文档库 最新最全的文档下载
当前位置:文档库 › 中国核电池技术推动嫦娥三号探测器

中国核电池技术推动嫦娥三号探测器

中国核电池技术推动嫦娥三号探测器
中国核电池技术推动嫦娥三号探测器

嫦娥三号探测器采用核动力推进代表世界最高水平

2013年11月14日 14:42来源:人民网

这是嫦娥三号月球探测器,包括着陆器和巡视器,是我国研制的首次在外天体实施软着陆的航天器。(图片来源:新华社)

我国嫦娥三号月球探测器发射在即,为了能够在月球上过夜;嫦娥三号需要长时间经受严寒带来的极大挑战。为了突破这一难关,我国嫦娥三号,将携带核能电池(是一种核动力装置)飞天。如能成功,就将使我国成为继美俄之后,成为世界上第三个将核动力应用于太空探测的国家。

那么,什么是核能电池?其作用是什么?世界上,对核电池研究、使用情况如何?我国嫦娥三号月球探测器,为什么需要安装核电池?

核能不仅是核裂变产生的,核衰变也产生核能

提起核能、核动力,人们也许马上连想起核电站、核潜艇;马上与核反应堆等“大家伙”联系在一起。其实这是一种误解。

目前广泛采用核动力是利用可控核裂变反应来获取能量,从而得到动力,热量和电能。利用可控核裂变反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机,直接提供

动力,也可以连接发电机来产生电能。核能每年为人类提供所需能量的7%,或所需电能中的15.7%。

但是核能、核动力不仅是靠核反应堆进行的核裂变反应产生能量这一种。核衰变反应也能放出的能量。核电池就是基于核衰变反应做成的。核衰变反应远不如裂变那么剧烈(不加控制的裂变就是核爆炸),释放能量也远不如裂变那么巨大。但衰变释放的能量也不容忽视。如钚238衰变时,表面温度可以达到五六百摄氏度,足以让钚金属块呈现出炽热的红色。

在日本福岛核事故中,抢险人员之所以要迅速重建被破坏的堆芯冷却系统,就是为了导出核燃料衰变产生的热量。否则,高温会熔解金属保护壳,导致严重核泄漏。

什么是核电池

核电池(又称原子能电池或放射性同位素发电装置)是指那些使用放射性同位素衰变时产生的能量转化为电力的装置。核电池也叫同位素电池。(注:同位素是指有相同质子数,不同中子数的原子。如氕与氘互为同位素。核素是指具有一定质子数的原子,是一种具体的原子,如氕或氘就是核素。同一元素的不同核素互为同位素。)

同理,同位素电池,就是利用同位素材料衰变过程中产生的能量放出的热量,进行热电转化。其装置名称RTG(Radioisotope Thermoelectric Generator)是“放射性同位素热电发电机”这个词的缩写。

核电池是通过半导体换能器,将鈈238、鈾238(放射性同位素)衰变过程中,释放出射线(放出载能粒子α、β和γ粒子射线)的热能,转变为电能。目前,核电池已成功地用作航天器的电源。(还用于医学心脏起搏器和一些特殊的军事用途方面)。2012年8月7日,美国发射的好奇号火星车,顺利抵达火星,其所用的核电池寿命长达14年。

核电池的类型和属性

按提供的电压的高低,核电池可分为高压型(几百至几千V)和低压型(几十mV—1V 左右)两类;按能量转换机制,它可分为九类之多(直接转换式和间接转换式。更具体地讲,包括直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等)。目前应用最广泛的是温差式核电池和热机转换核电池。核电池取得实质性进展始于20世纪50年代,由于其具有体积小、重量轻和寿命长的特点,而且其能量大小、速度不受外界环境的温度、化学反应、压力、电磁场等影响,因此,它可以在很大的温度范围和恶劣的环境中工作。

据了解,当放射性物质衰变时,能够释放出带电粒子,如果正确利用的话,能够产生电流。核电池有其稳定程度。通常不稳定(即具有放射性)的原子核会发生衰变现象,在放射出粒子及能量后可变得较为稳定。核电池正是利用放射性物质衰变会释放出能量的原理所制成的,此前已经有核电池应用于军事或者航空航天领域,但是电池体积往往很大。过去在电池的研发过程中面临的重大难关之一,就是为了提高性能,电池大小往往比产品本身还大。

由美国密苏里大学计算机工程系教授权载完(音译)率领的研究组曾成功为“核电池”瘦身,所研发出的“核电池”体积小但电力强。他们做出的核电池大小只是略大于1美分硬币(直径1.95厘米,厚1.55毫米),但其输出能量远比一般化学电池为高,发出的电力高达普通化学电池的100万倍。

核电池的另一诱人之处是,核电池比起一般电池有很长的寿命,提供电能的同位素工作时间非常长,甚至可能达到5000年。在不久的将来,只需要一个硬币大小的核电池,就可以让你的手机不充电使用5000年。

在航天领域,在航天器上,核能往往就是以这种种“微型电池化”的方式被利用的。尤其在外太空行星探测领域中,由于空间探测器远离太阳,难以利用太阳能电池的能量,必须采用核电源。所以,核动力卫星在外行星探测中占据重要位置。

美国航天器使用核电池的历史

从上世纪中叶起,美国在“先驱者”10号、11号探测器,“旅行者”1号、2号探测器,木星和土星探测器中,都使用了同位素温差发电器作为电源。就是因为采用核电源,美国“旅行者1号”行星探测器,才创造了世界卫星远航史上的辉煌纪录。目前它是离地球最远(飞行约近200亿公里)和飞行速度最快的人造卫星。它用了36年的时间,飞行到了太阳系的边缘。

以钚238放射性同位素作热源的同位素温差发电器,曾用于美国“子午仪”号导航卫星(低轨道导航卫星系列。又称海军导航卫星系统,英文缩写为NNSS。主要功用是:为核潜艇和各类海面舰船等提供高精度断续的二维定位,用于海上石油勘探和海洋调查定位、陆地用户定位和大地测量等。从1960年4月到80年代初共发射30多颗。美国在1964年4月发射“子午仪”号导航卫星时,因发射失败卫星所携带的放射性同位素源被烧毁,钚238散布在大气层中并扩散至全球。后来改用特种石墨作同位素源外壳,以防烧毁。)、“林肯”号试验卫星(早在1965年,美国林肯号试验卫星上便使用钚238放射性同位素作热源的同位素温差发电器)和“雨云”号卫星(是美国第二代试验气象卫星系列。从1964年8月到1978年10月共发射了7颗。雨云号卫星的任务是试验新的气象观测仪器和探测方法。美国在1965年发射的一颗军用卫星中,用反应堆温差发电器作为电源。但由于电源调节器出现故障仅工

作43天。1968年5月“雨云”号气象卫星发射失败时,核电源落入圣巴巴拉海峡,后被打捞上来。)。

前苏联航天器使用核电池的情况

另据了解,前苏联在1967~1982年期间,共发射了24颗核动力卫星,都属于海洋监视卫星。卫星带有以浓缩铀235为燃料的热离子反应堆,核能功率为5~10千瓦。不过核动力并不是用来驱动卫星,只是利用放射性元素衰变时放出的热量,通过热电偶产生电能给卫星上的设备供电。这些核动力卫星,多在200多公里的低轨道上工作,完成任务后核反应堆舱段与卫星体分离,并将小型火箭推到大约1000公里的轨道,可运行600年。

1978年1月24日,苏联“宇宙”954号核动力卫星发生故障,核反应堆舱段未能升高而自然陨落,未燃尽的带有放射性的卫星碎片散落在加拿大境内,造成严重污染。1983年1月“宇宙”1402号核动力卫星发生类似故障,核反应堆舱段在南大西洋上空再入大气层时完全烧毁。

随着后来美苏太空竞赛的冷却,人类探索深空的脚步放缓。由于在近地轨道,核电池的性价比不及太阳能电池,此外,目前全球钚238主要产自俄罗斯,燃料来源的局限也拖累了核电池的发展、应用。

美国第一辆采用核动力驱动的火星车

但是,近年来,由于深空探测在航天大国的发展,核电池使用见多。比如美国宇航局的好奇(Curiosity)号火星探测器(“火星科学实验室”),它是一个受地面遥控的,有汽车大小的美国第四个火星探测器,也是人类建造的第一辆采用核动力驱动的火星车。美国“好奇号”火星探测器上,就搭载了六轮自重900千克的火星车,而火星车核动力装置。是一个重约45公斤,含4.8千克的钚-238,发电功率140瓦的核电池,至少可以保证对“好奇号”进行14年的核能系统。在这里,核能是以“微型化”的方式被利用的。

登陆火星的“好奇号”探测器,此刻正在遥远的红色土地上进行探测。对“非专业航天爱好者”来说,要从外形上区分“好奇号”和它的前辈、比如“勇气号”“机遇号”,其实远比想象来得简单:“好奇号”身上,那对早已被视为太空飞行器标志的“翅膀”:太阳能电池翼片消失了。收起惯常的“翅膀”,正是为了飞得更远。而且,随着人类不断走向深空,航天器对核能的依赖也会越来越大。

中国在自主研发的核电池上迈出大步

月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普遍规律。由于月球自转和公转都是28天,所以“月球夜”会长达14天(月球日即白昼也有14天)。由于月球昼夜要半个月交替一次,温差高达300℃,那里是零下150度到180度,太冷了,月球车上的所有的仪器全部要冻坏。普通电池无法应对。现在所使用的各种高级的蓄电池,什么锂电池、氢电池,各种各样的电池对我们来说都没有用。长时间经受极大温差对我国月球探测器是个极大挑战。迫使我们一定要想出新的办法,于是我们国家自己研制了原子能的电池,欧阳自远院士说,我国的月球车实际上在同时使用太阳能和核能作为能源。黑暗中的月面,温度骤降到零下100多摄氏度,为防止车载仪器被冻坏,休眠中的月球车就得靠核电池的能量来保温,并维持与地面的通讯。而一旦新一个白昼来临,太阳能电池就能重新驱动月球车工作。

中国第一块放射性同位素电池于1971年3月12日诞生于中科院上海原子核所,以钋210为燃料,输出电功率为1.4瓦,热功率35.5瓦,并进行了模拟太空应用的地面试验。随着我国核电站数量的增加,由乏燃料后处理提取的镎237原料的逐渐积累,为后来开发钚238电池,提供了物质基础。

据欧阳自远院士介绍,近年来,我国在自主研发的核电池上迈出了大步。我国月球车搭载的核电池,是由中国原子能科学研究院牵头研发的。

从中国原子能科学研究院该院官方网站上,可以得知,从2004年开始,该院正式启动航天用同位素电池的研发;到2006年,研制出我国第一颗钚238同位素电池;2008年通过了专家组的鉴定。这颗电池的研制成功,填补了我国长期以来在该研究领域的空白,标志着我国在核电源系统研究上迈出了重要的一步。

核电池的用武之地不仅仅局限于太空。在高山、深海、南北极乃至人体中到处可以找到它的影踪。心脏起搏器用的核电池重量仅40克,体积很小,寿命可达十年。病人免除了经常做开胸手术的痛苦。在极地、海岛、高山、沙漠、深海等条件恶劣、交通不便的地方都是RTG的大显身手之地。自动无人气象站、浮标和灯塔、地震观察站、飞机导航信标、微波通讯中继站、海底电缆中继站等都可以使用免维护、长寿命的RTG供电。

据原子能院的官网文章介绍,第一颗“国产”同位素电池的各项指标均超过了预期要求,研制全过程安全无误,功率为百毫瓦级。这将保证中国首次将核能用于航天器。据悉,为了保证着陆器的能源供应,嫦娥三号就是使用了这种原子能电池(RTG同位素电池)。

我国首次实用核电池将随“嫦娥三号”软着陆月球,并用于嫦娥三号的着陆器和月球车上。这种原子能电池可以连续工作30年。有了它,再不怕月球晚上温度骤降到零下150度到180度。完全可以确保探测器上仪器不至于被冻坏。为防止车载仪器被冻坏,夜间休眠中

的月球车可以靠核电池放出来的热量保温。而一旦新一个白昼来临,太阳能电池就能替代核电池,重新驱动月球车工作。

对嫦娥三号来说,核电池中的钚金属块238它相当于一个热源。这一热源对将在月球环境下生存的嫦娥三号的保温作用是至关重要的。其释放出的热量及经过温差热电转换器的转换形成的电流,充分满足了嫦娥三号的能量需求。它的能力虽不足以让火箭升空,却可以用于小规模供电,支持嫦娥三号所带月球车低速移动;支持嫦娥三号所带设备正常工作;支持嫦娥三号与地球之间的通讯。

嫦娥三号比起好奇号,并不逊色!

嫦娥三号比起好奇号,并不逊色!主要是从下面几点比较:

第一、嫦娥三号与好奇号都采用的核动力,虽然不知道好奇号是直接采用核动力转变成动能还是怎么的,但嫦娥三号采用的核动力电池,是目前核动力小型化的最高的成果。对比好奇号绝对不会逊色,而且嫦娥三号比好奇号体积小,动力装置可能也会更小。核能装置的对比无非就是看小型化程度。

第二、好奇号要能对抗登陆火星瞬间产生的高温,但嫦娥三号却要对抗月球表面几百摄氏度的温差。相比,嫦娥更了不起。对抗高温,对所有发射火箭的国家都面临这个问题。而且好奇号登陆火星时承受的温度相对不算高,飞船返回地球的温度比登陆火星时高的多。嫦娥却是非常了不起,对抗温差300摄氏度,对抗低温零下一百多摄氏度,这是中国的首创。

第三、嫦娥三号与好奇号降落方式都是软着陆,都是采用火箭发动机反推。这里不得不说美国对好奇号的机构设计更好,因为好奇号更重一些,而且火星的引力更大一些。不过这是反推火箭的问题。而且火箭的推力大小并不是大不了的问题,我们也能做的出来。

第四、是登陆星球不同,其实登陆月球和登陆火星的难度差别不大,对火箭的大小要求不高。只要达到第二宇宙速度,挣脱地球的束缚,然后关闭发动机,同时保持匀速飞行,都会实现。其实,达到第二宇宙速度的火箭中国早就有了。至于降落地点,对于好奇号、嫦娥三号来说,都是预先选好的,在火星还是在月球降落区别不大,都是地面人为遥控(我们已经有了自己的深空站、网。)。距离也不是问题了(嫦娥二号飞行距离已超过了去火星的路程)。

第五、据欧阳自远院士说,无论是美国的“好奇号”,还是中国的月球车,核电池中使用的燃料都是钚238。钚238的半衰期有80多年。这个时间足够长,使钚238能够支撑电池持续工作几十年。

虽然“国产”同位素电池的功率与“好奇号”电池的140瓦左右的功率还有距离,但只要研发成功第一颗国产同位素电池,就突破了同位素发电的主要技术难点。今后,如果要做大功率的,只需相应地增加核燃料钚238的使用量。

所以,嫦娥三号比起好奇号,应该不逊色!

核动力卫星用的核电源有两类

核动力卫星是使用核电源的人造卫星。由于核电源工作寿命长,性能可靠,能提供较大的功率。所以它与太阳电池电源相比,适应环境能力强;由于在卫星外部没有伸展开的大面积太阳电池翼,在低轨道飞行时大气阻力较小。在空间战中使用核电源能提高卫星的生存能力。所以,核电源适用于某些军用卫星和行星探测器。但是由于卫星坠毁时会对大气和地球造成污染,所以核电源的使用受到安全上的限制。

卫星用的核电源有两类:放射性同位素温差发电器和核反应堆电源。前者功率较小,为几十至几百瓦;后者功率较大,可达数千瓦至数十千瓦。据悉我国正在研制,并准备发射装载空间反应堆的核动力卫星。可能于2015年左右完成核动力卫星的地面试验,2020年,这种卫星的设计方案可基本确定,2025年中国将发射首颗由空间核反应堆提供动力的卫星,并进行在轨试验。

我国航天器采用核电池意义重大

在我国未来的深空探测计划中,比如火星、金星探测中,核电池会发挥越来越大的作用,核电池意义更是重大。在深空中,飞船能依靠的只有太阳能与核能。而且,随着飞船距离太阳越来越远,所受阳光照射越是微弱,太阳能电池板的发电能力就越低,就更需要应用核电源。以保证飞行器的能量供应

核电池不仅不受光照影响,而且对其他恶劣的外部环境,比如真空、极冷、极热、宇宙辐射等均不理会;核电池让飞行器对恶劣环境基本起到“免疫”作用。

此外核电源寿命长(工作时间长),性能可靠,能提供较大的功率。优点很多,应用前景广阔。

事实上,将于今年12月初,随“嫦娥三号”登月的我国首辆装载核动力装置的月球车如能顺利运行,将标志我国成为继美俄之后,第三个实现将核动力应用于太空探测的国家。(文/天津航天科普工作者谈煦)

嫦娥五号的主要任务

嫦娥五号探测器(Chang'e 5 detector)由轨道器、返回器、着陆器、上升器四个个部分组成。探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2千克月球样品。 嫦娥五号主要任务是月球取样返回,它要面对取样、上升、对接和高速再入等四个主要技术难题。根据日前的设计方案,嫦娥五号由轨道器、返回器、着陆器等多个部分组成,其中着陆器将进行月面软着陆,并自动进行月面采样、样品封装等操作,将样品由着陆器的上升段携带升空进入月球轨道,与环月轨道上的轨道器对接,将样品转移到返回器内部,最后轨道器携带返回器点火机动,从环月轨道直接返回地球,返回器将在再入大气层前分离,最后降落在我国北方的内蒙古草原上。 嫦娥五号任务主要的11个任务流程 从这个轨道器、着陆器以及环月轨道对接的复杂设计方案看,嫦娥五号完全就是无人版的阿波罗登月,当前同样计划使用类似设计的深空探测器方案,是美国尚未立项的火星取样返回探测器(MSR),不过MSR最早也要2024以后发射,而我国的嫦娥五号预计2018年左右就要使用长征五号火箭发射,嫦娥五号取样返回的复杂性和先进性在已有和正在研制中的深空探测器里是空前的。当前嫦娥五号探测器着陆器的变推力发动机、交会对接微波雷达和激光雷达的研制都在紧密锣鼓的进行中,着陆器上升段和轨道器所使用的3000牛发动机首次整机试车圆满成功,已经转入初样研制阶段。嫦娥五号可以携带约2千克样本返回地球,这是使用复杂的月球轨道对接设计的结果,之前的苏联Luna 16探测器整体落月,最终取回样品仅有100克。 按照我国航天的惯例,嫦娥五号肯定还有一个备份星,如果嫦娥五号任务顺利的话,它很可能赋予嫦娥六号的编号,增减部分设备提高技术水平,根据探月一期和二期的月球探测成果,选取探测价值更大区域如月球极区或是在月球背面取样返回。不过嫦娥六号还太过遥远,很难对此做出有效的预测。 嫦娥五号返回舱已经在研制之中,从奔月轨道上返回的航天器有着很大的速度,如果无法减速,那么就会“弹”出地球大气层,再入之后的返回舱速度将达到每小时4 万公里左右,相当于32马赫左右,迄今为止中国设计的飞船没有达到如此高的再入速度,因此如何安全控制返回舱重返大气层是嫦娥5号能否成功的关键。 飞行试验器总指挥、总设计师杨孟飞介绍,飞行试验器由服务舱和返回器组成,其中,服务舱是名副其实的“大块头”,而返回器是与“大块头”紧密相连的“小不点”。 飞行试验器共有十一个分系统,即:结构分系统、机构分系统、热控分系统、数管

核技术的应用与发展

核技术的应用与发展 摘要:核技术是建立在核科学基础之上的一门现代技术,因而泛称核科学技术。核 科学技术为现代化科学技术的组成部分,其渊源可以追溯到1896年天然放射性的 发现,至今已有100多年的历史。带电粒子加速器的发现与核反应堆的建造为核 科学技术的发展,奠定了雄厚的物质基础。第二次世界大战期间核科学技术在军事 领域的突破体现了核科学技术发展的时代特征,即技术的科学化与科学的技术化。 世界第一颗原子弹的爆炸显示了核能释放的巨大威力,开创了本世纪现代科学技术 定向发展的新格局,即动用国家一级的权威,动员全社会的力量,精心规划部署, 全面推进核技术的发展和实践。 关键词:核技术领域应用发展趋势 一、核技术的前世今生 自1895年伦琴发现了X射线,1896年贝克勒尔发现铀的天然放射性,随后 居里夫妇发现“钋”和“镭”两种天然放射性核素,以及1899年至1900年α、β和γ 射线的发现以来,人类对辐射进行了大量的研究并建立了核科学。核技术在医学、生物、农业、材料科学等各个领域得到广泛的应用,核技术成为当今世界重要的 高科技领域之一。 目前,我国已形成了基本配套的军民两用核动力与核燃料循环科研开发工业 体系,具备了自主设计建造中小型核电站的能力和核电站燃料组件的生产能力, 核技术(包括核供热、同位素和辐射技术等)在工业、农业、医学军事等多个领域 得到广泛应用。经过几十年的发展,我国在科研、设计、建设和运行等方面积累 了许多宝贵经验,培养和造就了一支专业齐全、具有相当实力的科研、开发、设 计和工程建设队伍。我国的核能和平利用产业已经形成了一定的规模,在某些技 术领域达到了世界先进水平。 二、核技术的应用 (一)核技术在农业中的应用 核技术在农业中的应用主要有同位素示踪技术与核辐射技术两个方面。同位 素示踪技术的应用,是直接将作为示踪剂的示踪原子的核素,利用其易于探测的 核物理性质和同位素的物理、化学性质相同的原理,建立同位素示踪法和同位素 分析法,将该方法作为研究T.具或实验手段,应用于农业科学中.的作物营养生理、土壤肥料、环境保护、植物保护和畜牧兽医等各个方面。核辐射技术的应用,则 是将放射性核素作为辐射源,利用射线对物质作用产生的物理效应、化学效应和 生物效应,对生命物质进行改造,创造新的生物资源。核辐射技术在农业科学中 主要应用于作物品种改良、害虫防治、食品贮藏保鲜和辐照刺激生物生长等各个 方面。 (二)核技术在医学中的应用 射线和粒子束技术在医学中主要有两个方面的应用:-一个是核医学成像,另 一“个是肿瘤的放射治疗。核医学成像技术包括单光子发射断层成像(SPECT)和正 电子断层成像(PET)。根据统计学方法的研究结果,SPECT可以比X2CT提前3个月 诊断出癌症,PET--般比SPECT还要早3个月诊断出癌症。核医学成像技术不同于X 射线断层成像(CT)、磁共振成像(MRI)和超声波成像,在显像之前必须注射相应的 放射性药物作为显像剂,其影像反映的是显像剂及其代谢产物的时间和空间分布。核医学成像技术是目前惟一能在体外获得活体中发生的生物化学反应、器官的生 理学和病理学变化以及细胞活动信息的方法,可为疾病诊断提供分子水平的信息。

嫦娥四号月球探测器成功发射的感想:厉害了,我伟大的国!

嫦娥四号月球探测器成功发射的感想:厉害了,我伟大的祖国! 12月8日2时23分,我国在西昌卫星发射中心,用长征三号 乙运载火箭成功发射嫦娥四号探测器开启了月球探测的新旅程! “嫦娥四号”探测器成功发射,随后器箭成功分离,嫦娥四号成 功进入近地点约200公里、远地点约42万公里的地月转移轨道。相 比“嫦娥三号”发射,这次火箭设计入轨精度提高了30%以上。按 照计划,“嫦娥四号”经过26天的飞行,将软着陆至月球背面南极 -艾特肯盆地,从而完成“人类探测器首次实现月球背面软着陆”的 壮举。 五年前,嫦娥四号的“同门师兄”嫦娥三号成功在月球雨海西 北部软着陆,实现了我国探月工程的新突破。如今,嫦娥四号带着 全新的使命再次奔向月球,将史无前例地实现人类月球探测器在月 球背面的首次登陆,开启我国对月球探测的新旅程。中国成为世界 上第四个掌握月球探测登陆技术的国家。此次嫦娥四号成功发射, 也代表着中国在航天事业中的大进步。相信在未来,我国一定可以 将嫦娥五号成功发射,未来重载火箭的研发应用也将有序进行。 嫦娥四号探测器到达月球背面,将让人类了解以前所不知晓但 又急切想了解的月球背面的境况,包括月壤、水分、生物。 嫦娥四号今后将通过对片区域的巡视探测,获取月球背面的图片、影像,甚至表面和内部的样本,对月球表面的岩石土壤、温度、光照、浮尘的特征及形成机理、低频射电天文、演化历史等进行研究,并且利用月球背面得天独厚的无干扰低频射电天文环境进行探

索性的天文观测,为将来我国乃至人类对月球的开发利用提供第一手资料。 月球的神秘面纱必将慢慢揭开,不仅能满足人类的好奇心,还可以深入地解开某些月球之谜,如月球来自何方,如何形成,是否有生物,是否适宜人类居住和未来的移民等。 人类能够不断向上的发展,根本在于对未知的不断探索。“登月探索”便是其中之一。1959年苏联发射的月球三号太空船完成绕月飞行,拍摄了月球背面的第一张照片,正式揭开月球背面的神秘面纱。1968年美国阿波罗8号环绕月球飞行时,人类第一次用眼睛看到了月球背面。到今天,人类共发射100多个月球探测器,其中有65个月球着陆器,但没有一个在月球背面成功软着陆。因为月球的自转和公转周期相同,人类自开始抬头仰望星空的那天起,就只能看到月球的正面,而对背面一无所知。 这次的由长征三号乙改进Ⅲ型运载火箭发射的嫦娥四号实现的人类首次月球背面着陆,终于也创造出来了一个「先驱者」般意义的成就与壮举,终于为中国航天事业给弥补上了这一空白。 这是近代以来中国人首次真正的前往从没有人去过的地方!这是一个“追赶”与“超越”的分水岭,我们大致上走完了别人走过的路,开始尝试走别人没有走过的路了。希望能够看到,在越来越多的领域,在越来越多的地方,中国人开始走别人从没走过的路,尝试新的方法,到达新的远方,体验新的感受,实现新的梦想。而这一切,都发生在我的有生之年,这是多么幸运的一件事情!去别人没去过的地方,做别人没做过的事情,是民族的未来所在。 “无论是从工程意义还是科学意义上看,嫦娥四号任务都是2018年国际科学界最具看点的任务之一。作为我国建设航天强国的

我国成功发射“嫦娥三号”探测器

2013年12月3日,星期二,多云,气温6℃-17℃。 我国成功发射“嫦娥三号”探测器 今天凌晨1时30分,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功将“嫦娥三号”探测器发射升空。“嫦娥三号”将首次实现月球软着陆和月面巡视勘察,为我国探月工程开启新的征程。 运载“嫦娥三号”的长征三号乙运载火箭完全按照“零窗口”准时发射。火箭飞行19分钟后,器箭分离,“嫦娥三号”顺利进入近地点高度210公里,远地点高度约36.8万公里的地月转移轨道。2时18分许,太阳翼展开。西昌卫星发射中心主任张振中随即宣布:“嫦娥三号”发射任务取得圆满成功。 “嫦娥三号”奔月飞行约需112小时,在此期间将视情况进行轨道修正。预计探测器将于12月6日飞行至月球附近,实施近月制动,进入100×100公里的环月圆轨道。 按照计划,“嫦娥三号”将于12月中旬择机在月球虹湾地区实现软着陆,开展月表形貌与地质构造调查、月表物质成分和可利用资源调查、地球等离子体层探测和月基光学天文观测等科学探测任务。“嫦娥三号”探测器由着陆器和巡视器(也叫月球车)组成。 和地球一样,月球上也有开阔的平地、高原,连绵不断的山脉,陡峭的崖壁,以及幽深的大沟。搭载在“嫦娥三号”上各种探测仪器能够让这些高山、岩石“开口说话”,从它们身上读出月球的历史故事。 在月球上,除悬崖峭壁之外,几乎所有月面都覆盖着一层厚厚的月壤。这些月壤主要由频繁撞击所产生的岩石碎屑、粉末等溅射物经过46亿年的累积形成,月壤下可能隐藏着人类所需要的宝藏,例如可供人类长期使用的清洁、安全、高效的核聚变燃料氦3。 跟随“嫦娥三号”落月的测月雷达、红外成像光谱仪以及粒子激发X射线谱仪,将在月球进行实地勘探,探明月球表面的物质成分以及可利用资源。 “嫦娥三号”的着陆器上搭载了两个观测仪器——月基光学望远镜和极紫外相机,它们将把月球作为平台,观测太空深处以及地球空间环境。 除了巡天,“嫦娥三号”还会观察它的故乡,在月球上观察地球的等离子体层。

我国核能发展现状

我国核能发展现状 目前我们国家核能起着相当重要的作用,核能的和平利用是20世纪人类最伟大的成就之一,经过半个多世纪的发展,核技术已经渗透到能源、工业、农业、医疗、环保等各个领域,特别是核能在电力工业成功运用,为提高各位人们的生活质量与水平作出了重要贡献。 目前核电约占世界总发电量的16%,与水电、火电一起构成电力能源三大支柱,核能技术不断发展和进步寄托着人类对未来的希望,它将成为最终解决全球可持续发展的综合能源之一。世界50多年的核能发展表明,核能不失为一种清洁、安全和经济的能源,随着我国经济的持续高速发展,毕竟对能源提出快速增长要求,而我国目前以煤炭为主的能源结构又与日益严重的环境问题日益相关,所以发展核能是解决我国能源短缺、改善能源结构、控制环境污染、保障能源结构重要途径之一。 中国建设的第一座核电厂1991年建成投产,结束了中国大陆无核电力的历史,1994年投产大电站,1996年中国又自主设计建设了二级核电站,三级核电站,随着最近广东核电厂投入,我国目前公共12组核电机组投入运行,运行的核电机组安全状况良好,平均用于值可达到85%,核电辐射水平一直保持在本地水平。 到目前为止我国已合作了12个核电项目,共31台机组,合作规模达到3378万千瓦,已开工建设24台,建成规模2660万千瓦。核电作为我国新能源的主力军,正面临着难得的发展机遇,进入了批量化、规模化的发展阶段,目前我国引进三代核技术AP1千以及EP2顺利建成,它在中国经济快捷的发展,对核燃料的高效利用以及对减少高排放物发挥了重大的效应。 07年3月,随着中美间两份重要协议《核岛供货合同框架协议》和《技术转让合同的框架协议》的签署,美国西屋公司和绍尔公司组成的西屋联合体在中国的第三代核电招标中正式中标,AP1000成为三代核电自主化依托项目所选择的技术路线,世界上最先进的第三代核电技术AP1000落户中国。 AP1000技术虽然先进,但到目前为止世界上尚没有一座建成的电站,中国将是第一个“品尝”这一技术的国家。我国的研究人员从AP600到AP1000进行了十多年的研究,对这一技术有较深入的了解。第三代技术是从第二代发展来的,其主要系统均有工程实践,只是核电站安全系统设计理念不同,AP1000使用的是非能动的方式。 作为第三代核电站,AP1000具有良好的安全性和经济性。第二代核电站主要是上世纪70年代根据当时安全法规设计的。其设计基准不考虑核电站严重事故(如

核能技术应用及发展

核能技术应用及发展 核能是核裂变能的简称,是由于原子核内部结构发生变化而释放出的能量。核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。 重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。 所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。 与重核裂变相比,轻核聚变发电有着无可比拟的优点。 (1)能量巨大。核聚变比核裂变释放出更多的能量。例如,铀-235的裂变反应,将0.1%的物质变成了能量;而氘的聚变反应,将近0.4%的物质变成了能量。 (2)资源丰富。重核裂变使用的主要原料是铀,目前探明的储量仅够使用几十年;而轻核聚变使用的是海水中的氘,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即“1升海水约等于300升汽油”,地球上海水中就有45万亿吨氘,足够人类使用数百亿年。而且地球上锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。因此受控核聚变的燃料取之不尽、用之不竭。 (3)成本低廉。1千克氘的价格只为1千克浓缩铀的1/40。 (4)安全、无污染核。聚变不产生放射性污染物,万一发生事故,反应堆会自动冷却而停止反应,不会发生爆炸。 但是,实现核聚变的条件十分苛刻,为了使2个原子核聚变,必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力,满足这样的条件需要几千万甚至几亿摄氏度的高温。 自20世纪70年代起,世界范围内掀起了托卡马克的研究热潮。目前,全世界有30多个国家及地区开展了核聚变研究,运行的托卡马克装置有几十个。 最近,由中国、美国、欧盟、日本、俄罗斯、韩国共同参与的国际热核反应堆合作计划(ITER)因其最终选址问题再次引起了人们的兴趣。这个被称为“人造太阳”的热核反应堆,不仅因为13万亿日元的巨大投资引人关注,更因为如能在未来50年内开发成功,将在很大程度上改变目前世界能源格局,使人类拥有取之不尽、用之不竭的理想的洁净能源。国际热核实验反应堆是继国际空间站之后最大的国际科学合作项目,我国也已正式加盟。根据计划,世界首座热核反应堆将于2006年开工,2013年前完工。这预示着在能源革命中占有重要地位的核聚变能开发和利用的曙光已出现,核能文明时代即将到来。 虽然目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态

2020观看嫦娥五号心得

2020观看嫦娥五号心得 此次嫦娥五号出征探月是我国探月工程“绕、落、回”三步走战略中“回”的关键之战,将开启我国首次地外天体采样返回之旅,有望实现五项“我国首次”:地外天体的采样与封装,地外天体的起飞,月球轨道交会对接,携带样品高速地球再入,样品的存储、分析和研究。嫦娥五号任务是我国航天领域迄今为止最复杂、难度最大的。任务的主要目标是发射探测器着陆月球,然后采集大约2千克月球土壤最后通过半弹道跳跃式返回地球。嫦娥五号探测器由轨道器、返回器、着陆器、上升器4器组成包含15个分系统,是我国首个实施无人月球表面取样返回的航天器。 发射成功后,探测器将经过11个阶段20余天的工作采集月球样品后返回地球。据了解此次任务将突破窄窗口、多轨道装订发射月面自动采样与封装等多项关键技术,并且实现首次地外天体自动采样返回推进我国科学技术的重大跨越,同时完善探月工程体系为载人登月和深空探测奠定人才、技术和物质基础。此外,还将对采集的月球样品进行系统长期的实验室研究分析月壤的结构、物理特性、物质组成深化月球成因和演化历史的研究。 中国的科技进步是如此厉害啊!从中国是前4个拥有导航卫星的国家也可以看出中国科技的日益强大。而且中国卫星性能是世界第二,并且和排名第一的美国也差不了太多了。我为我们的祖国骄傲!

观看嫦娥五号心得2 月球是一颗美丽而又充满神秘色彩的卫星,从古至今,它在我们的生活中扮演着重要的传统文化角色。古时,作为重要的审美意象,“月出皎兮,佼人僚兮。”《诗经·陈风·月出》“露从今夜白,月是故乡明。”《月夜忆舍弟》这些诗句无不凝聚着诗人的情感和生命体验,显示出民族深刻的文化内蕴和审美情趣。今天,月球依旧是我们人类探索的对象,“嫦娥五号”月球探测器的成功步入预定轨道,也标志着我们中国在月球探索中迈进了重要一步。 此时的中国人,不仅激动,内心更是欣喜与自豪。作为一名教师,我有责任把这激励人心的信息告诉学生。本学期,我所执教的四年级上册第四单元《地球与月球》中的一个重要研究天体就是月球。 中国的的探月工程——“嫦娥工程”大致分为三大阶段,“嫦娥五号”是负责嫦娥三期工程“采样返回”任务的中国首颗地月采样往返卫星。科学课上,我将本单元的主题结合时事新闻,辅之图片、视频、研究报告全面地介绍给学生。另外,及时巩固书上的知识,如:月相的变化、月相的周期、月海的形态、神秘的环形山等。课本第50页的资料袋中,详尽地介绍了中国的探月工程,抓住这个教育时机,让学生感受到,其实课本上的知识距离我们的生活并不遥远,我想这更有意义。我语重心长地鼓励学生:“科学来自于人们对生活不同现象的各种思考和探索,只要我们善于观察,用心思考,或许下一个月球探测系统的研究,就能出现你的身影。这个前提,就是你们要踏踏实实的

嫦娥三号物理问题(答案版)

关于嫦娥三号的热点物理问题 科技背景: 2013年12月2日,“嫦娥三号”从西昌卫星发射中心成功发射。 2013年12月6日,嫦娥三号准确进入环月近圆轨道。 2013年12月14日,嫦娥三号成功着月,降落相机传回图像。 1、“长征三号乙”运载火箭燃料燃烧后,液体变成气体,体积增大,燃烧生成的气体高速喷出来了,使火箭获得巨大的反作用力而上升。 2、喷出来的高温气体,与发射塔下面的水进行热量交换,使水的温度升高。液体变成气体,发生汽化现象,气化后的水蒸气遇冷放热又发生液化,形成大团的白雾。 3、火箭喷出的气体,对下面有力的作用,根据力的作用是相互的,火箭得到一个向上的推力,当推力大于火箭自身重力的时候它就升上天了。 4、升天的过程中它的重力势能增大,动能也增大,所以机械能一直不停地增大。总的来说,火箭上升过程中内能最终转化为机械能。 5、在大气层的时候,因为与大气的剧烈摩擦,产生了热能,摩擦生热现象是机械能能转化为内能。 6、燃料的能量转化不可能是完全的,有机械损耗和热量损失,所以热机 (填大于、小于、等于)。 7、火箭工作时燃料的化学能转换成了热能,再转换成了动能,最后变成了机械能。 8、火箭上和月球探测器上安装有摄像机和照相机拍摄记录飞行过程以及月

面照片,照相机和摄像机的镜头相当于凸透镜,能成倒立、缩小的实像。 9、控制中心和测控站是利用电磁波来传递信号,控制火箭和嫦娥三号按预定轨道运行的,嫦娥三号拍摄的月球照片是通过电磁波传回地球的。 10、物体在月球上受到的重力只有地球上的六分之一,1.2吨质量的嫦娥三号探测器在月球上受到的重力是2000 N。 11、绕月运动的嫦娥三号探测器受到的是非平衡力作用(填“平衡力、非平衡力),其运动状态变化着(变化着、不变)在近月点时运动加快重力势能转化为动能,而在远月点时,速度减慢,动能增大,重力势能减少。 12、嫦娥三号探测器到达月球表面后,展开太阳能电池帆板,对着太阳方向,太阳能帆板工作时,将太阳能能转换为电能。 13、嫦娥三号探测器“玉兔号”月球车使用类似于坦克或推土机上的履带装置运动,而不使用车轮,这样做是为了增大摩擦便于爬坡和翻越障碍,还可减小对月球地面的压强(增大、减小),以防陷入月球尘土中。 14、嫦娥三号探测器在国际上首次利用测月雷达实测月壤厚度(1~30米)和月壳岩石结构(1~3千米),雷达工作原理是利用电磁波测距、测速定位。 15、月球上没有空气,不能使用降落伞降落,只能使用反推力火箭产生的阻力实现探测器软着陆,这说力能改变物体的运动状态(即改变物体的运动速度和方向)。 16、月球上没有水、没有空气,月球上一天相当于地球上一个月,白天向着太阳的一面温度最高达120?C,而夜间温度会降至–180?C,其原因除了月球没有空气不能起保温作用外,还与月球砂石尘土的比热容比较小有关系。

核技术及其应用的发展

核技术与核安全 核动力技术的核心是反应堆技术,反应堆可用来发电,供热,驱动运载工具等.反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析,生产放射性核素等."核能工程与技术"和"辐射防护与环境保护"也是"核科学与技术"之下的二级学科. 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托,互相渗透的.同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的.其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化.相应的研究构成了辐射物理学,辐射化学和辐射生物学的主要内容.在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴.因此,核技术及应用这一学科与核物理学,辐射物理学,辐射化学,放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内.近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理,核医学等学科.另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理,机械,真空技术,电子学,射频技术,计算机技术,控制技术,成像技术等多种学科和技术的综合.故此核技术充分体现了多种学科的交叉这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一.第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工,无损检测,核医学诊断设备与9放射治疗设备,同位素和放射性药物生产等.据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%.美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%. 现代很多科学技术成就的取得都是与核技术的贡献分不开的.仅以诺贝尔奖为例,1931年美国科学家劳伦斯发明回旋加速器,为此获得了1939年诺贝尔物理奖.1932年英国科学家Cockcroft和Walton制造了第一台高压倍压加速器并用其完成了首次人工核反应,获1957年诺贝尔物理奖.此外还有八项诺贝尔物理奖和化学奖是利用加速器进行实验而获得的.在探测器方面,威尔逊因发明云室探测器而获1927年诺贝尔物理奖,其后布莱克特因改进威尔逊云室实现自动曝光而获1948年诺贝尔物理奖,鲍威尔发明照相乳胶法并用其发现π介子而获1950年诺贝尔物理奖,这之后格拉泽因发明气泡室使粒子探测效率提高1000倍而获1960年诺贝尔物理奖,阿尔瓦雷兹因改进气泡室并用其发现共振态粒子而获1968年诺贝尔物理奖,沙帕克因发明多丝正比室和漂移室而获1992年诺贝尔物理奖.在核分析技术方面,1948年美国科学家利比建立了14C测年方法并为此获得了1960年诺贝尔化学奖,穆斯堡尔因发现穆斯堡尔效应而获1961年诺贝尔物理奖,布罗克豪斯和沙尔因发展了中子散射技术而获1994年诺贝尔物理奖.核技术对于科学发展的重要推动作用由此可见一斑.由于核技术为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段,自20世纪80年代以来各国竞相建造与核技术密切相关的大型科学工程,如大型对撞机,同步辐射装置,自由电子激光装置,散裂中子源,加速器驱动次临界反应堆,大型放射性核束加速器等,其造价动辄数亿美元乃至数十亿美元.美国能源部2003年11月发布研究报告"未来科学的装置",列出了今后20年重点发展的28项大型科学工程,其中基于加速器的有14项,占了一半.我国自改革开放以来先后建造了北京正负电子对撞机,兰州重离子加速器,合肥同步辐射装置等大科学工程,辐照和放疗用电子加速器,大型集装箱探测装置,辐射加工和同位素生产等也已经形成了一定规模的产业. 1 在工业中的应用 核技术的工业应用始于20世纪50年代兴起的辐射加工.辐射加工利用60Co源产生的γ射线或电子加速器产生的电子束照射物料,可引起高分子材料的聚合,交联和 1

观看“嫦娥四号”探测器升空有感

观看“嫦娥四号”探测器升空有感 观看“嫦娥四号”探测器升空有感 2018 年 12 月 7 日正好是周五,回到家看新闻联播时获悉我国将于 8日 2 时 23 分发射“嫦娥四号”探测器。我深知“嫦娥四号”探测器升空将开启我国月球探测的新旅程,在我国航天史上意义非凡,决定熬夜收看发射升空的现场直播,见证这一激动人心的时刻。(由观而引出感,这开头部分就好比一条醒目的标语或引子一样,先交待清楚看了什么影片或什么书,有什么感想。一般来说,这一部分要求简明扼要、开门见山,而是要用肯定的语气概括地说出感受是什么,不必展开来说。) 现场主持人介绍完“嫦娥四号”探测器发射的相关准备情况后,终于,最激动人心的时 刻到来了,在总指挥师倒计报数时,我的心也提到了嗓子眼。随着“点火”指令的发出,长征三号乙型火箭喷出熊熊火焰,推举着“嫦娥四号”探测器快速升空,带着国人的希望,载着国人的强国梦。我想,这时不止我的心,很多国人的心都被“嫦娥四号”带到了空中。 火焰极速向天,光芒刺破黑暗的夜空,穿越大气层。这

不正像我国航天事业从无到有,从弱到强的发展历程吗?1970 年,我国第一颗人造卫星“东方红 1 号”成功升空;2003 年10 月 15 日,中国神舟五号载人飞船升空,杨利伟成为我国飞上太空的第一人;2007 年,嫦娥号系列探测器成功奔月。而今,“嫦娥四号”探测器将在月球背面着陆,并完成一系列科考任务。 “嫦娥号”系列探测器正一步一个脚印从“绕月”到月背“落月”,再到将来的“返回”。我国探月工程“三步走”将在不久的未来全面实现。我国航天事业能取得如此辉煌的成就,离不开我国不断增强的综合国力,更是得益于国家科技发展的战略决策。 直播时,我看到“嫦娥四号”探测器升空后,众多科研人员依然坚守在自己的岗位上,其他工作人员也在祖国不同地区观测着探测器的运行情况。众多航天专家用心守护着探测器,注视着航天器的一举一动。当然,航天科学家的付出绝不止这么一些,发射前还有无数的准备工作,有着数不尽的科研攻关项目。一代又一代的航天人见证着我国航天事业的发展,也以自己的默默坚守、敢为人先的行动推动着我国航天事业的发展。(具体谈感受是什么。感受由浅到深,感受由心而发、发自内心,因此要自然真实,有感而发,不要无病呻吟,虚假不实,这样才能感人,打动读者。写法上,可采用夹叙夹议的形式,“叙”就是把感人的故事情节或人

备考2021时文素材:嫦娥五号探测器发射成功

备考2021时文素材:嫦娥五号探测器发射成功 11月24日凌晨4时30分,长征五号遥五火箭成功将嫦娥五号送入预定轨道,这型我国运载能力最强的火箭,再一次用成功证明了自己。 总台央视记者崔霞:长征五号遥五火箭的发射成功,应该也是实现了今年“胖五”的一个三连冠。您现在心情怎么样? 航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:我非常高兴,这次长征五号遥五的发射,使中国航天探月三期圆满收官打下了很好的基础,因为对这一次发射充满了信心。 总台央视记者崔霞:您提到的信心,我是不是也可以理解,信心来自于我们对成功的信仰?

航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:这种信心来源于我们深厚的积淀,来源于我们对成功的渴望,来源于我们对梦想的追求。特别是对于长征五号团队,经历过失败的洗礼,对成功这种期待更加强烈。 长五人对成功的渴望,源于3年前那一次惨痛的失败。2017年7月,长征五号遥二火箭发射失利。 总台央视记者崔霞:关于长征五号遥二火箭的失利,经过908天这样的一个蛰伏,再到它的复飞成功,所以大家对长征五号的印象是越来越深刻,那么长征五号遥二火箭当时失败的这个原因到底是什么,通过什么方式方法来解决? 航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:我们通过大量的数据分析,包括大数据的分析,我们揭示了它的主要矛盾是什么?大量的震动,形成了大载荷,超出了结构的承载能力,导致结构断裂失效,发动机推力丧失。

虽然问题发现了,但是留给研制团队解决问题的时间却不多了。 航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:如果不能有效及时解决问题,今年的火星探测、探月都不可能实现。重新设计需要两年到两年半以上,后续的这几项国家重大工程根本就等不及。 经过大量的分析,李明华拍板决定,在现有方案的基础上解决主要问题,实现对震动的抑制,这为长征五号接下来的连续成功奠定了基础。 航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:通过试车表明,震动的量级减少了90%,从此,我们重大技术瓶颈就彻底地得到了缓解。失败不是魔咒,而是我们技术创新、管理创新的催化剂,挫折也不是绊脚石,是我们磨砺意志的试金石。每一次的成功都是挑战和超越的开始,每一次挑战和超越,超越的不是别人,而是我们自己。 总台央视记者崔霞:这一次它开启探月工程三期的一个重要的开始,它要超越自己什么? 航天科技集团一院党委书记、长征五号运载火箭第一总指挥李明华:长五B遥一的首飞成功,从此拉开了中国载人空间站建设的大门,“天问一号”发射取得了圆满的成功,打出了中国航天的新高度,打出了中国航天的新速度。

嫦娥三号全景相机解读:将在月球拍摄国旗

嫦娥三号全景相机解读:将在月球拍摄国旗 正文 中新网北京12月13日电(记者张子扬)如果一切顺利,中国嫦娥三号月球探测器将于14日晚间在月面虹湾区附近软着落。届时,装载在月球车上的全景相机,将对着陆器以及上面的中国国旗进行成像,它的另一个科学目标,就是对月球表面形貌进行探测。 嫦娥三号探测器包括着陆器和巡视器(也称月球车),总质量为3780千克。其中,着陆器质量约3640千克,巡视器质量为140千克。 据了解,此次嫦娥三号探测器共安装了八种有效载荷。着陆器上的四种有效载荷分别是,地形地貌相机、降落相机、极紫外相机、月基天文望远镜。巡视器上也有四种有效载荷:全景相机、测月雷达、红外成像光谱仪、粒子激发X射线谱仪。 按照计划,当嫦娥三号安全着陆后,巡视器将从着陆器上缓慢走下,两器将开始进行各自独立的探测任务。安装在着陆器上的地形地貌相机和配备在巡视器上的全景相机,将互拍照片,“嫦娥”与“玉兔”号将实现“两两相望”。 届时全景相机能否将拍到的中国国旗传回地球,以及自身是否顺利展开月球表面形貌进行探测,颇为关键。 作为全景相机的主任设计师,杨建峰在受访时告诉记者,这次担负重任的全景相机有三个创新,应当能保证它全力完成“答卷”。 杨建峰介绍称,嫦娥一号、嫦娥二号以及中国深空探测前期的相机全是黑白的,“此次我们使用的是彩色相机,在同样分辨率的情况下,彩色(成像)是黑白(成像)数据量的四倍”。 杨建峰感慨道:“国旗的颜色很鲜艳,面对国旗拍照时,需尽可能呈现出的画面逼真,而全景相机的分辨率大概是一个小米粒那么大,是否拍得清晰,这是非常关键的技术。 全景相机的第二个创新是可以旋转360度。杨建峰称,相机工作时,有可能正对着太阳造成逆光,也有可能是顺光、侧光等。不同光的条件下,相机里面的曝光量差别非常大。嫦娥一号、嫦娥二号的曝光只有几档,而嫦娥三号的曝光档数增加了不少。 “第三个创新是温度环境。”杨建峰说,“与其他载荷在夜间工作有所不同,全景相机主要是在白天工作,要经受高温的考验。” 据杨建峰透露,之所以全景相机不惧怕高温,是因科研人员使用了一种特殊的膜贴在相机头上,相当于给相机戴了个“安全帽”,可以发挥良好的散热功效。 “即便面对150度的高温,也会安然无恙。”杨建峰说。(完) 延伸阅读: 总设计师详解嫦娥三号计划拍摄国旗存登月证据 “我们还设计拍摄中国国旗,这也是我们上了月球的一个证据。”叶培建介绍,抵达月面后,分开工作的着陆器和月球车可以互相监视,用各自携带的相机"互拍",到时候着陆器 就会拍下月球车上的国旗标志,再传回地面…[详细] (责任编辑:UN641)原标题:从拍国旗到探月貌解密嫦娥三号上的“全能战士”

我国成功发射嫦娥三号探测器

我国成功发射嫦娥三号探测器 中国航天的发展一直偏重应用,而在纯科学的空间天文与深空探测方面,过去长期是空白的。所谓“深空探测”是指航天器脱离地球引力场,进入太阳系空间或更远的宇宙空间进行探测。现在世界范围内的深空探测主要包括对月球、金星、火星、木星、小行星等太阳系星体。与通讯卫星、导航卫星、遥感卫星等各类人造地球卫星相比,深空探测的实用价值可以说微乎其微,其意义更多在于天文学、理论物理等科学领域的前沿探索。 我国是直到进入21世纪才启动了探月工程,正式开始深空探测工作,即嫦娥探月工程。事实上,即便是嫦娥探月工程的提出和立项,也经历了多年的蹉跎。或许是受到日本发射飞天号月球探测器的刺激,我国早在20世纪90年代初就对月球探测的必要性和可行性进行了初步论证,并提出使用长征二号捆绑火箭发射月球撞击器的构想,不过由于种种原因,这个和日本飞天号一样仅有象征意义的探月方案并没有启动。 90年代后期我国再次论证探月方案,并对首次探月的科学目标进行了分析和研究,2000年中科院提出的月球探测器的科学目标和有效载荷通过论证和评审,随后中科院开始对载荷关键技术和地面处理应用系统进行研究,2002年中科院和航天部分提交了月球探测器立项报告。2003年8月15日印度独立日上,印度总理正式宣布研制月船一号月球探测器,在此影响下2004年1月我国正式启动嫦娥探月工程。

嫦娥探月工程分为三期,简称为“绕、落、回”。探月工程一期的“绕”,计划发射一颗月球轨道器进行绘制月面三维立体图像、探查月面物质成分等任务;探月工程二期的“落“,将发射一颗月球软着陆探测器,并携带一个月球车作为巡视器,两者联合进行地形地貌和地质结构的探查,并携带望远镜在月球表面仰望星空;探月工程三期的“回”,是指发射月球取样返回探测器,探测器降落到月球后,将自动采集月壤和月岩样品,最后由返回器带回地球。我国将通过难度逐步增加的“绕、落、回”的三步走,突破和掌握全套无人探月技术,为未来可能的载人登月积累经验并做好技术上的准备。 我国嫦娥探月工程虽然立项较晚,但作为国家重大科技专项,进展还是非常快的,先后于2007年、2010年发射嫦娥一号和嫦娥二号探月卫星,完成第一步“绕”,以及二期工程“落”的前期勘探和技术验证。今年这次发射嫦娥三号月球软着陆探测器将实现第二部“落”。月球南极被认为最有可能存在水,所以作为嫦娥三号的备份星的嫦娥四号可以考虑进行探测嫦娥四号将起到承上启下作用 那么,嫦娥探月工程会何时实现最后一步“回”? 首先要介绍的是嫦娥四号,它是嫦娥三号的备份星,目前已经和嫦娥三号同步完成了正样研制。较早的资料表明,嫦娥三号的巡视器设计寿命3个月,而嫦娥四号设计寿命12个月,分析认为这种区别很可能是前者首次应用,在宣传口径上做了保留。 嫦娥一号和二号的总设计师叶培建院士曾提到,嫦娥四号将在嫦娥三号的基础上作一定的改进,而且运行时间只有几个月,结合他后来说

数学建模嫦娥三号运行轨迹及着陆点分析

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

嫦娥三号软着陆轨道设计与控制策略 摘要:根据题目附录和文献[4]中提供的嫦娥三号的运行参数,利用角动量守恒及向量几何的方法,分别确定了近日点、远日点的位置向量和速度向量。与文献[4]的真实数据比较发现吻合良好。 本文重点关注优化减速控制与着陆点避障两方面:前者燃耗最大,后者决定着陆成败。 首先,在多重坐标变换基础上,建立了飞行器制动的动力学方程。并以燃耗为最优化性能指标、近月点状态为初始条件、着陆点状态为终端条件,利用极值原理求解飞行器的着陆轨迹,及其最优控制参数。 其次,对避障阶段采集的高程图采取水平剖分、比较高程方差的方法,解出最优降落点。 关键词:软着陆;最优轨道;避障

1、问题重述 嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道,于北京时间12月14号在月球表面实施软着陆。嫦娥三号在着陆准备轨道上的运行质量为2.4t,安装在其下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。嫦娥三号四周安装了姿态调整的发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。 嫦娥三号在高速飞行的情况下,为了保证嫦娥三号能准确地在月球预定区域内实现软着陆,关键的问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求如下:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。 根据上述的基本要求,建立数学模型解决下面的问题: (1)计算其着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。 (2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。 (3)对于设计的着陆轨道和控制策略进行相应的误差分析和敏感性分析。 2、问题分析 2.1技术背景

核技术及其应用的发展

核技术及其应用的发展 人防五队风水专业乔亚鑫3382011515 1896年贝克勒尔发现铀的天然放射性,从此诞生了一门新的科学:原子核科学技术。1919年卢瑟福利用天然α射线轰击各种原子,确立了原子的核结构,随后又首次用人工方法实现了核反应。但是用天然射线源能够研究的核反应很有限,人们开始寻找一种可以产生具有不同能量的各种粒子束的装置,于是粒子加速器应运而生。同时,为了探测各种射线和核反应的产物,还需要有辨别粒子种类和能量的探测器及相应的电子学设备。在研究核物理的过程中人们发现,放射性一方面可能造成人体的伤害,另一方面它也可以在医学、工农业和其它方面有许多应用。于是相应地,辐射防护技术与射线应用技术也发展起来。此外,核物理的研究还导致了许多放射性核素的发现。它们的半衰期长至数千万年,短至不足1秒。在不同场合下选择适当的放射性核素,可以做示踪剂、测年工具或药物使用。这就是放射性核素技术(或称为同位素技术)。上述粒子加速器技术、核探测技术与核电子学、射线和粒子束技术、放射性核素技术等,通常统称为核技术。概括而言,核技术就是利用放射性现象、物质(包括荷能粒子)和规律探索自然、造福人类的一门学科,其主要内容是研究射线、荷能粒子束和放射性核素的产生、与物质相互作用、探测和各种应用的技术。在我国现行的研究生培养体系中“核技术及应用”属于一级学科“核科学与技术”之下的一个二级学科。核技术还包括核武器技术与核动力技术(或称为核能技术)。核动力技术的核心是反应堆技术,反应堆可用来发电、供热、驱动运载工具等。反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析、生产放射性核素等。“核能工程与技术”和“辐射防护与环境保护”也是“核科学与技术”之下的二级学科。 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托、互相渗透的。同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的。其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化。相应的研究构成了辐射物理学、辐射化学和辐射生物学的主要内容。在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴。因此,核技术及应用这一学科与核物理学、辐射物理学、辐射化学、放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内。近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理、核医学等学科。另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理、机械、真空技术、电子学、射频技术、计算机技术、控制技术、成像技术等多种学科和技术的综合。故此核技术充分体现了多种学科的交*这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一。第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工、无损检测、核医学诊断设备与 放射治疗设备、同位素和放射性药物生产等。据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%。美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%。

最新观看嫦娥五号心得四篇

最新观看嫦娥五号心得四篇 最新观看嫦娥五号心得四篇 仰望星空是我们捕捉梦想的开始,脚踏实地则是我们让梦想成真的途径。我们每个人都要用一颗孩童般的心灵去找寻梦的光芒,用坚韧和不挠的精神完成梦想的征程。下面是工作范文网小编带来的最新观看嫦娥五号心得四篇,希望大家喜欢 观看嫦娥五号心得篇一 月球是一颗美丽而又充满神秘色彩的卫星,从古至今,它在我们的生活中扮演着重要的传统文化角色。古时,作为重要的审美意象,“月出皎兮,佼人僚兮。” 《诗经·陈风·月出》“露从今夜白,月是故乡明。” 《月夜忆舍弟》这些诗句无不凝聚着诗人的情感和生命体验,显示出民族深刻的文化内蕴和审美情趣。今天,月球依旧是我们人类探索的对象,“嫦娥五号”月球探测器的成功步入预定轨道,也标志着我们中国在月球探索中迈进了重要一步。 此时的中国人,不仅激动,内心更是欣喜与自豪。作为一名教师,我有责任把这激励人心的信息告诉学生。本学期,我所执教的四年级上册第四单元《地球与月球》中的一个重要研究天体就是月球。 中国的的探月工程——“嫦娥工程”大致分为三大阶段,“嫦娥五号”是负责嫦娥三期工程“采样返回”任务的中国首颗地月采样往返卫星。科学课上,我将本单元的主题结合时事新闻,辅之图片、视频、研究报告全面地介绍给学生。另外,及时巩固书上的知识,如:月相的变化、月相的周期、月海的形态、神秘的环形山等。课本第50页的资料袋中,详尽地介绍了中国的探月工程,抓住这个教育时机,让学生感受到,其实课本上的知识距离我们的生活并不遥远,我想这更有意义。我语重心长地鼓励学生:“科学来自于人们对生活不同现象的各种思考和探索,只要我们善于观察,用心思考,或许下一个月球探测系统的研究,就能出现你的身影。这个前提,就是你们要踏踏实实的学习,认真完成每一天学习任务。” 仰望星空是我们捕捉梦想的开始,脚踏实地则是我们让梦想成真的途径。我们每个人都要用一颗孩童般的心灵去找寻梦的光芒,用坚韧和不挠的精神完成梦想的征程。

相关文档