文档库 最新最全的文档下载
当前位置:文档库 › 关于Greiner算子的唯一延拓性

关于Greiner算子的唯一延拓性

关于Greiner算子的唯一延拓性
关于Greiner算子的唯一延拓性

泛函分析第3章连续线性算子与连续线性泛函

第3章 连续线性算子与连续线性泛函 本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。 3.1 连续线性算子与有界线性算子 在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵 1112 121 22 212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? 对n E 中的向量起作用来达到的。同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。 [定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射 T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){} ,y y Tx x D T =∈为算子的值域,记作()T D 或TD 。 若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+?∈ (2)()()(),T x Tx F x D T ααα=?∈∈ 称T 为线性算子。对线性算子,我们自然要求()T D 是X 的子空间。特别地,如

序列的移位和周期延拓课程设计

摘要 复杂的序列通常可由基本序列通过运算和组合构成的,序列的移位和周期延拓是序列的基本运算。序列的移位是序列的每一个样本都向右或向左移动k个单位,形成另一个序列。周期延拓是把一个周期序列x(n),拓展为有K个周期的新序列。MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。 本课题利用MATLAB的元素集运算和矩阵的运算实现了对序列移位和周期延拓运算的软件实现。 关键词:MATLAB;序列;移位;周期延拓

目录 1 课题描述 (1) 2 设计原理 (1) 3 设计过程 (2) 3.1软件介绍 (2) 3.2设计内容 (3) 3.3设计步骤 (3) 4程序运行结果及分析 (4) 总结 (6) 参考文献 (7)

1 课题描述 时域离散信号用x(n)表示,时间变量n(表示采样位置)只能取整数。因此,x(n)是一个离散序列,以后简称序列。序列适合计算机存储与处理。序列的基本运算包括相加、相乘、移位、周期延拓等。MATLAB是MATrix LABoratory的缩写,早期主要用于现代控制中复杂的矩阵、向量的各种运算。MATLAB以矩阵作为基本编程单元,它提供了各种矩阵的运算与操作,并有较强的绘图功能。 本课题是利用MATLAB元素集运算和矩阵的运算实现了对序列移位和周期延拓运算的软件实现。 开发工具: MATLAB 2设计原理 设计原理如下: 移位:在这个序列运算中,x[n]的每一个样本都移动(即延迟)k个采样周期,设移位后的序列为y(n)。当k >0时每一个样本向右移动,称为x(n)的延时序列;当k<0时,每一个样本向左移动,称为x(n)的超前序列。 y(n)=x(n-k) (2.1) 在MATLAB中,如果原始的序列用x和nx表示,移位后的序列用y和yn 表示,移位运算并不影响向量x的值,因此y=x。移位体现为位置向量的改变。ny的每个元素都比nx加了一个k,即ny=nx+k。y和ny就是移位后的向量的表述,说明y取k拍前的x值。向左移位可令k取负号,意味着y取k拍后的x z-进行标注,它被称为迟延算子,表示把输入序列右移一值。在系统框图中用1 位;用z进行标注,它是左移运算是右移算子的逆运算。实际上迟延算子取的是序列过去的值,具有物理可实现性;而左移算子是提前算子,它要知道序列未来 z-算子。 的值,物理上无法实现。所以数字信号处理中通常都用1 满足: 周期延拓:如果对于所有的n,序列x[n]

Banach延拓定理及其应用(精)

Hahn - Banach延拓定理及其应用 [论文摘要]本文首先概述Hahn - Banach延拓定理发展的历史、其对泛函分析及微分方程乃至物理学的重要意思,然后介绍了Hahn - Banach延拓定理包括它的推论和推广,最后以例题的形式给出了Hahn - Banach延拓定理的一些应用。 [关键字]Hahn - Banach定理Zorn引理延拓 [Abstract]In this passage,we introduce the history of Hahn-Banach theorem.Then we introduce the Hahn-Banach theorem and the deduction.At the end,we introduce some application of the Hahn-Banach theorem. [Key Word]Hahn-Banach theorem Zorn lemma application

目录 摘要 1目录 2 1 引言 3 1.1 选题背景 3 1.2 本文的主要内容 3 2 Hahn—Banach定理 5 2.1 Hahn—Banach定理的定义 5 2.2 Hahn—Banach定理的推论 6 3 Hahn—Banach定理的推广 13 4 Hahn—Banach定理的应用 43参考文献45

1引言 1.1 选题背景 Banach空间理论是由波兰数学家S.Banach在192O年创立的,数学分析及泛函分析中许多常用的空间都是巴拿赫空间及其推广,它们有许多重要的应用。以Banach空间为基础的Hahn - Banach定理跟共鸣定理及闭图象定理是 泛函分析的三大基本定理。其应用十分广泛, 而且越来越深入地渗透于现代数学的各个领域乃至物理等其它学科。其中Hahn - Banach延拓定理,在泛函分析中扮演着重要的角色。该定理保证了赋范线性空间上具有“足够多”的连续线性泛函,并且还刻划了连续线性泛函的值可以事先被指定的程度,这就使得建立共轭空间具有实质性的意义。而这些理论也是赋范空间一般理论的根本部分。从这个意义上来说,Hahn-Banach定理是关于有界线性算子最重要的定理之一。 Hahn - Banach定理是1923年S.Banach在研究不变测度时,首先提出来的。在1929年S.Banach又得出了定理的一般形式。而Hahn在1927年及Ascoli在1932年也相互独立的得出了一般定理。随后H.F.Bahnenblust与Sobczyk(1938)将其推广到复向量空间上。从几何上看该定理表现成凸集的分离性质,而这个分离性质是研究与凸集有关的Banach空间几何学的基本出发点。由Hahn—Banach定理可以导出一些很有用的结果,如短量定理、最佳逼近的对偶关系和凸集分离定理等等,这些结果在泛函分析理论、远近论、控制论和数学规划中均有重要作用。而且Hahn - Banach延拓定理在偏微分方程及概率论等方面有着广泛的应用,而在确信一般的局部凸线性拓扑空间中非平凡连续线性泛函的存在时也要用到它。 1.2 本文的主要内容 本文拟对Hahn - Banach定理进行一点探讨, 分为三大部分。第一部分首先给出Hahn - Banach延拓定理,然后以推论的形式给出本定理的若干特殊形式。第二部分给出本定理的推广。第三部分则以例题的形式给出Hahn - Banach定理的一些应用。值得注意的是, Hahn-Banach 定理的推广实际上也是Hahn - Banach定理的重要应用。

数学皇冠上的明珠——哥德巴赫猜想

数学皇冠上的明珠——哥德巴赫猜想 哥德巴赫〔Goldbach C.,1690.3.18-1764.11.20〕是德国数学家,出生于格奥尼格斯别尔格〔现名加里宁城〕,曾在英国牛津大学学习、原学法学,由于在欧洲各国访问期间结识了贝努利家族,因此对数学研究产生了兴趣,曾担任中学教师、1725年到俄国,同年被选为彼得堡科学院院士,1725年~1740年担任彼得堡科学院会议秘书,1742年移居莫斯科,并在俄国外交部任职、1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来、 “我的问题是如此的: 随便取某一个奇数,比如77,能够把它写成三个素数之和: 77=53+17+7; 再任取一个奇数,比如461, 461=449+7+5, 也是三个素数之和,461还能够写成257+199+5,仍然是三个素数之和、如此,我发明:任何大于5的奇数基本上三个素数之和、 但这怎么样证明呢?尽管做过的每一次试验都得到了上述结果,然而不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验、” 欧拉回信说,那个命题看来是正确的,然而他也给不出严格的证明、同时欧拉又提出了另一个命题:任何一个大于2的偶数基本上两个素数之和、然而那个命题他也没能给予证明、 不难看出,哥德巴赫的命题是欧拉命题的推论、事实上,任何一个大于5的奇数都能够写成如下形式: 2N+1=3+2(N-1),其中2(N-1)≥4. 假设欧拉的命题成立,那么偶数2(N-1)能够写成两个素数之和,因此奇数2N +1能够写成三个素数之和,从而,关于大于5的奇数,哥德巴赫的猜想成立、然而哥德巴赫的命题成立并不能保证欧拉命题的成立、因而欧拉的命题比哥德巴赫的命题要求更高、 现在通常把这两个命题统称为哥德巴赫猜想、 二百多年来,尽管许许多多的数学家为解决那个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题、 十九世纪数学家康托〔Ca n torG.F.L.P.,1845.3.3~1918.1.6〕耐心地试验了1000以内所有的偶数,奥培利又试验了1000~2000的全部偶数,他们都确信了在所试验的范围内猜想是正确的、1911年梅利指出,从4到9000000之间绝大多数偶数基本上两个素数之和,仅有14个数情况不明、后来甚至有人一直验算到三亿三千万那个数,都确信了猜想是正确的、 1900年,德国数学家希尔伯特〔HilbertD.,1862.1.23~1943.2.14〕在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究、其中第八问题为素数问题,在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一、 1921年,英国数学家哈代〔HardyG.H.,1877.2.7~1947.12.1〕在哥本哈根召开的数学会议上说过,哥德巴赫猜想的困难程度能够和任何没有解决的数学问题相比、 近一百年来,哥德巴赫猜想吸引着世界上许多闻名的数学家,并在证明上取得了特别大的进展、在对一切偶数的研究方面,苏联人什尼列尔曼(1905~1938)

1离散和连续能量算子的定义

1 离散和连续能量算子的定义 无衰减自由振荡的线性振子的运动方程为:0=+x k x m ,通解为一个余弦函数:)cos()(θω+=t A t x 。 用简单的数学来分析和跟踪窄带信号的能量,这就是所谓的非线性能量跟踪算子,简称能量算子,记作ψ。对于连续信号)(t x ,能量算子的定义式为: )()()]([)()())(()]([2 2 22t x t x t x dt t x d t x dt t dx t x C -=-=ψ 将)(t x 代入上式可得22)]([ωψA t x C =,能反映并跟踪能量的变化。 离散信号的能量算子为)1()1()()]([2+--=n x n x n x n x d ψ。用离散差分方程代替连续时间变量的导数,可得到c ψ和b ψ之间的映射关系: 后向差分: 前向差分: 平衡差分:

2 能量算子分离算法 无论是连续信号还是离散信号,都可以用能量分离算法获得它们的瞬时幅度信号和瞬时频率信号。 连续信号: 由连续能量算子的计算公式可得到: ???≈≈) ()()]([) ()()]([42 22t t a t x t t a t x i c i c ωψωψ 联合可求解得到 )]([)] ([)(t x t x t a c c ψψ= )]([)]([)(t x t x t c c i ψψω = 对这两式进行解调即可。 离散信号: 我们用连续时间信号类似的推导,并采用后向差分可推得: 2 ) )] ([2)]1()([1(1)] ([)(n x n x n x n x n a d d d ψψψ----= 平衡差分: )] 1()1([)] ([2)(--+= n x n x n x n a d d ψψ

浅谈Hahn-Banach泛函延拓定理及其应用

浅谈Hahn-Banach 泛函延拓定理及其应用 1 引言 在函数论中,我们曾经考虑把一些函数从原来的定义域括充出去的问题,例如解析函数的解析开拓,在代数上有域的扩张等等.在泛函分析中,为了使得对于任意的线性空间E ,其上存在非零的有界线性泛函,其简化的方法自然使我们想到了前面所说的“延拓”的方法,既在E 内某一子空间上定义一个有界线性泛函,而且还能够使其延拓为整个E 上的有界线性泛函. 引理 设f 是复赋范线性空间E 上的有界线性泛函,令))((Re )(E x x f x ∈=?,则?是E 上的有界实线性泛函. (注意:所谓实线性,是指可加性以及对任何实数α,有)()(x x α?α?=且)()()(ix i x x f ??-=) 2 Hahn-Banach 泛函延拓定理 2.1 Hahn-Banach 泛函延拓定理的几种形式 定理1 [1](168) P (赋范线性空间上的Hahn-Banach 泛函延拓定理) 设G 是赋范线性空间E 的子空间,f 是定义在G 上的有界线性泛函,则f 可以延拓到整个E 上且保持范数不变,即存在定义在E 上的有界线性泛函0F ,使下列性质成立: (1)对任一x G ∈,有0()()F x f x =; (2)0G F f =.(这里G f 表示f 作为G 上的有界线性泛函的范数) 定理2 ) 136](2[P (实线性空间上的Hahn-Banach 泛函延拓定理)假设 (1)E 是“实”线性空间,0E E ?是“实”线性子空间; (2)()p x 是E 上的“次加法、正齐性”泛函,0()f x 是定义在子空间0E 上的(实)线性泛函, 并且满足)()(0x p x f ≤)(0E ∈?,那么,必定存在定义在整个空间E 上的(实)线性泛函()f x ,其满足: (ⅰ)0()()f x f x =,0x E ?∈; (ⅱ)()(),f x p x x E ≤?∈. (并且,称()f x 为0()f x 在全空间E 上的“延拓”)

100年以来对数论重大问题的证明都是错误的

100年以来數論重大問題的“证明”全部都是错误的 王曉明 摘要:100年來,對數論中的重大問題的“證明”全部都是錯誤的,最重要的原因就是數論學家普遍不懂邏輯學。整個數論已經崩潰,本文的目的就是指出這些錯誤。(内容基本上发表在中国科学院智慧火花各个栏目上) 目錄: 1,羅素悖論的是與非。 2,孿生素數猜想的是與非。 3,哥德巴赫猜想的是與非。 4,費馬大定理的是與非。 5,黎曼猜想的是與非。 6,3x+1問題的是與非 7,物理学的m理论用四色定理哥德巴赫猜想费马大定理黎曼猜想联合表示 一,羅素悖論的是與非 摘要:羅素悖論定義的“x不屬於x”有著明顯的錯誤:1,不是按照“種加屬差”的正確方法定義x。2,不是按照“不能採用否定判斷的定義”。3,“x不屬於x”的定義違法了同一律。並且兩次定義“一切”違反了同一律。4,語法錯誤,“x不屬於x”,前面x是主語,後面x是謂語,前面主語x是“誰”“什麼”,後面謂語x“是什麼”,“不是什麼”。 關鍵字:悖論,定義。 (一),前言 英國人勃蘭特.羅素(Betrand Russell1872—1970)是二十世紀西方哲學界大師,年輕時曾經用10年時間完成三卷【數學原理】,後由數學進入哲學,到了孔子說的從心所欲而不逾矩的年齡,寫完【西方哲學史】。作為數學家哲學家的羅素在二戰後為什麼獲得諾貝爾獎文學獎?西方人通常按照地緣政治的角度解釋戰爭,拿破崙打過來脾斯麥打過去,戰爭、聯姻...無休止的幹下去。直到二戰結束,人們經過奧斯維辛集中營、達豪之後,飽受蹂躪的歐洲人忽然明白,正是羅素預言的那樣——潛藏在人性中的邪惡才是災難的起因。羅素在他的著作中早有分析和預言,戰後倖存者讀起來無不心悅誠服。羅素的文筆非常漂亮,文風優美,就連一部【西方哲學史】寫得跟聊天似得,於是斯德哥爾摩的文學老爺們找到了理由。羅素的故事永遠談不完,我們就此停筆。而這個瘋子(實際上是個邏輯學白癡)給數學造成的麻煩形成了100年的恐慌,我們今天揭穿這個數學......。 (二),羅素悖論 羅素1903年構造了一個集合R,設R 為一切不屬於自身元素的集合所組成的集合(作者附言:這是第一次定義“一切”)。 羅素問: R是否屬於R?(【中國大百科全書-數學】19頁)。 實際上羅素提出的是兩個命題: 【1】,R是屬於R。 【2】,R不是屬於R。 根據排中律,一個元素或者屬於某個集合,或者不屬於某個集合。但對這個看似合理的

黎曼函数

它亦可以用积分定义: 对于所有实部>1的复数s。这和上面ζ(2)的表达式一起可以用来证明两 个随机整数互质的概率是6/π2。 \frac{}{}== 函数值==

黎曼函数在s > 1的情况 ζ函数满足如下函数方程: 对于所有C\{0,1}中的s成立。这里,Γ表示Γ函数。这个公式原来用 来构造解析连续性。在s = 1,ζ函数有一个简单极点其留数为1。上 述方程中有sin函数,的零点为偶数s = 2n,这些位置是 可能的零点,但s为正偶数时,为不为零的规 则函数(Regular function),只有s为负偶数时,ζ函数才有零点, 称为平凡零点。 当s为正整数 其中B2k是伯努利数。从这个,我们可以看到ζ(2)= π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(序列A046988/A002432列在OEIS)。 这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。 拉马努金在这上面做了很多了不起的工作。为正偶数时的函数值 公式已经由欧拉计算出。但当为正奇数时,尚未找到封闭式。 这是调和级数。 (OEIS中的数列A078434)

自旋波物理。 (OEIS中的数列 A013661) 是多少? (OEIS中的数列A002117) 称为阿培里常数。 (OEIS中的数列 A0013662) 负整数[编辑] 同样由欧拉发现,ζ函数在负整数点的值是有 理数,这在模形式中发挥着重要作用,而且ζ 函数在负偶整数点的值为零。 复数值[编辑] ,x>1。 幅角[编辑] , 函数值表[编辑] , , , , ,

, , , , , , , ,

黎曼假设

黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。即如何证明“关于素数的方程的所有意义的解都在一条直线上”。 方程z(s)=0的所有有意义的解都在一条直线上。 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 黎曼(Riemann,George Friedrich Bernhard,1826-1866,德国数学家)是黎曼几何的创始人。他在读博士学位期间,研究的是复变函数。他把通常的函数概念推广到多值函数,并引进了多叶黎曼曲面的直观概念。他的博士论文受到了GAUSS的赞扬,也是他此后十年工作的基础,包括:复变函数在Abel积分和theta函数中的应用,函数的三角级数表示,微分几何基础等。 几千年前人类就已知道2,3,5,7,31,59,97这些正整数。除了1及本身之外就 没有其他因子,他们称这些数为素数(或质数Prime number),希腊数学家欧几里德 证明了在正整数集合里有无穷多的素数,他是用反证法证明。1730年,欧拉在研究调和级数: Σ1/n=1+1/2+1/3+...+1/n.....。(1) 时,发现: Σ1/n=(1+1/2+1/2^2+...)(1+1/3+1/3^2+...)(1+1/5+1/5^2+...)...... =Π(1-1/p)^-1。(2) 其中,n过所有正整数,p过所有素数,但稍加改动便可以使其收敛,将n写成n^s(s>1),即可。如果黎曼假设正确: Π(x)=Li(x)+O(x^1/2*logx).。(3) 证明了上式,即证明了黎曼猜想。 在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。 黎曼在1858年写的一篇只长8页关于素数分布的论文,就在这论文里他提出了有名的黎曼猜想(Riemanns Hypoth-esis)。

第二章 基本定理 第二讲 解的延拓

第二讲 解的延拓(3学时) 教学目的:讨论解的延拓定理。 教学要求:理解解的延拓定理,并用解的延拓定理研究方程的解 教学重点:解的延拓定理条件及其证明 教学难点:应用解的延拓定理讨论解的存在区间。 教学方法:讲练结合教学法、启发式相结合教学法。 教学手段:传统板书与多媒体课件辅助教学相结合。 教学过程: 解的存在唯一性定理的优点是:在相当广泛的条件下,给定方程:),(y x f dx dy =有满足初值条件00)(y x y =的唯一解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的一个区间), min(,||0m b a h h x x =≤-上存在,有时所得的区间很小,因而相应的微分曲线也只是很短的一段,如初值问题 22(3.1)(0)0dy x y dx y ?=+???=? 当定义域为R:11≤≤-x 时,解存在的唯一区间.21}21 ,1min{||= =≤h x 当定义域为R:21≤≤-x 时,解的顾在唯一区间.4 1}41 ,1min{||==≤h x 这样随着),(y x f 的定义域的增大,解存在的唯一区间反而缩小,这显然是我们不想看到的,而且实际要求解存在下载向尽量大,这就促使我们引进解的延拓概念.扩大解存在不在此区间. 1. 局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每一点P,有以P 为中心完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满足Lipschitz 条件,(对不同的点,域Rp 的大小和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满足局部Lipschitz 条件. 2. 解的延拓定理. 如果方程( 3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满足局部Lipschitz 条件,那么方程(3.1)的通解过G 内任何一点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ?任意接近G 的边界.以向X 增大的一方延拓来说,如果)(x y ?=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ?趋于区间G 的边界.

halcon中的常用算子的中文说明

sub_image (ImageConverted1, ImageConverted2, ImageSub, 1, 0)一幅图减另一幅图。用一幅图的灰度减另一幅的灰度成新的一幅图。 mult_image (Image, ImagePart, ImageResult, 0.015, 0)一幅图加一幅成的一幅图 convert_image_type (Traffic2, ImageConverted2, 'int2')转换图像的格式 crop_part (ImageNoise, ImagePart, 0, 0, Width, Height)取出一幅图的中部分 dots_image (ImageResult, DotImage, 5, 'dark', 2)取出图像中圆点 partition_dynamic (SelectedRegions, Partitioned, 25, 20)根据各个区域的特征将各个区域分割开。 intersection (Partitioned, Region, Characters)取出两个区域中重叠的部分,如果Region有两个区域在Partitioned中,则这两个区域合并成一区域。 difference (RegionDilation, RegionErosion, RegionDifference)取出两个区域中不重叠的部分。critical_points_sub_pix (FilterResponse, 'facet', 1.5, 0.7, RowMin, ColMin, RowMax, ColMax, RowSaddle, ColSaddle)取出图像中的关键点。 corner_response (Image, FilterResponse, 3, 0.04) auto_threshold (Image, Regions, 10)自动阈值分割,根据灰度直方图中两波峰中的波谷取出阈值。 closing (RegionClosing3, Rectangle, RegionClosing4)用一个设计好的区域来封闭其它区域。hom_mat2d_identity (HomMat2DIdentity)生成一个2D单位矩阵 hom_mat3d_identity (HomMat3DIdentity)生成一个3D单位矩阵 hom_mat2d_translate (HomMat2DIdentity, -0.5*(Row1+Row2), -0.5*(Column1+Column2), HomMat2DTranslate)对矩阵进行2D变换,用于平移。 hom_mat3d_rotate (HomMat3DIdentity, GraspPhiZ_ref, 'z', 0, 0, 0, HomMat3D_RZ_Phi)对矩阵进行3D变换,用于旋转。 hom_mat3d_translate (HomMat3D_RZ_Phi, CenterPointX_ref, CenterPointY_ref, 0, ref_H_grasp)对矩阵进行3D变换,用于平移。 hom_mat2d_scale (HomMat2DTranslate, ScaleFactor, ScaleFactor, 0, 0, HomMat2DScale)对矩阵进行变换,用于缩放 hom_mat3d_compose (cam_H_ref, ref_H_grasp, cam_H_grasp)将两矩阵相乘 hom_mat3d_to_pose (cam_H_grasp, PoseCamGripper)将矩阵变换成3D位姿 affine_trans_contour_xld (LogoContoursTemp, LogoContours, HomMat2DComplete)对线条LogoContoursTemp进行HomMat2DComplete对应的变换(平移和缩放)。 compose3 (ImageRed, ImageGreen, ImageBlue, LogoImageTempl)将三幅图像合并成一幅图像decompose3 (LogoImage, ImageR, ImageG, ImageB)将一幅图像根据RGB值转换成三幅图像。paint_xld (LogoContours, LogoImageTempl, LogoImage, [Blue,Orange,Blue,Blue,Blue,Blue])对线条喷颜色。Blue := [0,48,117],Orange := [255,181,41] check_difference (Traffic1, Traffic2, Selected1, 'diff_outside', -255, 15, 0, 0, 0)根据两幅图的不同进行图像分割。 bin_threshold自动阈值分割,与auto_threshold (Image, Regions, 10)类似,但只有一个最小值取得仅有一个阈值。 char_threshold (Alpha1, Alpha1, Characters, 6, 95, Threshold)自动阈值分割,阈值根据直方图的波峰取得 dyn_threshold (ImageFilled, ImageMean, RegionDynThresh, 3, 'light')动态阈值分割。 gray_histo (Alpha1, Alpha1, AbsoluteHisto, RelativeHisto)获得绝对与相对直方。 background_seg (Edges, BackgroundRegions)将找出的区域根据背景分割成各个连通的区域。

黎曼猜想被证明

一、什么是黎曼猜想 黎曼猜想——最重要的数学猜想 早在1737年,大数学家欧拉就发现了质数分布问题与Zeta函数的联系,给出并证明了欧拉乘积公式,使得Zeta函数成为研究质数问题的经典方法。 欧拉乘积公式,其中p为质数,n为自然数 黎曼猜想(Riemann Hypothesis)由大数学家黎曼在1859年首次提出,讨论黎曼Zeta函数的非平凡解问题。 黎曼猜想是众多尚未解决的最重要的数学问题之一,被克雷数学研究所列为待解决的七大千禧问题,悬赏百万美金证明或者证伪。一百年前希尔伯特就曾被问过一个问题“假定你能死而复生,你会做什么?”,他的回答是,“我会问黎曼猜想是否已经解决”。可见黎曼猜想多么吸引人 黎曼猜想是关于黎曼Zeta函数的零点分布的猜想。黎曼Zeta函数长这个样子: 黎曼Zeta函数有两种零点,一种是位于实数轴线上的零点,被称为平凡零点,另一种是位于其他复平面区域上的零点,被称为非平凡零点,目前数学家已经证明这些非平凡零点全部位于实部区间为0到1的复平面内,而黎曼则大胆猜想,这些非平凡零点全部位于实部为1/2的一条直线上。 “所有非平凡零点都位于实部为1/2的直线上”是一个尚未得到严格证明的猜想,但数学家们至今找到的上万亿个非平凡零点的确都位于这条直线上,无一例外。 黎曼猜想还跟幂律分布有关。 我们都知道幂律分布是指 其中x如果只能取1,2,3,...,n的整数,c为归一化常数,满足: 而这里面的

就是Zeta函数,黎曼猜想就是关于这个函数的,但是a可以取复数值。 黎曼猜想真的会被证明吗? 质数分布没有简单规律,但质数出现的频率跟黎曼Zeta函数紧密相关。有数学家甚至认为黎曼猜想与强条件下的质数定理是等价的。目前已经验证了前1,500,000,000个质数对这个定理都成立,但至今没有完全证明。黎曼猜想得证,对质数研究、数论研究意义重大。 黎曼猜想对许多数学领域都意义重大,质数分布只是其中一个。有上千个数学命题都建立在黎曼猜想为真的基础上。多数数学家认为这个猜想是正确的,如果黎曼猜想被证伪,数学体系将失去重要根基。 二、黎曼猜想被证明了吗? 如果这是真的,Atiyah爵士将不仅获得由克雷数学研究所悬赏的一百万美金奖励,更是他个人的至高荣誉和整个数学界的狂欢。 然而,根据我们目前的了解,Atiyah爵士极有可能是在自娱自乐逗大家玩…… 黎曼函数和黎曼猜想简介 大家这几天应该被动恶补了不少黎曼函数和黎曼猜想的介绍了,这里还是不厌其烦地再简单说下。 首先有无穷级数ζ(s) : 当s取1时,它就是调和级数1+1/2+1/3+1/4+...,算数意义上不收敛。s=2时,级数收敛于π2/6。等等。当s的取值为复数s=x+iy时,它会把复平面上的点s(x,iy)映射到另一点s'(x',iy')。我们注意到这个级数要求s的实部大于1(x>1),否则这个级数不收敛,也就没有我们熟悉的数值和结果。 ζ(s)在复平面上的图像,Re(s)>1,此时图像全部分布在Re(ρ)=1/2线的右侧。图源3blue1brown 黎曼函数是ζ(s)在整个复平面的解析延拓,将s的定义域扩展到整个复平面。(值得说明的是,解析延拓是一种非常强的约束。如果一个函数存在解析延拓,那么解析延拓的结果是唯

第三章 有界线性算子-黎永锦

第3章 有界线性算子 音乐能激发或抚慰情怀,绘画使人赏心悦目, 诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切. Klein F .(克萊恩) (1849-1925,德国数学家) Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论 了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞ →lim ,则T 也是连续的. Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛 函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的. Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y 的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理. Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性. 在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一

黎曼猜想简介

黎曼猜想简介 数学是自然科学的女皇,数论是数学的女皇。 -----K.F.Gauss 比哥德巴赫猜想更“辉煌”的猜想 20 世纪70 年代后期,徐迟先生的《哥德巴赫猜想》风靡神州大地,陈景润这个名字和“皇冠上的明珠”这一词汇令人耳目一新。而今,那皇冠上的明珠,仍在那里闪光,陈景润研究员本来已离那皇冠上的明珠仅一步之遥了,可是那明珠却又因陈景润的离去而变得似乎遥不可及。但就在1995年,英国数学家怀尔斯(A. Wiles, 1953-)却出人意外地解决了358 年悬而未决的费马猜想(即费马大定理),摘取了这颗历史更加悠久、似乎更加奇异的夜明珠,让人好不惊异,它使纯粹数学再次引人注目。 当我们仰望数学群山,发现在群山之巅,好像都镶嵌着宝珠或明珠,等待能攀登上峰顶的勇士摘取,哥德巴赫猜想、费马猜想等就像位于邻近山峰不同峰顶上的明珠。而当我们仰望那最高峰,隐约看见有一颗更加明亮而硕大的宝珠,在纯粹数学巅峰闪光,那就是具有近160 年历史的黎曼猜想。 让我们从1858 年讲起吧。 1858 年的一天,习惯于冥思苦想的黎曼先生正漫步在德国格廷根的街道上,忽然,他脑海里奇思迸发,急忙赶回家中,写下了一篇划时代的论文,题目叫做“论不大于一个给定值的素数的个数”。论文于1859 年发表,这是黎曼生前发表的惟一一篇数论论文,然而却成了解析数论的开山作。就是在这篇大作中,黎曼先生提出了划时代的黎曼猜想。 黎曼(G. F. B. Riemann, 1826-1866)于1826 年9 月17 日出生在德国汉诺威的布列斯伦茨。他的父亲是位牧师,母亲是个法官的女儿,黎曼在6 个兄弟姐妹中排行老二。黎曼 6 岁左右开始学习算术,很快他的数学才能就显露出来。10 岁时,他的算术和几何能力就超过了教他的职业教师。 14 岁时,黎曼进入文科中学,文科中学校长施马尔夫斯(C. Schmalfuss)发现了他的数学才能,便将自己的私人数学藏书借给这位生性沉静的孩子,一次,黎曼居然借走了著名数学家勒让德写的859 页的大 4 开本《数论》,并用 6 天时间

34 线性算子的基本定理

3.4 线性算子的基本定理 汉恩-巴拿赫延拓定理、逆算子定理、闭图像定理以及共鸣定理是泛函分析的四大基石,证明具有一定的技巧,应用非常广泛.前面已经学习了Hahn-Banach 定理,知道一般的线性赋范空间X 中存在足够多的线性连续泛函,从而使共轭空间的研究才有意义.本节探讨其它三个重要的定理. 汉恩-巴拿赫延拓定理(The Hahn-Banach Theorem) 定理 设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足 (1) 当x G ∈时,()()F x f x =; (2) X G F f =. 其中X F 表示F 作为X 上的线性泛函时的范数;G f 表示G 上的线性泛函的范数. 延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中. 3.4.1 逆算子定理(The Inverse Mapping Theorem) 在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间. 定义3.4.1 逆算子(广义上) 设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的 逆算子(invertiable operator). 定义3.4.2 正则算子 设X 和Y 是同一数域K 上的线性赋范空间,若算子T :()G X Y ?→满足 (1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子, 则称T 为正则算子(normal operator). 注1 ①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗? 性质3.4.1 若T :()G X Y ?→是线性算子,则1T -是线性算子. 证明 12,y y Y ∈,,αβ∈K ,由T 线性性知: 1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+-- 1212()y y y y αβαβ=+--0= 由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□ 定理3.4.1逆算子定理 设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子. 例 3.4.1 设线性赋范空间X 上有两个范数1?和2?,如果1(,)X ?和2(,)X ?均是Banach

猜想在数学中的作用

数学猜想实际上是一种数学想象,是人的思维在探索数学规律、本质时的一种策略。它是建立在已有的事实经验基础上,运用非逻辑手段而得到的一种假定,是一种合理推理。数学方法理论的倡导者G·波利亚曾说过,在数学领域中,猜想是合理的,是值得尊重的,是负责任的态度。数学猜想能缩短解决问题的时间;能获得数学发现的机会;能锻炼数学思维。历史上许多重要的数学发现都是经过合理猜想这一非逻辑手段而得到的,例如,著名的“歌德巴赫猜想”、“四色猜想”等。因此,在小学数学教学中,运用猜想可以营造学习氛围,激起学生饱满的热情和积极的思维,培养学生克服困难的坚强意志,自始至终地主动参与数学知识探索的过程。 1.猜想在新课引入中的运用。 在众多引入新课的方法中,“猜想引入”以它独有的魅力,能很快地扣住学生的心弦,使其情绪高涨,思维活跃,产生良好的学习动机,从而步入学习的最佳境地。如在“圆面积的计算”教学中,先让学生猜一猜圆面积大约在什么范围呢?如图所示,边观察,边猜想。 提问:这个小正方形的面积是多少?(r2)这个大正方形的面积是多少?(4r2)猜一猜圆面积大约在什么范围呢?(圆面积<4r2)。教师问:比4r2小一点,那到底是多少呢?大家知道吗?现在我们就来探讨解决这个问题。这样通过猜想,使学生初步勾勒出知识的轮廓,从整体上了解所学的内容,启动了学生思维的闸门,使其思维处于亢奋状态。 2.“猜想”在新知学习中的运用。 在学生学习数学知识过程中,加入“猜想”这一催化剂,可以促进学生多角度思维,加快大脑中表象形成的速度,从而抓住事物的本质特征,得出结论。如在圆的周长教学中,教师让学生拿出事先准备好的学具:若干个大小不一的圆、一根绳子、一把米尺、一个圆规。问“要研究圆的周长,你想提出什么样的方法?”学生经过观察、思索、动手操作,提出猜想:“用绳子量出圆的周长,再量绳子长度行吗?”“把圆直接放在直尺上滚动,量出圆的周长行吗?”“对于这个圆,用绳子量出它的两个直径的长度,试一试能否还围成这个圆。不行,再量出三、四个直径的长度,看可不可以围成这个圆。猜想:圆的周长是不是三、四个直径的长度?”显然这是一个很了不起的猜想。教师追问:“为什么你要提出这样的猜想?”学生回答:“用圆规画圆,半径越长,圆就越大,也就是直径越长,圆的周长就越长,所以,用直径求圆的周长,既准确,又省力。”由此可见,通过学生一系列的自主猜想,诱发了跳跃思维,加快了知识形成的进程。 3.“猜想”在新知巩固中的运用。 充分发挥学生的潜在能力是当今素质教育研究的重点。因此,教师要采取多种手段激活学生学习的内驱力,疏通学生潜能涌动的通道,以求迸发出智慧的火花。要想实现这一目标,教师可以充分利用猜想,在有利于发挥学生的潜能的最佳环节之一——知识巩固阶段,调动学生头脑中已有的数学信息(概念、性质),并对之进行移动和重组,开拓新思路,从而获得突破性的结论。如我经常设计一些活泼的情境题、开放题,引导学生猜想,有这样一道题:“学校围墙外面是大片草地,一只羊拴在桩上,绳净长5米,这只羊可在多大面积吃到草?”学生们动手寻找答案,很快学生提出猜想:“要求这只羊可在多大面积吃到草,就是求以绳

希尔伯特23个问题

希尔伯特23个问题及解决情况 1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。 希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。” 他阐述了重大问题所具有的特点,好的问题应具有以下三个特征: 清晰性和易懂性; 虽困难但又给人以希望; 意义深远。 同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。 编号问题推动发展的领域解决的情况 1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。 2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学” 证明算术公理的相容性之不可能。数学的相容性问题至今未解决。 3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。 4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。 5 不要定义群的函数的可微性假设的李群概念拓扑群论经过漫长的努力,这个问题于1952年由Gleason, Montqomery , Zipping等人最后解决,答案是肯定的。 6 物理公理的数学处理数学物理在量子力学、热力学等领域,公理化方法已获得很大成功,但一般地说,公理化的物理意味着什么,仍是需要探讨的问题。概率论的公理化已由 A.H.Konmoropob等人建立。 7 某些数的无理性与超越性超越数论1934年A.O.temohm 和Schneieder各自独立地解决了这问题的后半部分。

相关文档