the grain structure of hot worked steels

which may have developed coarse grain size;

●Secure the proper grain structure;

●Decrease the hardness and increase the ductility;

●Increase the hardness so as to increase resistance

to wear or to enable the steel to withstand more service

conditions;

●Increase the toughness; that is, to produce a steel

having both a high tensile strength and good ductility,

enabling it to withstand high impact;

●Improve the machinability;

●Improve the electrical properties;

●Change or modify the magnetic properties of steel.

Heat Treatment The hardest condition for any givens steel is obtained by quenching to a fully martensitic structure.

Since hardness is directly related to strength, a steel composed of 100% martensite is at its strongest possible condition. However, strength is not the only property that must be considered in the application of steel parts. Ductility may be equally important.

Tempering Ductility is the ability of a metal to change shape before it breaks. Fleshly quenched martensite is hard but not ductile; in fact, it is very brittle. Tempering is needed to impart ductility to the martensite, usually at a smell sacrifice in strength. In addition, tempering greatly increases the resistance of martensite to shock loading.

The effect of tempering may be illustrated as follows. If the head of a hammer were quenched to a fully martensitic structure, it probably would crack after the first few blows. Tempering during manufacture of the hammer imparts shock resistance with only a slight decrease in hardness. Tempering is accomplished by heating a quenched pert to some point below the transformation temperature, and holding it at this temperature for an hour or more, depending on its size. Most steels are tempered between 205 and 5,950C. As higher temperatures are employed, toughness or shock resistance of the steel is increased, but the hardness and strength decrease.

Annealing the two-stage heat treating process of quenching and tempering is designed to produce high strength steel capable of resisting shock and deformation without breaking. On the other hand, the annealing process is intend to make steel easier to deform of machine. In manufacturing steel products, machining and severe bending operations are often employed. Even tempered steel may not cut or bend very easily and annealing is often necessary.

Process annealing Process annealing consists of heating steel to a temperature just below the lowest transformation temperature for a short time. This makes the steel easier to form. This heat treatment is commonly applied in the sheet and wire industries, and the temperatures generally used are from 550 to 650o C.

Full annealing Process annealing, where steel is heated 50 to 100 o C above the third transformation temperature for hypoeutectoid steels, and above the lowest transformation temperature for hypereutectoid steels, and slow cooled, makes the steel much easier to cut, as well as bend. In full annealing, cooling must take place very slowly so that a coarse pearlite is formed. Show cooling is not essential for process annealing, since any cooling rate from temperatures below the lowest

transformation temperature will result in the same microstructure and hardness.

During cold deformation, steel has a tendency to harden in deformed areas, making it more difficult to bend and liable to breakage. Alternate deforming and annealing operations are performed on most manufactured steel products.

Normalizing The process of normalizing consists of heating to a temperature above the third transformation temperature and allowing the pert to cool in still air. The actual temperature required for this depends on the composition of the steel, but is usually around 870o C. Actually, the term normalize does not describe the purpose. The process might be more accurately described as a homogenizing or grain-refining treatment. Within any piece of steel, the composition is usually not uniform throughout. That is, one area may have more carbon than the area adjacent to it. These compositional differences affect the way in which the steel will respond t heat treatment. If it is heated to a high temperature, the carbon can readily diffuse throughout, and the result is a reasonably uniform composition from one area to next. The steel is then more homogeneous and will respond to the heat treatment in a more uniform way.

Because of characteristics inherent in cast steel, the normalizing treatment is more frequently applied to ingots prior to working, and to steel castings and forgings prior to hardening.

Stress Relieving When a metal is heated, expansion occurs which is more or less proportional to the temperature rise. Upon cooling metal, the reverse reaction takes place. That is, a contraction is observed. When a steel bar or plate is heated at one point more than at another, as in welding or during forging, internal stress are set up. During heating, expansion of the heated area cannot take place unhindered, and it tends to deform. On cooling, contraction is prevented from taking place by the unyielding cold metal surrounding the heated area. The forces attempting to contract the metal are not relieved, and when the metal is cold again, the forces remain as internal stresses. Stresses also result from volume changes, which accompany metal transformations and precipitation. Internal or residual stresses are bad because they may cause warping of steel parts when they are machined. To relieve these stresses, steel is heated to around 595o C, assuming that the entire pert is heated uniformly, then cooled slowly back to room temperature. This procedure is called

stress relief annealing, or merely stress relieving.

译文:

钢的热处理

各种类型的热处理本单元详细介绍了五种热处理的基本方法。这些方法如下。

完全退火完全退火是利用冷热循环使钢铁硬度下降的过程,之后它就容易被切割和弯曲。在退火时,钢被加热到相变温度上并且达到一个合适温度后就缓慢冷却。完全退火的区别其他退火的特点是:(a)温度高于临界温度(b)缓慢冷却,通常是炉冷。

正火正火与退火相同,除了钢铁的正火是空冷,这样将比在炉中冷却的快。金属进行正火是为了细化精粒,使它的组织更加规律,或提高它的机械加工性能。

淬火淬火就是钢淬火,它是将钢从临界温度以上迅速冷却。钢一般是在水中或者卤水中进行淬火,这是为了快速冷却,而另外一些合金钢用油冷,以及某些高等合金钢要用空冷。钢催后之后,一般会很硬很脆,有可能在落地后碎裂。为了是钢有更高的韧性它,必须还要经过回火

回火回火是将淬火过的钢再次加热到转变温度以下一定时间后再冷却到室温的热处理工艺。这个过程是如何使钢有高硬度之后将会讨论。

去应力去应力是加热钢到转变温度一下,如同回火一样,但

这样做主要是为了消除内应力和防止在机械加工的过程中的扭曲和变形。有时候我们也称这个过程叫做退火。

热处理的原因钢的热处理经常是为了完善如下几个方面:

消除在冷却过程中产生的应力和消除热金属处理中的应力。

细化晶粒组织,钢可能在热加工过后会产生粗大的晶粒。

获得稳定的适当的晶粒结构

降低硬度,提高塑性。

增加硬度以提高抗磨损能力或者使金属能够承受更多条件环境。、

增加韧性,这样一来,可以使钢同时拥有高拉伸性和好的延展性,使它能承受高程度的碰撞。

提高切削性能。

提高导电性。

改变钢的磁性。

热处理对于任何一种钢而言,最困难的是获得马氏体。由于硬度和强度有直接关系,钢由百分之百的马氏体组成时它处于最大强度状态。然而,强度并不是钢在应用中唯一考虑的性质,延展性同样重要。

回火可塑性是指金属在其破裂前改变形状的能力。马氏体本身具有很高硬度但延展性不高,而且易碎。回火是被用作使马氏体具有良好的可塑性,往往是牺牲了一小部分的强度。此外,回火处理大大增加了马氏体抵抗冲击负荷的能力。

回火的影响以下举例说明。如果一个锤子的头经过淬火变成完全马氏体的结构,它很可能在最初的几次打击后破裂。锤子的韧性在回火过程中获得提高而仅仅伴随硬度稍微降低。回火是经过淬火后急速冷却到相变温度下某一点的过程,并且保持这个温度一个小时或者更久,这个温度由钢的尺寸来决定。大多数钢的回火温度在205℃~595℃。随着温度的提高,钢的韧性和抗冲击强度也增强,但是硬度和强度下降。

退火在回火和淬火这两个工艺阶段,其目的是能制造可以抵抗高冲击强度和磨损变形的高强度钢材。令一方面,退火工艺的目的是使得钢材容易加工和变形。在钢制品的机械加工中,机械制造产生的弯曲是非常常见的。经过回火的钢材可能不容易被切割和弯曲,所以回火往往是必要的。

退火工艺退火工艺需要加热钢材到最低相变温度下一段时间。这使钢更容易成型。这种热处理往往被用于钢铁和电线产业,其工艺温度一般在550~650℃。

完全退火完全退火,就是把钢材加热到第三转变温度以上50~100℃使之成为亚共析钢,或者加热到最低转变温度以上为过共析钢,经过缓慢冷却,使钢材容易被切削和弯曲。在完全退火中,冷却必须进行的很缓慢从而使之形成粗糙的珠光体。缓慢冷却并不是退火过程中必不可少的,这是由于加热到最低的转变温度以下后,任何冷却速度都会导致钢材形成同样的结构和硬度。

在冷变形中,钢材有着在形变区域内变硬的趋势,使之更难弯曲

和容易被损坏。在大多数的机械加工钢材中,交替变形和退火都被使用缺一不可。

正火正火过程包括把钢材加热到第三温度以上并使其在空气中冷却。正火实际需要的温度取决于钢的组成成分,但通常在870℃左右。实际上,这个过程并不能描述其目的。把这个过程描述为均匀或晶粒细化处理可能会更准确些。做一小块钢材上,它的组成通常是不一样的。也就是说,某一个区域上会比它的领域含有更多的碳。这些成分的差异影响着钢的热处理。如果加热到一个较高的温度,碳很可能迅速扩散到各处,结果就是每一区域的碳都是均匀的。这时的钢材比较匀质并且更易于热处理。

由于铸铁的固有性质,被加工前的铸铁块往往更需要频繁的正火加工,然后才是进行浇铸和变硬。

去应力当金属被加热时,它就会产生膨胀,膨胀的多少与加工温度成比例关系。如果降温,金属就会发生相反的反应。即注意到钢材的缩小。当钢的某一点加热的温度高于其它地方时,就像焊接或锻造一样,那一点就会产生内应力,。加热过程中,膨胀的区域不能被诛之,并且它会趋向于变形。冷却时,高温区域的缩小会被周围的冷区域的材料阻止。那些使金属压缩的应力并没有减弱,当金属在次冷却时,这个力与内应力一样不变。压力往往随着体积改变,这种变化伴随着材料的转变和析出。内应力和残余应力都是有害的,这是因为在加工时它们可能会导致钢铁部件的变形。为消除这些应力,钢材要加热到595℃左右,确定整个材料被加热均匀,再慢慢冷却到室温。

这种程序被称为去应力退火,或者为去应力。

模具热处理外文翻译文献

模具热处理外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 原文: Heat Treatment of Die and Mould Oriented Concurrent Design Abstract: Many disadvantages exist in the traditional die design method which belongs to serial pattern. It is well known that heat treatment is highly important to the dies. A new idea of concurrent design for heat treatment process of die and mould was developed in order to overcome the existent shortcomings of heat treatment process. Heat treatment CAD/CAE was integrated with concurrent circumstance and the relevant model was built. These investigations can remarkably improve efficiency, reduce cost and ensure quality of R and D for products. Key words:die design; heat treatment; mould Traditional die and mould design,mainly by experience orsemi—experience,is

不锈钢钢材机械外文文献翻译、中英文翻译、外文翻译

外文原文: Stainless Steel Petro-chemical industry with its own production of some of the features, such as its operating temperature range, low-temperature conditions up to -196 ℃, temperatures can reach more than 500 ℃; operating pressure there is external pressure, vacuum, atmospheric pressure, medium pressure, high pressure, ultra-high pressure (more than 100MPa); In addition, the operating environment in the medium complexity, such as the existence of corrosion, wear and tear, and flammable, explosive, toxic and other solid, gaseous, liquid and a variety of mixed media chloride, sulfide and other salt category. Therefore, the petrochemical industry in the use of stainless steel, the requirements of stainless steel has strong corrosion resistance, including anti-chloride, sulfide and other corrosive salts; resistant to high temperature and low temperature performance. Among them, the petrochemical plant at 500 ~ 600 ℃, the equipment and pipe materials in general to choose a variety of austenitic stainless steel-based, such as 304H, 316,321, such as austenitic stainless steel has been widely used; and for oil exploration, the development of the field of stainless steel with anti-called carbon dioxide, hydrogen sulfide corrosion properties. At present, China's crude oil exploration, development is mainly used in 3Cr, 9Cr, 13Cr, super 13Cr and containing more than Cr22 stainless steel thick-walled, non-magnetic drill collar and drill pipe. At present, China's petrochemical industry in the stainless steel variety of choice, in general to 304 mainly, steel plate thickness of 6 to 22 millimeters, the main polymer used in the construction of storage tanks, heat exchanger shell. In addition, some pieces of the use of reactor tower 316L, TP347, etc., the thickness of 2 ~ 6 mm. Glacial acetic acid and liquid delivery vehicles (train tanker) General use of 304 and 306 plate. In addition, production of the device because of the existence of urea carbamate amine condensate, a highly corrosive, generally stripper, separation, and the use of 316L stainless steel condenser. On the stainless steel clad plate, such plate mainly used in oil refining equipment reaction tower, commonly used for 20R +0 Cr13AL, 16MnR +0 Cr13AL, 20R +0 Cr13 such. Due to the substrate, rehabilitation materials and production

级进模的热处理的并行设计外文文献翻译、中英文翻译、外文翻译

附录A 级进模的热处理的并行设计 传统的级进模设计,主要是经验或半经验,脱离制造过程。在设计完成之前,级进模计划通常一再修改,从而形成一些弊端。如开发期长、成本高、效果不实用。由于对精确、使用寿命、开发成本和时间有很高的要求,现代级进模设计和制造应该很完全。因此,越来越多的先进技术和创新已经被应用,例如并行工程、灵活制造、虚拟制造、合作设计等。 级进模的热处理是与设计、制造和装配同等重要的,因为它对制造、装配和服务具有重要影响。级进模的设计和制造进步很快。但在它们背后热处理严重滞后。级进模工业的发展,热处理必须保证级进模有好的状态及制造、装配和抗磨损性要求。热处理可以影响级进模生产比如过硬和软、装配。传统的热处理过程和方法提出了按设计提出的方式。这会使设计者和级进模及热处理偏离对方,设计者和级进模不能完全实现热处理过程中,材料特性、创意设计了解甚少的服务环境和设计思想。这些分歧将影响级进模进度。因此,如果程序设计热处理是在早期设计阶段,目标是缩短开发时间、降低成本、稳定质量,实现了从传统的发展模式,同时并行顺序将会实现。 并行工程是把电脑整合系统设计为载体,在每个阶段开始后,工厂要考虑,例如制造、热处理、成本等因素,以避免错误。并行方式驳回有缺陷的连续方式,给连续方式带来一场革命。在当前的工作,同时结合热处理的情况下,死亡和发展模式,并进行了系统的研究和深刻。 1热处理下的并行处理 并行方式与顺序方式最终不同。对于顺序方式,主要考虑级进模的结构设计,几乎没有考虑到过程,这样的错误很容易扩散倒退。同时,设计部门很少与组装、销售部门和成本核算沟通。这些问题势必影响级进模的开发进度和市场前景。而并行方式,政府部门之间的密切关系,各有关部门参加级进模的发展和进步,与买家有着密切联系。这有利于消除部门之间的矛盾,提高效率,降低成本。在并行方式中的热处理,没有经费的情况后,采取了蓝图,但在级进模的设计,这样做,有利于优化热处理过程中充分利用潜力的材料。2CAD/CAM在级进模热处理一体化中的应用 可以看出设计和模拟过程是热处理一体化框架的核心。在信息输入透过产品设计及模

外文翻译---金属热处理

附录2英文翻译 金属热处理 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土

的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。 金属热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体

翻译 钢的热处理

中英文对照翻译 Heat Treatment of Steels Heat treating refers to the heating and cooling operations performed on a metal for the purpose of altering such characteristics as hardness, strength, or ductility. A tool steel in?tended to be machined into a punch may first be softened so that it can be machined. After being machined to shape, it must be hardened so that it can sustain the punishment that pun?ches receive. Most heating operations for hardening leave a scale on the surface, or contribute other surface defects. The final operation must, therefore, be grinding to remove surface de?fects and provide a suitable surface finish. When a steel part is to be either hardened or softened, its temperature must be taken a?bove the critical temperature line; that is, the steel must be austenitized. Usually a tempera?ture of 50 to 100 degree above the critical temperature is selected, to ensure that the steel part reaches a high enough temperature to be completely austenitized, and also because fur?nace temperature control is always a little uncertain. The steel must be held at furnace temperature for sufficient time to dissolve the carbides in the austenite, after which the steel can be cooled. How much residence time in the furnace is required is to some degree a matter of experience with any particular steel. Usually, for a 3/4 in. bar Clin=O. 0254m), 20 minutes or slightly more will do. Doub?le the time for twice the diameter. Alloy steels may require a longer furnace time; many of these steels are best preheated in a lower-temperature furnace before being charged into the hardening furnace. When the heating time is completed, the steel must be cooled down to room tempera?ture. The cooling method determines whether the steel will be hardened or softened. If the steel is quickly removed from the furnace and quenched into cold water, it will be hardened. If it is left in the furnace to cool slowly with the heat turned off, or cooled in air (small pieces of plain carbon steel cannot be air-softened,

冶金专业词汇中英文对照表

冶金专业词汇中英文对照表(一) iron and steel industry 钢铁工业 ironworks 铁厂 foundry 铸造车间 steelworks, steel mill 钢厂 coking plant 炼焦厂 electrometallurgy 电冶金学 powder metallurgy 粉末冶金学 blast furnace 鼓风炉 mouth, throat 炉口 hopper, chute 料斗 stack 炉身 belly 炉腰 bosh 炉腹 crucible 炉缸 slag tap 放渣口 taphole 出铁口,出渣口 pig bed 铸床 mould 铸模(美作:mold) tuyere, nozzle 水口 ingot mould 锭模(美作:ingot mold) floor 平台 hearth 炉底 charger 装料机 ladle 铁水包,钢水包 dust catcher 除尘器 washer 洗涤塔 converter 转炉 hoist 卷扬机

compressor 压缩机 tilting mixer 可倾式混铁炉 regenerator 蓄热室 heat exchanger 热交换器 gas purifier 煤气净化器 turbocompressor 涡轮压缩机burner 烧嘴 cupola 化铁炉,冲天炉 emptier 排空装置 trough 铁水沟,排渣沟 skip 料车 rolling mill 轧机,轧钢机 blooming mill 初轧机 roller 辊 + bed 底座 rolling-mill housing 轧机机架drawbench 拔管机,拉丝机 drawplate 拉模板 shaft furnace 竖炉 refining furnace 精炼炉 reverberatory furnace 反射炉hearth furnace 床式反射炉

热处理专业术语中英文对照

热处理专业英语 age hardening时效硬化ageing老化处理aw hardening气体硕化air pateiituig 空气韧化annealing 退火anode effect阳极效应anodizing 阳极氧化处理atomloy treatment 阿托木洛伊表jftj austempering奥氏体等温淬火austenite奥斯田体/奥氏体bainite贝氏体banded structure条纹状组织barrel plating 滚镀barrel tiimbling 滚简打光blackening 染黑法blue shortness 青熟脆性bondenzing磷酸盐皮膜处理box annealing箱型退火box carbmizing 封箱渗碳bnght electroplating 辉面电镀bnglit heat tieatment 光辉热处理bypass heat treatment 旁路热处理carbide炭化物carburized case depth 浸碳U更化深层carbuiizing 渗碳cementite炭化铁chemical platmg 化学电镀chemical vapor deposition 化学蒸镀coaisemng结晶粒粗人化coatmg涂布被覆cold shortness 低温脆性comemtite渗碳体controlled atmosphere 人气热处理comer effect锐角效应creeping discharge 蠕缓放电decarburization 脱碳处理decarbunzing脱碳退火depth of haidenmg 硬化決层division 扩散dififtision annealing 扩散退火electrolytic haidening 电解淬火embossing丿卡彳乞etchmg表面蚀刻gaseous cyaiuding 气体氧化法globulai* cementite 球状炭化铁grain size结晶粒度granolite tieatment磷酸溶液热处理graphitizmg 石墨退火haidenability 硬化性hardenability curve 硬化性曲线hardenmg 破化heat tieatnient 热处理hot bath quenchnig 热浴淬火hot dipping 热浸镀induction hardenmg 高周波硬化ion carbomti'iding离子渗碳氮化ion carburizing离子渗碳处理ion plating离子电镀 isotlieniial annealing 等温退火liquid honing液体喷砂法low temperatiue annealing 低温退火malleablizing可锻化退火martempering 麻回火处理martensite马氏体/硬化铁炭metallikon金属喷镀法metallizing真空涂膜mtnding氮化处理nitrocarburizing 软氮化nomializing 正常化oil quenching 油淬化overagemg过老化overheating 过热pearlite针尖组织phosphatmg 磷酸盐皮膜处理physical vapor deposition 物理蒸镀plasma mtnding 离子氮化pre-amiealmg 预备退火precipitation 析出precipitation hardening 析出駛化press quenching 加压破化process amiealmg 制程退火quench ageing淬火老化quench haidening 淬火quenching crack 淬火裂痕quenchmg distortion 淬火变形quenchmg stress 淬火应力

钢结构桥梁中英文对照外文翻译文献

中英文对照外文翻译文献 (文档含英文原文和中文翻译) Recent Research and Design Developments in Steel and Composite Steel-concrete Structures in USA The paper will conclude with a look toward the future of structural steel research. 1. Research on steel bridges The American Association of State Transportation and Highway Officials (AASTHO) is the authority that promulgates design standards for bridges in the US. In 1994 it has issued a new design specification which is a Limit States Design standard that is based on the principles of reliability theory. A great deal of work went into the development of this code in the past decade, especially on calibration and on the probabilistic evaluation of the previous specification. The code is now being implemented in the design office, together with the introduction of the Systeme

钢铁热处理中英文对照外文翻译文献

中英文对照外文翻译 (文档含英文原文和中文翻译) 原文: Heat Treatment of Steel Types of Heat Treating Operations Five Operations are detailed in this lesson as the basis of heat treatment. Explanations of these operations follow. Full annealing Full annealing is the process of softening steel by a heating and cooling cycle, so that it may be bent or cut easily. In annealing, steel is heated above a transformation temperature and cooled very slowly after it has reached a suitable temperature. The distinguishing characteristics of full annealing are: (a) temperature above

the critical temperature and (b) very slow cooling, usually in the furnace. Normalizing Normalizing is identical with annealing, except that the steel is air cooled; this is much faster than cooling in a furnace. Steel is normalized to refine grain size, make its structure more uniform, or to improve machinability. Hardening Hardening is carried out y quenching a steel, that is, cooling it rapidly from a temperature above the transformation temperature. Steel is quenched in water or brine for the most rapid cooling, in oil for some alloy steels, and in air for certain higher alloy steels. After steel is quenched, it is usually very hard and brittle; it may even crack if dropped. To make the steel more ductile, it must be tempered. Tempering Tempering consistes of reheating a quenched steel to a suitable temperature below the transformation temperature for an appropriate time and cooling back to room temperature. How this process makes steel tough will be discussed later. Stress relieving Stress relieving is the heating of steel to a temperature below the transformation temperature, as in tempering, but is done primarily to relieve internal stress and thus prevent distortion or cracking during machining.

钢结构方向的毕设外文翻译(适用于毕业论文外文翻译+中英文对照)

附件1:外文资料翻译译文 葡萄牙的钢结构发展——帕特里克道林的影响 安东尼雷萨诺·加西亚莱曼 摘要:本文基于大学教研和葡萄牙协会对钢结构和复合结构的创造,主要讲述了帕特里克道林教授对作者职业生涯和葡萄牙钢结构发展的影响。 关键词:葡萄牙;钢;结构;研究 1.导言 截至钢筋混凝土的出现和第一次世界大战的到来,在钢铁的应用方面葡萄牙紧随欧洲大多数国家的脚步。此后,铸造厂虽然存在,但是为了保护葡萄牙和其殖民地的正在发展中的水泥业,葡萄牙在进口结构产品方面收取很高的税收。 第一钢铁厂坐落在赛沙尔,建于1961年,横跨了起源与里斯本的河流并从安哥拉获取铁矿石和煤炭,但是这项大的投资并没有制止结构钢的使用下降,然而由于这家工厂主要生产工业建筑用钢以及轧制小型材,结构钢的使用下降几乎限制了建筑行业的发展。 钢结构规范反映了这一衰退,而且直至的19世纪80年代葡萄牙一直使用着过时的规范。确切的说,大学中对钢结构研究和教学的缺失是导致结构钢使用量下降的原因之一,而结构钢使用量下降加剧了这一恶性循环。 在混凝土行业情况大为不同,在这个领域,葡萄牙的土木工程国家实验室(LNEC)是世界领先机构,而且葡萄牙市行政首长协调会和编写混凝土规范的积极参与者。葡萄牙地处地震风险区,国家实验室在混凝土结构抗震性方面做的研究和先进规范的适用性都给予混凝土行业以信心和优势。因此所有土木工程课程都把重点放在了混凝土的教学上,而忽略了钢结构和复合结构的教学。 在1974年民主革命的几年前,土木工程行业发生了一次深刻的教育系统的变革。一个培养新型研究人员的大型机构成立了,这一机构专门培养没有被各大学和公共实验室涵盖的研究人员并提供出国学习的资金。里斯本技术大学工程学院是一高级技术研究所(IST),它是最早受益于这一大型机构的机构之一,并且钢结构被明智地确定为土木工程学院新型职工培训的主要要求。

热处理外文翻译

附录一 外文翻译 原文: Heat Treatment The understanding of heat treatment is embraced by the broader study of metallurgy. Metallurgy is the physics, chemistry, and engineering related to metals from ore extraction to the final product. Heat treatment is the operation of heating and cooling a metal in its solid state to change its physical properties. According to the procedure used, steel can be hardened to resist cutting action and abrasion, or it can be softened to permit machining. With the proper heat treatment internal stresses may be removed, grain size reduced, toughness increased, or a hard surface produced on a ductile interior. The analysis of the steel must be known because small percentages of certain elements, notably carbon, greatly affect the physical properties. Alloy steel owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium, manganese, molybdenum, tungsten, silicon, vanadium, and copper. Because of their improved physical properties they are used commercially in many ways not possible with carbon steels. The following discussion applies principally to the heat treatment of ordinary commercial steels known as plain carbon steels. With this process the rate of cooling is the controlling factor, rapid cooling from above the critical range results in hard structure, whereas very slow cooling produces the opposite effect. If we focus only on the materials normally known as steels, a simplified diagram is often used. Those portions of the iron-carbon diagram near the delta region and those above 2% carbon

结构钢的焊接性外文文献翻译、中英文翻译、外文翻译

2012届毕业设计外文翻译 Weldability of Structural Steels 焊接结构钢 学生姓名:侯林珠 指导教师:崔晓东、任芝兰 职称:工程师、副教授 专业:机械设计制造及其自动化 班级:机本0804班 完成时间:2012年5月

附录1 英文原文 Lecture 2.6: Weldability of Structural Steels The lecture briefly discusses the basics of the welding process and then examines the factors governing the weldability of structural steels. SUMMARY The fundamental aspects of the welding process are discussed. The lecture then focuses on the metallurgical parameters affecting the weldability of structural steels. A steel is considered to exhibit good weldability if joints in the steel possess adequate strength and toughness in service. Solidification cracking, heat affected zone - liquation cracking, hydrogen-induced cracking, lamellar tearing, and re-heat cracking are described. These effects are detrimental to the performance of welded joints. Measures required to avoid them are examined. 1. INTRODUCTION 1.1 A Brief Description of the Welding Process Welding is a joining process in which joint production can be achieved with the use of high temperatures, high pressures or both. In this lecture, only the use of high temperatures to produce a joint is discussed since this is, by far, the most common method of welding structural steels. It is essentially a process in which an intense heat source is applied to the surfaces to be joined to achieve local melting. It is common for further "filler metal" to be added to the molten weld pool to bridge the gap between the surfaces and to produce the required weld shape and dimensions on cooling. The most common welding processes for structural steelwork use an electric arc maintained between the filler metal rod and the workpiece to provide the intense heat source. If unprotected, the molten metal in the weld pool can readily absorb oxygen and nitrogen from the atmosphere. This absorption would lead to porosity and brittleness in the solidified weld metal. The techniques used to avoid gas absorption in the weld pool vary according to the welding process. The main welding processes used to join structural steels are considered in more detail below. 1.2 The Main Welding Processes

金属材料及热处理工艺常用词汇中英文对照

X线结晶分析法X – ray crystal analyics method 奥氏体Austenite 奥氏体碳钢Austenite Carbon Steel 奥氏铁孻回火Austempering 半静钢Semi-killed steel 包晶反应Peritectic Reaction 包晶合金Peritectic Alloy 包晶温度Peritectic Temperature 薄卷片及薄片(0.3至2.9mm厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm)– strip/sheet 杯突测试(厚度:0.4公厘至1.6公厘,准确至0.1公厘3个试片平均数)Erichsen test (Thickness:0.4mm to 1.6mm,figure round up to 0.1mm) 贝氏体钢片Bainite Steel Strip 比电阻Specific resistivity & specific resistance 比较抗磁体、顺磁体及铁磁体Comparison of Diamagnetism,Paramagnetic & Ferromagnetism 比热Specific Heat 比重Specific gravity & specific density 边缘处理Edge Finish 扁线、半圆线及异形线Flat Wire,Half Round Wire,Shaped Wire and Precision Shaped Fine Wire 扁线公差Flat Wire Tolerance 变态点Transformation Point 表面保护胶纸Surface protection film 表面处理Surface finish 表面处理Surface Treatment 不破坏检验Non – destructive inspections 不锈钢Stainless Steel 不锈钢–种类,工业标准,化学成份,特点及主要用途Stainless Steel – Type,Industrial Standard,Chemical Composition,Characteristic & end usage of the most commonly used Stainless Steel 不锈钢薄片用途例End Usage of Thinner Gauge 不锈钢扁线及半圆线常用材料Commonly used materials for Stainless Flat Wire & Half Round Wire 不锈钢箔、卷片、片及板之厚度分类Classification of Foil,Strip,Sheet & Plate by Thickness 不锈钢材及耐热钢材标准对照表Stainless and Heat-Resisting Steels 不锈钢的磁性Magnetic Property & Stainless Steel 不锈钢的定义Definition of Stainless Steel 不锈钢基层金属Stainless Steel as Base Metal 不锈钢片、板用途例Examples of End Usages of Strip,Sheet & Plate 不锈钢片材常用代号Designation of SUS Steel Special Use Stainless 不锈钢片机械性能(301,304,631,CSP)Mechanical Properties of Spring use Stainless Steel 不锈钢应力退火卷片常用规格名词图解General Specification of Tension Annealed Stainless Steel Strips 不锈钢之分类,耐腐蚀性及耐热性Classification,Corrosion Resistant & Heat Resistance of Stainless Steel 材料的加工性能Drawing abillity 插入型固熔体Interstital solid solution 常用尺寸Commonly Used Size 常用的弹簧不锈钢线-编号,特性,表面处理及化学成份StainlessSpring Wire – National Standard number,Charateristic,Surface finish & Chemical composition 常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度Base metal,application,JIS & ASTM standard,and Normal thickness of galvanized steel sheet 长度公差Length Tolerance 超耐热钢Special Heat Resistance Steel

相关文档
相关文档 最新文档