文档库 最新最全的文档下载
当前位置:文档库 › 抗浮验算

抗浮验算

抗浮验算
抗浮验算

一.抗浮计算(顶板覆土1500):

[ 地下室抗浮荷载 ] 自然地面整平下500。

柱网:8.1x6.35=51.435m2

地下室自重为:

1、土重 1.5X18=27KN/m2

2、板重 (0.3+0.40)x25=17.5 KN/m2

3、梁+柱重: X向截面500X1000,Y向截面450X800 梁自重:(0.5X0.8X8.1+0.45X0.5X6.35)X25/8.1X6.35=2.27 KN/m2柱自重:0.5X0.6X4.0X25/8.1X6.35=0.58 KN/m2

面层:0.05x23=1.15 KN/m2

总计: Q w= (27+17.5+2.27+0.58+1.15)=48.5KN/m2 [ 地下室水浮力荷载 ]

Q f=(4.3+1.5+0.45-0.5)x10=57.5KN/m2

[ 抗浮验算 ]

Qw=48.5KN/ m2< Qf=57.5KN/ m2

自重抗浮不满足!

抗拔力为1.05X(57.5-48.5)x51.435=486KN

二.边跨抗浮计算:

边跨跨度:8.1x3.25

地下室自重为:

1、土重 1.5X18=27KN/m2

2、板重 (0.3+0.40)x25=17.5 KN/m2

3.墙:0.3x8.1x

4.3x25/8.1x3.25=9.9 KN/m2

4.挑边土:0.5x(8x

5.3+18x0.5)x8.1/8.1x3.25=7.9 KN/m2

5.面层: 0.05x23=1.15 KN/m2

总计: Q w=63.45KN/m2>57.5x1.05 KN/m2

边跨抗浮满足。

三.四层框架部分

地下室自重为:

1、土重 1.8X18=32.4KN/m2

2、板重 (0.3+0.40)x25=17.5 KN/m2

3.四层框架梁板:0.15x4x25=15 KN/m2

4.面层: 0.05x23=1.15 KN/m2

总计: Q w=66.05KN/m2>57.5x1.05 KN/m2

抗浮满足。(六层框架部分也满足)

四.底板回填部分

地下室自重为:

1、土重 1.5X18+0.8x18=41.4KN/m2

2、板重 (0.3+0.40)x25=17.5 KN/m2

3、梁+柱重: X向截面500X1000,Y向截面450X800

梁自重:(0.5X0.8X8.1+0.45X0.5X6.35)X25/8.1X6.35=2.27 KN/m2柱自重:0.5X0.6X4.0X25/8.1X6.35=0.58 KN/m2

4.面层: 0.05x23=1.15 KN/m2

总计: Q w=62.90KN/m2>57.5x1.05 KN/m2

抗浮满足。

五.抗拔桩计算:

[ 抗浮桩为预应力管桩 ]

桩直径取500mm,有效桩长9m,周长μ=1.57m

Raf=1.57X (1.59+110.5+170.625+120.575)/2=316kN,

桩自重:314.2x9x10/1000=29KN

316+29=344 KN; 取单桩承载力特征值340KN.

考虑每柱下需要2根桩。

六.管桩桩身强度计算:

查 PHC-500(100)AB-C80 桩身混凝土有效预压应力 5.64Mpa. 桩身截面积 125663mm 2

根据DGJ32/TJ109-2010第3.6.4-1条

125663X5.64=708.7KN

708.7>340

桩身强度满足设计要求。

七.管桩端板孔口抗剪强度计算:

根据DGJ32/TJ109-2010第3.6.4-4条

10X3.14X(12+20)(20-8)X120/2=723.8KN

满足设计要求

八.管桩预应力钢筋墩头抗拉强度计算:

根据DGJ32/TJ109-2010第3.6.4-5条

0.9X1000X10X90=810KN

满足设计要求

九.桩头连接强度计算:

抗拔桩顶部管桩内填芯C40微膨胀混凝土,填芯长度4000,

根据DGJ32/TJ109-2010第3.6.4-6条

0.8X3.14X300X0.3X4000=904.7KN

满足设计要求。

十.填芯内纵筋计算:

抗拔桩特征值取340KN

填芯内纵筋为6根三级钢直径20

6X254.5X360=549.7KN

满足设计要求。

抗浮计算版

抗浮计算书 一、基本设计数据: 基础底标高:-7.650m,±0.000相应绝对高程:420.40m, 抗浮设计水位:418.80m,覆土容重:18.00; 水位高差:7.65-(420.40-418.80)=6.050m, 建筑完成面标高:-6.30m; 主楼基础筏板厚:600mm,主楼基础覆土厚度:0.750m; 抗水板厚度:450mm; 地下室顶板覆土厚度:1.20m。 二、水浮力计算 F=1.0x10x6.05=60.50KN/m2 三、建筑物自重(按照最不利位置消防水池计算) 消防水池底标高:-6.800m, (基础顶覆土)(7.65-6.80-0.45) x18+(筏板自重)0.45x25+(顶板覆土)1.20x18+(顶板自重)0.18x25 =7.20+11.25+21.60+4.50=44.55 KN/m2 四、整体抗浮计算 G/F=44.55÷60.50=0.74<1.05,不满足《建筑地基基础设计规范》第5.4.3条规范,必须进行抗浮设计。 五、局部抗浮设计(基础) 抗水板所受水浮力N=(水浮力)60.50-(基础顶覆土+筏板自重)18.45=42.05KN/m2 六、抗拔桩设计 整体抗浮时,底板所受水浮力N=60.50-42.40=18.10 KN/m2; 除主楼外,沿地下室外墙间隔6.00~8.00m,设置一抗拔桩,单根抗拔桩承担的面积为30 m2左右;所受拔力大小为540KN;根据上部荷载,取单桩竖向承载力特征值不小于1300KN,取桩长L=20m,桩径600mm,根据《建筑桩基技术规范》5.3.6估算单桩抗压极限承载力标准值为: Q uk= Q sk + Q pk =u∑ψsi q sik l i+ψp q pk A p =3.14x0.60x(40x6.0+8.9x65+5x78)+3.14x0.602/4x1300 =2276.814+367.38=2644.20Kpa. 单桩抗拔极限承载力标准值为: T uk= u∑ψsi q sik l iλi=3.14x0.60x(40x6.0+8.9x65+5x78)x0.7=1593.77 Kpa 抗拔桩单桩抗拉承载力特征值N=600KN,极限抗拉承载力1200KN; 抗拔桩试桩配筋计算 根据《建筑地基基础设计规范》附录T,f y A s/1.25=1200KN得 A s=1200x1.25/400=3750mm2,取12根20,A s=3768.00 mm2. 抗拔桩工程桩配筋计算 单桩抗拔设计值600x1.25=750KN,抗拔荷载全部由桩身钢筋承担,根据f y A s>750KN得:A s>750x1000/360=2084 mm2; 取12根16,A s=2411.52 mm2>2084 mm2。 共计需设置29根抗拔桩。

地下室抗浮设计及计算

地下室抗浮设计及计算 Post time: 2010年5月20日 前一段时间做了几个项目,都涉及到地下室抗浮设计的问题,整理了一个大个地下室的计算思路。 先说一下规范的一些要求,规范对抗浮设计一直没有特别明确的计算建议,很多的设计建议都是编者自己的理解,所以大家的计算结果就会有很大差异。 1)《建筑结构荷载规范》GB 50009-2001(2006年版)第3.2.5条第3款规定:“对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关的结构设计规范的规定采用”。 2)《砌体结构设计规范》GB 50003-2001第4.1.6条当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下式验算:γ0(1.2SG2k+1.4SQ1k+SQik) ≤ 0.8SG1k 式中SG1k----起有利作用的永久荷载标准值的效应; SG2k----起不利作用的永久荷载标准值的效应; 3)北京市标准《北京地区建筑地基基础勘察设计规范》DBJ 11-501-2009第8.8.2条,抗浮公式为: Nwk ≤γGk 式中Nwk——地下水浮力标准值; Gk——建筑物自重及压重之和; γ——永久荷载的影响系数,取0.9~1.0; 结合上述原则,计算目前在做的南方某大剧院舞台下台仓的抗浮情况,由于整个台仓位于城市河道边,且上部恒荷载的不确定性,因此永久荷载的影响系数取的是0.8,比北京规范还要低一些:

台仓深度较大,台仓底板顶标高为-14.8米,存在抗浮设计要求,根据 地质勘察报告数据,设计最高抗浮水位绝对标高为2.36米相对标高-1.54米, 经计算,上部结构传至台仓底板顶面处0.8倍恒荷载值为65200kN,台仓底板面积约为663平米,考虑台仓底板厚度为1.6米重力效应,尚有水浮力约为((14.8+1.6-1.54)×10-0.8×1.6×25)×663-65200=12106 kN。根据地质勘察报告提供的勘探点平面布置图,台仓位于18、19、25、26号孔附近,抗拔桩长为9.5米,直径0.4米,计算抗拔承载力特征值为220 kN,考虑结构重要性系数1.1,需要不少于60根抗拔桩。 考虑台仓底板承担水压情况,设置11X20=220根抗拔桩,抗拔桩间距为1.45X1.45米,则相应面积底板承担水压标准值为((14.8+1.6-1.54)×10-0.8×1.6×25)×1.45×1.45=245.2kN,减去抗拔桩抗拔值=245.2-220=25.2 kN,对应台仓底板承担水压标准值为1.1×60.6/(1.3×1.9)=27.5 kN/m2,其中1.1为结构重要性系数。 考虑群桩效应,群桩平面尺寸为16.8×28.5米,整个周边抗拔极限承载力为0.5Tgk =0.5×(0.70×55×1.2+0.75×50×7.1+0.65×85×0.7)× (16.8+28.5)×2=15900 kN,整个桩土浮容重为11×16.8×28.5×9=47400 kN,合计抗浮力为63300 kN,满足抗浮要求。 基础底板配筋计算:其中结构重要性系数为1.1,水浮力分项系数为1.20,抗拔桩安全系数取0.80,则台仓底板抗浮力设计值为1.1×(1.2× (14.8+1.6-1.54)×10-0.8×1.6×25-0.8×220/1.45/1.45)=68.88kN/m2,台仓底板按四边简支弹性楼板配筋设计结果如下: 1.1 基本资料 1.1.1 工程名称:台仓底板配筋 1.1.2 边界条件(左端/下端/右端/上端):铰支 / 铰支 / 铰支 / 铰支 1.1.3 荷载标准值 1.1.3.1 永久荷载标准值: gk = 0 1.1.3.2 可变荷载标准值 均布荷载: qk1 = 68.88kN/m ,γQ = 1,ψc = 0.7,ψq = 0.7 1.1.4 荷载的基本组合值 1.1.4.1 板面 Q = Max{Q(L), Q(D)} = Max{68.88, 48.22} = 68.88kN/m 1.1.5 计算跨度 Lx = 19950mm,计算跨度 Ly = 31900mm, 板的厚度 h = 1600mm (h = Lx / 12) 1.1.6 混凝土强度等级为 C35, fc = 16.72N/mm , ft = 1.575N/mm , ftk = 2.204N/mm 1.1.7 钢筋抗拉强度设计值 fy = 360N/mm , Es = 200000N/mm 1.1.8 纵筋合力点至截面近边的距离:板底 as = 25mm、板面 as' = 25mm 1.2 配筋计算 1.2.1 平行于 Lx 方向的跨中弯矩 Mx Mxk = 2291.29kN?m,Mxq = 1603.90kN?m; Mx = Max{Mx(L), Mx(D)} = Max{2291.29, 1603.9} = 2291.29kN?m Asx = 4159mm ,as = 25mm,ξ= 0.057,ρ= 0.26%; 实配纵筋: 32@100 (As = 8042);ωmax = 0.265mm 1.2.2 平行于 Ly 方向的跨中弯矩 My

抗浮验算计算书

地下室抗浮验算 一、整体抗浮 (一)主楼部分 底板板底相对标高为- 4.700,地坪相对标高为:-0.300,抗浮设防水位相对标高为- 1.5m,即抗浮设计水位高度为: 3.2m。 裙房部分抗浮荷载: ①地上四层裙房板自重: ②地上四层xx折算自重: ③地下顶板自重: ④地下室xx折算自重: ⑤底板自重:25× 0.48= 12.0kN/m2 25× 0.50= 12.5kN/m2 25× 0.18= 4.5kN/m2

25× 0.11= 2.75kN/m2 25× 0.4= 10.0kN/m2 41.75kN/m2 合计: 水浮荷载: 3.2×10=32 kN/m2, 根据地基基础设计规范GB 5007-2011第 5.4.3条,> 1.05,满足抗浮要求。 二、整体抗浮 (二)仅一层车库部位 J-1基础高度改为800,仅一层地下室位置防水板板底标高与J-1底平,上部采用C15素混凝土回填至设计标高(- 4.200)。抗浮计算如下: 图纸修改见结构05 底板板底相对标高为- 5.100,地坪相对标高为:-0.300,抗浮设防水位相对标高为-

1.5m,即抗浮设计水位高度为:3.6m。 地下室部分抗浮荷载: ①顶板覆土自重: ②地下顶板自重: ③xx折算自重: ④底板及回填自重: 考虑设备自重20× 0.30= 6.0kN/m2 25× 0.25= 6.25kN/m2 25× 0.11= 2.75kN/m2 25×( 0.4+ 0.5)= 22.5kN/m2 0.5 kN/m2

38kN/m2 水浮荷载: 3.6×10=36kN/m2>1.05,满足抗浮要求。合计:

地下室抗浮计算

建筑结构设计地下室抗浮怎么计算 首先要知道抗浮水位是多少,算出水浮力然后乘以1.05的系数。 算出地下室总得恒荷载(包括基础重和基础上的填土)如果恒荷载大于水浮力的1.05倍,可视为抗浮满足要求。如不能满足要求,可以降低基础底板,然后填土或素混凝土以增加基础的恒荷载。或者将筏板外挑,然后压上土以增加恒荷载。关于地下建筑抗浮设计的几点意见= ^NTH c^* 湖北省勘察设计协会袁内镇A3su !I2S 内容摘要 y'{*B( 本文根据作者的工作经验结合湖北省地方标准《建筑地基基础技术规范》DB42/242-2003以及相关标准的有关规定,对地下建筑物抗浮设计原则及一些具体问题进行了探讨,可供抗浮设计中参考。j o + - 关键词:抗浮设计、抗浮水位、抗浮稳定、水的浮力、抗拔构件] .( l^ W ①地下建筑物抗浮设计是一个复杂的技术问题,由于对抗浮设计的一些重要问题有不同看法,因此相关规范未对抗浮设计作出明确的具体规定,导致设计工作的困难。②抗浮水位不易确定。③抗浮现状——施工阶段浮起,使用阶段浮起,特殊情况浮起。④浮起底板未见开裂,柱上下端横向裂缝浮起时常发生倾斜,水位下到四周,等高,受力不均匀,形成与重心不重合。M t w7aK 为解决抗浮设计的操作问题,湖北省地方标准《建筑地基基础技术规范》DB42/242-2003[1]对抗浮设计作了原则的规定,但具体问题尚有一些歧意,地下建筑浮起破坏的现象仍时有发生。作者认为有必要对以下问题进行探讨,以求抗浮设计的合理完善。t0 H($ 至于地下建筑物基底及周边水在土中的渗流影响是深层次的抗浮机理问题。可以肯定,只要建筑物周边与土介质之间的水位达到一定高度,且水的补充速度大于水在土的渗流速度时建筑物即可能被浮起。 B3'; Tcs 2、抗浮设计应进行哪些验算?c

抗浮锚杆计算书

抗浮锚杆深化设计计算书 一、工程质地情况: 地下水位标高 -1.00 m 地下室底板标高 -6.52 m 浮力 55.2 kN/m 2 二、抗浮验算特征点受力分析: 1.原底板砂垫层厚 0.10m 自重 0.10X20=2kN/m 2 2.原砼底板厚 0.40m : 自重 0.4X25=10 kN/m 2 3.新加砼配重层厚 0.30m 自重 0.3X25=7.5 kN/m 2 抗浮验算 55.20-19.50=35.70 kN/m 2 三、计算过程 由受力情况,将锚杆分为A 、B 、C 三类,A 类为图中○A 轴至○E 轴区 域,地面与中风化板岩之间有8米粘性土层;B 类为有○E 轴至○L 轴区域,地面与中风化板岩之间有4米粘性土层; C 类为图中○L 轴至○Q 轴区域,地面与中风化板岩之间无粘性土层。 锚杆间距取3m ×3m 。 1. 锚杆杆体的截面面积计算: yk t t s f N K A ≥ t K ——锚杆杆体的抗拉安全系数,取1.6; t N ——锚杆的轴向拉力设计值(kN ),锚杆的拉力设计值=特征值×1.3,A 类锚杆取35.70×3.0×3.0×1.3=438.75kN 。 yk f ——钢筋的抗拉强度标准值(kPa ),HRB400取400 kPa 。 As ≥fyk KtNt =4001075.4386.13??=17552m m 总计 19.5 kN/m 2

选取三根HRB400 直径28mm 钢筋,钢筋截面积满足规范要求 2. 锚杆锚固长度 锚杆锚固长度按下式估算,并取其中较大者: ψπmg t a Df KN L > ψ πεms t a df n KN L > 式中:K ——锚杆锚固体的抗拔安全系数,取2.0; t N ——锚杆的轴向拉力设计值(kN ),取438.75kN ; a L ——锚杆锚固段长度(m ); mg f ——锚固段注浆体与地层间的粘结强度标准值(kPa ),按表7.5.1-1取粘 性土层65kpa ,中风化板岩层0.25Mpa ; ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),按表7.5.1-3取2.5MPa ; D ——锚杆锚固段的钻孔直径(m ),取0.15m d ——钢筋的直径(m ); ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85,本例 取0.7; ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0; n ——钢筋根数。 (1)锚固段注浆体与地层间的粘结强度(全风化泥质粉砂岩、强风化泥质粉砂岩q sik 分别为55kpa 、140kpa) A 类:pa 46.1220 .28 16515.014.3M K l Df N a mg t =????= = ψπ土 pa 29.36146.122-75.483-M N N N t t t ===土岩 m Df KN l mg t a 14.61 25015.014.329 .3610.2=????== ψπ

地下室抗浮计算

地下室抗浮计算 整体抗浮计算: 抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67 整体抗浮满足要求, 底板局部抗浮计算: 抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。防水底板需计算配筋。 单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN 按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8 =40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8 =967.6KNm 柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9) =483.8/(0.9*360*1150*3.9) =332.9mm <Ф16@200 As1’=M1/(0.9*fy*h1’*3.9) =483.8/(0.9*360*350* 3.9) =1039mm 基本等于Ф16@200 上部为:As2=M2/(0.9*fy*h2* 3.9) =212.9/(0.9*360*350* 3.9) =481.4mm <Ф16@200 上式配筋计算中分母3.9为柱下板带宽度。 原设计防水底板配筋满足要求。 独立基础计算 阶梯基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2002)② 二、示意图

抗浮锚杆计算书20777

结构计算书 项目名称: 设计代号: 设计阶段: 审核: 校对: 计算: 第 1 册共1册 中广电广播电影电视设计研究院 2015年04月07日

综合楼锚杆布置计算 一、 工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,±0.00相对于绝对标高7.50m,室内外高差-0.300m ,地下室夹层高2.18m ,地下室高 5.30m,地下室建筑地面标高-7.480m,建筑地面垫层厚150mm ,结构地下室底板顶标高-7.630m。基础形式筏板,抗浮水位标高6.500m(绝对标高)。建筑地下室底板顶标高-7.630m (绝对标高-0.130m ),底板厚400mm 。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk =250KN 锚杆拉力设计值N t=1.3Nk =325KN 钢筋:3 ?25三级钢: As =1470mm2, f=360 N/mm 2 , f yk =400 N/m m2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(frbk ),见第2页所附表1。 1、 根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 K f DL N mg a t /ψπ= 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

抗浮桩计算

抗浮桩计算 +有实列----难得啊! 一般抗浮计算: (局部抗浮) 1."05F浮力- 0."9G自重<0即可 (整体抗浮) 1."2F浮力- 0."9G自重<0即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【】抗浮锚杆设计总结 抗浮锚杆设计总结 1适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2锚杆需要验算的内容 1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点: 可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点: 要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点: 由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3)面状均匀布置,在地下室底板下均匀布置;优点: 适用于所有土体和岩体;地下室底板梁板配筋较小。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

抗浮桩计算

抗浮桩计算+有实列----难得啊! 一般抗浮计算:(局部抗浮)1.05F浮力-0.9G自重<0 即可 (整体抗浮)1.2F浮力-0.9G自重<0 即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【原创】抗浮锚杆设计总结 抗浮锚杆设计总结 1 适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2 锚杆需要验算的内容 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3 锚杆的布置方式与优缺点 1) 集中点状布置,一般布置在柱下;优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2) 集中线状布置,一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3) 面状均匀布置,在地下室底板下均匀布置;优点:适用于所有土体和岩体;地下室底板梁板配筋较小。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。 4) 集中点状布置推荐用于坚硬岩;集中线状布置推荐用于坚硬岩与较硬岩;面状均匀布置推荐用于所有情况; 4 注意事项 1) 集中点状布置,抗浮锚杆与岩石锚杆基础结合为优,需注意柱底弯矩对锚杆拉力的影响,特别是柱底弯矩较大的时候; 2) 参考《建筑边坡工程技术规范GB 50330-2002》,应选用永久性锚杆部分内容; 3) 岩石情况(坚硬岩、较硬岩、较软岩、软岩、极软岩)应准确区分,可参考《建筑边坡工程技术规范GB 50330-2002》表7.2.3-1注4; 4) 锚杆抗拔承载力特征值应通过现场试验确定,可参考《建筑边坡工程技术规范GB 503

地下室抗浮设计中的几个问题讨论 转载

地下室抗浮设计中的几个问题讨论转载

地下室抗浮设计中的几个问题讨论转 载 已发表于《中外建筑》2010年02月 近几年来,有不少地下室因地下水的作用而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮,最大上浮高度达1.42m;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝…诸如此类问题时有发生,造成了财产的损失。本文对产生这些事故的原因归纳总结成以下四个方面,与同行们共同讨论: 一、抗浮设计中基本概念 在多个地下室因水浮力作用而引发的工程亊故中,我们发现有些设计人员对地下水的作用认识不足,抗浮设计的基本概念不够清晰,常见的有下列几种情况: 1)重视地下室的梁、板、柱、墙的结构构件设计,忽视整体抗浮验算分析,忽视施工的抗浮措施,总认为具有上万吨自重的地下室怎么会浮起来呢 2)地下室底板裂缝、漏水,甚至成为地下游泳池,把某些实质上是因为地下水的作用远大于设计荷载而造的工程事故,错判为温度应力作用、砼施工质量问题等。 3)对于基底为不透水土层的地基(基岩、坚硬粘土),深基坑支护又采用了止水帷幕或桩、锚、喷射混凝土联合支护,忽视水的浮力。 试想万吨级以上大船能在江、河、海中航行,可见水的作用力之大。地下室就像一条"船",地下室底板和侧墙形成一个密闭的船身,它的水浮力有多少

呢,是它浸泡在水中的体积乘以水容重,若一个50×100m的地下室,抗浮水位为5m,它的浮力为25000吨,可见水浮力之大。地下室的抗浮设计就是要使这个船既不上浮,船身又不破坏,因此,地下室的抗浮设计应进行整体抗浮和局部抗浮验算。 为防止地下室整体上浮我们通常采用两类做法,一类为"压",一类为"拉"。当采用"压"的做法时,利用建筑的自重(包括结构及建筑装修、上部覆土等,不含楼面活荷载)平衡地下室水的总浮力,当不能平衡时,必须增加"拉"的做法,即采用桩或锚杆等来抵抗地下水的浮力。无论是"压"还是"拉"的做法,都必须进行整体抗浮验算,保证抗浮力(压重+抗拉力)大于水的总浮力,即。 局部抗浮验算,除了梁板墙柱结构构件的强度验算、变形验算和裂缝验算,还应包括局部的抗浮验算,对于大面积地下室上建有多栋高层和低层建筑,建筑自重不均匀,当上部为高层或恒荷载较大时,该范围的整体抗浮能力可能较高,但上部没有建筑或建筑层数不多的局部范围,特别应进行分区、分块的局部抗浮验算,例如:柱、桩、墙的压力或拉力能否平衡它所影响区域里的水浮力总值。 然而有些设计人员对上述最基本的概念还不够清晰,例如,有些设计人员只对地下室底板的梁、板、墙在地下水浮力荷载作用下的强度计算,未做整体抗浮的认真分析,特别是独立地下室、水池等,造成地下室整体上浮,给地下室结构带来严重破坏,难以进行复原处理。又如有些设计人员利用上部结构自重抗浮,只计算上部结构总自重标准值大于总的水浮力设计值,就认为抗浮设计满足要求。既不分析其上部建筑荷载的分布,又未计算局部抗浮,局部范围因抗浮力小于水浮力,底板隆起、造成地下室及上部结构局部范围内大面积破坏。再如,在地下室底板计算中只验算强度不进行变形的裂缝宽度的计算,造成底板产生裂缝,漏水严重,形成"地下游泳池"。

抗浮锚杆计算书

结构计算书 项目名称:设计代号:设计阶段:审核:校对:计算: 第 1 册共 1 册 中广电广播电影电视设计研究院 2015年04 月07 日

综合楼锚杆布置计算 一、工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,士0.00相对于绝对标高 7.50m,室内外高差-0.300m,地下室夹层高2.18m,地下室高5.30m,地下室建筑地面标 高-7.480m,建筑地面垫层厚150mm,结构地下室底板顶标高-7.630m。基础形式筏板,抗浮水位标高6.500m (绝对标高)。建筑地下室底板顶标高-7.630m (绝对标高- 0.130m),底板厚400mm。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt=1.3Nk=325KN 钢筋:3?25 三级钢:A s=1470mm2, f=360 N/mm2 , f yk=400 N/mm2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(f rbk),见第2页所附表1。 1、根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 N厂DL a f mg /K 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

Rt=360?9KN > Nt=351KN 2、 锚杆注浆体于钢筋间的锚固段长度 La 计算 依据《岩土规程》第7.5.1条公式(7.5.1-2) L a t 2070mm 7500mm n 「d 3* 「*25*0.6*2.4*1.0 锚杆注浆体于钢筋间的锚固段长度 La 满足要求。 钢筋面积A 计算 依据《岩土规程》第7.4.1条公式(7.4.1) 实配 3?25三级钢,A s =1472mm 2>1404 mm 2 锚杆杆体钢筋面积满足要求。 KN t 2*351000 3、 yk 1.6*351000 400 = 1404mm 2

地库抗浮计算书

地库抗浮计算 1.计算条件: ±0.000=36.680;室外地坪设计标高=36.380 根据地勘抗浮水位取整平后室外设计标高下1米=35.380; 地库顶板标高:-1.500(35.180);混凝土容重:25KN/m3 筏板厚:350mm 筏板顶标高:-5.150,筏板底标高:-5.550(31.130) 层高:3650m;覆土厚1200mm: 位于抗浮水位以上的覆土厚度:1000mm(容重18KN/m3); 位于抗浮水位以下的覆土厚度:200mm(容重18-9.8=8.2KN/m3); 顶板厚:250mm;底板厚:400mm; 底板面层厚(容重20KN/m3):50mm; 选取计算轴网: 单柱负荷面积:S1=(8.1+8.1)/2×(7.5+6.6)/2=57.105 m2 S2=(8.1+8.1)/2×(5.4+6.6)/2=48.6m2 2.计算经验公式:G >1.05* F浮力 3. 计算过程: (1)顶板上覆土重:1×18+0.2×8.2=18+1.64=19.64kN/m2 顶板重:0.25×25=6.25kN/m2 底板重:0.4×25=10 kN/m2 共2页第1页

底板上面层重:0.050×22=1.1 kN/m2 顶板底部抹灰层:20×0.02=0.4 kN/m2 合计:19.64+6.25+10+1.1+0.4=37.39 kN/m2 G’1=37.39×57.105=2135.16KN 梁自重:((7.5+6.6)/2+8.1)×0.4×(0.8-0.25)×25=83.325KN 梁竖向加腋自重:0.4×1.2/2×0.4×25×2=4.8KN 柱自重:(3.65-0.25)×0.5×0.5×25=21.25KN 柱墩自重(容重25-9.8=15.2 KN/m3) (2.52×0.4+0.42/2×2.5×4)×(25-9.8)=50.16KN G1=2135.16+83.325+4.8+21.25+50.16=2294.695KN (2)水浮力(地下水容重取9.8KN/立方) (0.4+3.65)×9.8=39.69 kN/m2 F=39.69×57.105=2266.49745KN;1.05×F=2379.82 KN 4. 计算结果:F-G1=2379.82-2294.695=8 5.125KN 5. 结论:本工程地库抗浮满足设计要求。 2

车库抗浮验算计算书

抗浮验算计算书 一、整体抗浮验算(盈建科计算结果) *--------------------------------------------------------------------------------* * yjk-F 抗浮稳定性验算* *--------------------------------------------------------------------------------* 计算时间:2018年8月1日当前版本:1.8.3.0 筏板区域-1(含筏板-1,筏板-2,筏板-3,筏板-4,筏板-5,筏板-6,筏板-7,筏板-8,筏板-9,筏板-10,筏板-11,筏板-12,筏板-13,筏板-14,筏板-15,筏板-16,筏板-17,筏板-18,筏板-19,筏板-20,筏板-21,筏板-22,总面积54191平米) *--------------------------------------* 自重及压重之和Gk(kN) 3904164 浮力作用值1995150 Gk/Nw,k 1.96 抗浮稳定安全系数 1.05 *--------------------------------------* 满足 二、局部抗浮验算结果(参见附图)局部抗浮不足,反力为0,由结构刚度抵抗局部浮力。 三、防水板弯矩详见附图。 四、基础配筋详见附图。 五、手算复核: 对东方君御地下车库按带柱帽无梁楼盖手算复核。手算方法采用经验系数法。 依据《钢筋混凝土升板结构技术规范》第3.3.4条。 及《建筑地基基础设计方法及实例分析》P193计算 依据勘察报告设计抗浮水位-2.74m。防水板底标高-6.4m,防水板板厚300mm,室内覆土300mm。 基本组合 q=1.0*25*0.3+1.0*18*0.3-1.2*9.8*(6.4-2.74)=30KN/M2(向上) by=8.4m;lx=8.4m;bce=3.6+0.5*2(斜坡)=4.6m Mx=qby(lx-2bce/3)(lx-2bce/3)/8=30x8.4x(8.4-2x4.6/3)(8.4-2x4.6/3)/8=896KN.m 柱上板带 端跨: 1.边支座截面负弯矩0.33Mx=0.33*896=296kn.m b=4200mm,h0=250mm As=296x106/(0.9*250*360)=3654mm2 3654/4.2=870mm2 870x0.15=130.52柱上板带边支座底部配筋,选用14@150 2.第一内支座负弯矩0.5Mx=0.5*896=448KN.m 验算配筋 b=4200mm,h0=250mm As=448x106/(0.9*250*360)=5531mm2 5531/4.2=1317mm2/m

(完整版)地下室抗浮计算书

地下室抗浮计算书 图一地下室剖面示意图 图二计算平面 一、条件:取跨度最大的区域进行计算,选择如图二所示计算区域。

地面标高H1=0.000m,顶板标高H2=-0.650m,底板标高H3=-4.850m,设计水位标高Hw=-1.550m; 顶板厚度d1=250mm,考虑梁高,折算厚度取d1=300mm,底板厚度d2=400mm,挡土墙墙厚度d3=300,地下室层高h=4200mm。 底板建筑垫层厚d4=100mm,覆土容重γ`=20kN/m; 二、计算: 1、水浮力F w=|h3+d2-h w|×10=|-4.850+0.4+1.550|×10=37.00 kN/m 2、抗浮力: (1)、顶板自重:G1=d1×25=300×0.001×25=7.5 kN/m (2)、底板自重:G2=d2×25=400×0.001×25=10.0 kN/m (3)、覆土重量:G o=d o×γ=0.650×18=11.70 kN/m 抗浮力G=∑(G o+G1+G2+G3+G4+G5+G6)=∑(7.50+10+11.7)=29.2kN/m 3、抗拔桩需承担浮力:nR>F w-G/K=37-29.2/1.05=9.2 kN/m 图二所示中间桩,桩径1000,桩长取6m,根据《全国民用建筑工程设计技术措施》(地基与基础)(2009版) 基桩抗拔承载力特征值: R tk=T ua+G=∑λi q sik u i l i=0.75*45*3.14*1*2+0.7*35*3.14*1*4=520kN 其中抗拔系数λ在残积粉质粘土层取0.75,圆砾层取0.7,桩位于残积粉质粘土层桩长取2m,圆砾层取4m。 图二所示,中间桩需承担抗浮面积为:s=14.4*14.2/4=51m2(取周边面积的四分之一) 单桩需抵抗浮力为R=51*9.2=469.2kN< R tk=520kN 满足要求 正截面受拉承载力验算: N=1.35*469.2=634kN≤f y A s=300*3016=905kN 满足要求

抗浮设计计算书

[ 目录 一、前言 (1) 、工程概况 (1) 、地质条件 (2) 二、设计依据 (4) 三、抗浮锚杆设计 (4) 、抗浮范围 (4) * 、抗浮锚杆计算 (5) 四、其他说明 (9)

一、前言 、工程概况 新亚总部位于河北省廊坊开发区华祥路西侧,云鹏道北侧。由霸州市新亚金属制品有限公司建设开发,北京炎黄联合国际工程设计有限公司负责设计。 本方案涉及办公楼A地下车库及下沉式庭院,工程概况分述如下: 1)办公楼A 地上16层,地下2层,±相当于绝对标高,筏板基础,基础底板底面相对标高(相当于绝对标高)。根据勘察报告,基础持力层为粉质粘土⑤层,天然地基承载力特征值为120kPa,不能满足设计要求,需要进行CFG桩复合地基进行加固处理,设计条件如下: A区:相应于荷载效应标准组合时,基底反力为481kPa;相应于荷载效应准永久组合时,基底反力为450kPa。 B区:相应于荷载效应标准组合时,基底反力为502kPa;相应于荷载效应准永久组合时,基底反力为470kPa。 C区:相应于荷载效应标准组合时,基底反力为442kPa;相应于荷载效应准永久组合时,基底反力为412kPa。

各区允许的最终沉降量≤50mm,整体倾斜变形≤,相邻柱基沉降差小于柱距。 2)地下车库和下沉式庭院 环绕办公楼A周边为纯地下车库,地下2层,±相当于绝对标高,筏板基础,基础底板底面相对标高~。 办公楼A和研发用房之间为下沉式广场,±相当于绝对标高,筏板基础,基础底板底面相对标高~。 根据勘察报告,地下水水位埋深为~米,高程为~米,高差米。拟建场地近年最高水位为地表下米。水位年变幅1~米,近年最高水位按米考虑。场地抗浮设防水位可按地表下米,即标高按米考虑。由于结构荷重较小,地下水水位高于基础底面,结构可能出于超补偿状态,需要采取抗浮措施。 、地质条件 工程地质条件 根据派力工程有限公司提供的《新亚总部岩土工程勘察报告》,勘察时,场地自然地面标高为~。 本次勘探揭露60m深度范围内,地层为人工填土层、新近沉积层、第四系全新统河湖相沉积,上更新统沉积层,岩性以粘性土、粉土和粉砂为主,按地层的岩性特征及形成环境,将勘探深度范围内的地层划分为11个地层单元,18个工程地质层,现自上而下简述如下: 人工填土层 ①层素填土:褐黄色,以粉质粘土为主,土质不均匀,夹粉土、夹植物根系。层厚~米,层底标高~米。 新近沉积层 ②层粉质粘土夹粉土: 褐黄色,粉质粘土:软塑。中等-高压缩性,干强度中等,中等韧性,稍有光泽;粉土:稍湿-湿,中密-密实,干强度低,低韧性,摇震反应中等,无光泽,含云母。层厚~米,层底标高~米。 层粉砂:黄色,稍湿-湿,松散,局部中密,主要成分:石英、长石、② 1 云母,颗粒级配较差。层厚~米,层底标高~米。 第四系全新统河湖相沉积

地下室抗浮计算

地下室底板抗浮配筋计算 1.-3F地下室底板,板厚h=500mm.复核大于8m以外的板跨度 (一)、以最大跨度9.3m跨为例进行验算,基本资料、参数如下: 地下室底板混凝土等级为C30,钢筋采用HRB400级: f t=1.43N/m2f y=360N/m2 底板+素混凝土垫层的厚度:0.50+0.10=0.60mm,G=25×0.5+20x0.1=14.5kN/m2; 底板面层:2.0kN/m2; 按照中盐勘察设计院提供的补充资料地下抗浮水位按102.50米考虑,底板面绝对标高按96.8m计,则抗浮水位高度为5.7m,计至垫层底的水浮力Q=10×(5.7+0.6)=63.0 kN/m2; 底板使用荷载:4.0kN/m2 (承压), 2.0kN/m2(抗浮) 1、枯水期,考虑底板下土体脱空 (1).底板抗弯验算 底板荷载设计值q1=1.2×(14.5+2.0)+1.4×4=25.4kN/m2,考虑柱下承台对底板的抗弯贡献,按经验系数法算得, M0=1/8x25.4x(9.3-2/3x2)2=201.5 kN·m/m 内跨板的弯矩如下: 柱上板带,支座弯矩M1’=0.5M0 B/(0.5B)=201.5kN·m/m 跨中弯矩M1=0.18M0 B/(0.5B)=72.5 kN·m/m 跨中板带,支座弯矩M2’=0.17M0 B/(0.5B)=68.50kN·m/m 跨中弯矩M2=0.15M0 B/(0.5B)=60.4kN·m/m 按柱上板带进行配筋,考虑支座0.9的调幅,支座与跨中的弯矩调整后如下: 支座弯矩M’=181.35 kN·m/m 跨中弯矩M=79.75 kN·m/m 底板柱上板带支座弯矩设计值M’= 181.35kN·m/m,按b×h=1000×500的截面计,As’=1216mm2,实配支座面筋14@150+12@300 (As’=1403mm2),满足要求。 底板柱上板带跨中弯矩设计值M=79.75kN·m/m,按b×h=1000×500的截面计,As’=535mm2,实配底筋14@150(As’=1026mm2),满足要求。 (2).底板裂缝验算 按经验系数法算得柱上板带支座弯矩M k’=120.8 kN·m/m,最大裂缝宽度验算 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算: ρte= A s / A te(混凝土规范式 8.1.2-4)

抗浮设计计算书..

目录 一、前言 (1) 1.1、工程概况 (1) 1.2、地质条件 (2) 二、设计依据 (4) 三、抗浮锚杆设计 (4) 3.1、抗浮范围 (4) 3.2、抗浮锚杆计算 (5) 四、其他说明 (9)

一、前言 1.1、工程概况 新亚总部位于河北省廊坊开发区华祥路西侧,云鹏道北侧。由霸州市新亚金属制品有限公司建设开发,北京炎黄联合国际工程设计有限公司负责设计。 本方案涉及办公楼A地下车库及下沉式庭院,工程概况分述如下: 1)办公楼A 地上16层,地下2层,±0.00相当于绝对标高13.350m,筏板基础,基础底板底面相对标高-12.00m(相当于绝对标高1.350m)。根据勘察报告,基础持力层为粉质粘土⑤层,天然地基承载力特征值为120kPa,不能满足设计要求,需要进行CFG桩复合地基进行加固处理,设计条件如下: A区:相应于荷载效应标准组合时,基底反力为481kPa;相应于荷载效应准永久组合时,基底反力为450kPa。 B区:相应于荷载效应标准组合时,基底反力为502kPa;相应于荷载效应准永久组合时,基底反力为470kPa。 C区:相应于荷载效应标准组合时,基底反力为442kPa;相应于荷载效应准永久组合时,基底反力为412kPa。

各区允许的最终沉降量≤50mm,整体倾斜变形≤0.002,相邻柱基沉降差小于0.002柱距。 2)地下车库和下沉式庭院 环绕办公楼A周边为纯地下车库,地下2层,±0.00相当于绝对标高13.350m,筏板基础,基础底板底面相对标高-7.00m~-10.90m。 办公楼A和研发用房之间为下沉式广场,±0.00相当于绝对标高13.350m,筏板基础,基础底板底面相对标高-8.55m~-10.90m。 根据勘察报告,地下水水位埋深为5.30~5.70米,高程为6.45~7.98米,高差1.53米。拟建场地近年最高水位为地表下2.00米。水位年变幅1~1.5米,近年最高水位按2.00米考虑。场地抗浮设防水位可按地表下2.00米,即标高按10.00米考虑。由于结构荷重较小,地下水水位高于基础底面,结构可能出于超补偿状态,需要采取抗浮措施。 1.2、地质条件 1.2.1工程地质条件 根据派力工程有限公司提供的《新亚总部岩土工程勘察报告》,勘察时,场地自然地面标高为12.05~14.08m。 本次勘探揭露60m深度范围内,地层为人工填土层、新近沉积层、第四系全新统河湖相沉积,上更新统沉积层,岩性以粘性土、粉土和粉砂为主,按地层的岩性特征及形成环境,将勘探深度范围内的地层划分为11个地层单元,18个工程地质层,现自上而下简述如下: 人工填土层 ①层素填土:褐黄色,以粉质粘土为主,土质不均匀,夹粉土、夹植物根系。层厚0.50~0.80米,层底标高11.25~13.58米。 新近沉积层 ②层粉质粘土夹粉土: 褐黄色,粉质粘土:软塑。中等-高压缩性,干强度中等,中等韧性,稍有光泽;粉土:稍湿-湿,中密-密实,干强度低,低韧性,摇震反应中等,无光泽,含云母。层厚1.90~5.20米,层底标高7.88~10.27米。 ② 层粉砂:黄色,稍湿-湿,松散,局部中密,主要成分:石英、长石、1

相关文档