文档库 最新最全的文档下载
当前位置:文档库 › 铊基和汞基高温超导体及其在微波领域的应用

铊基和汞基高温超导体及其在微波领域的应用

铊基和汞基高温超导体及其在微波领域的应用
铊基和汞基高温超导体及其在微波领域的应用

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

探究高温超导电缆的研发现状和发展趋势 辛国骥

探究高温超导电缆的研发现状和发展趋势辛国骥 发表时间:2018-08-13T17:09:51.327Z 来源:《电力设备》2018年第12期作者:辛国骥 [导读] 摘要:在我国快速发展的过程中,高温超导技术的发展,高温超导电缆已经在输电系统中有了实际应用。 (国网大同供电公司检修公司山西大同 037008) 摘要:在我国快速发展的过程中,高温超导技术的发展,高温超导电缆已经在输电系统中有了实际应用。与传统电缆相比,高温超导电缆具有传输容量大、损耗低、体积小、重量轻、可靠性高、节约资源、环境友好等优势,有望在未来电网发展中发挥重要作用。本文介绍了高温超导电缆的结构及特点、基本设计原理、传输电流与导体层电流分布及交流损耗等技术问题,并对高温超导电缆在交流和直流输电系统中的应用以及目前世界各国对高温超导电缆的研究及成果做了介绍。 关键词:高温超导电缆;现状;发展 引言 随着我国经济的快速发展,用电量在不断增长,对电网传输容量需求也日益增长。高温超导材料在液氮温度的传输电流密度比铜导体高至少两个量级,且采用无污染和火灾隐患的液氮作为冷却介质,因此高温超导电缆在提升电网输电能力,在现有电力系统升级和新电力系统建设中都具有重要应用前景。目前,国际上对高温超导交流电缆的研究已取得了很大的进展,技术较成熟,相继建成多条超导电缆示范工程。高温超导直流电缆起步较晚,所以目前国内外的直流电缆工程不多,但由于新能源的大量引入,高温超导直流电缆得到了越来越多的重视,各国也纷纷开展了对高温超导直流电缆的研究。本文简要介绍近十几年来国内外有关高温超导电缆研究和开发的进展情况,并对其未来发展趋势和关键技术进行简单介绍。 1高温超导电缆的原理结构 高温超导电缆与传统的普通电缆相比有比较大的差异,其主要结构包括:内支撑芯、电缆导体、绝热层、电气绝缘层、电缆屏蔽层和保护层。1)内支撑芯:通常为罩有密致金属网的金属波纹管,或一束铜绞线。内支撑芯的功能是作为超导带材排绕的基准支撑物。2)电缆导体:由高温超导带材绕制而成,一般为多层。3)绝热层:通常由同轴双层金属波纹管套制,两层波纹管间抽成真空并嵌有多层防辐射金属箔。绝热层的主要功能是实现电缆超导导体与外部环境的绝热,保证超导导体在低温环境下能够安全运行。4)电气绝缘层:高温超导电缆按绝缘层类型的不同可以分成热绝缘和冷绝缘两种,热绝缘超导电缆的电气绝缘层的结构和材料与常规电缆的电气绝缘层相同,位于绝热层外部;冷绝缘超导电缆的电气绝缘层浸泡在液氮的低温环境下。5)电缆屏蔽层和保护层:电缆屏蔽层和保护层的功能是电磁屏蔽、短路保护及物理、化学、环境保护等。 2发展现状 目前国内开展的直流超导电缆工程相对较少,只在河南中孚电解铝厂建有一条示范工程。2009年起,中国科学院电工所与河南中孚电解铝厂股份有限公司合作研制直流超导电缆,该电缆380m长、单相、电压/电流为1.3kV/10kA。电缆一端连接变电站的整流器,另一端连接电解铝厂的母线。2015年开始进行中低压、大电流直流高温超导电缆关键技术的研究。提出了一种新型的自磁屏蔽型高温超导直流电缆结构,旨在消除各层超导带材临界电流的衰减,进而提高直流电缆的电流容量。第一种自屏蔽电缆结构如图24所示,在此种结构的直流电缆中,相邻层的电流方向相反,能有效降低各层带材的磁场。例如,由于第1层与第2层的电流方向相反,它们产生的磁场在第3层处将相互抵消,这样,第3层带材的临界电流将不会受到第1、2层的影响。应用此结构,电缆各层无磁场影响,临界电流几乎等于自场临界电流,超导线利用率高,临界电流几乎无退化,且可以获得任意大的运行电流结构,无电磁泄露。另外,为减少电缆端部带材与电流引线的各层连接数目,降低接触电阻,按照相同思路,同时提出了另外一种结构。两种自屏蔽型结构电缆将有效地提高电缆的载流容量,无电磁辐射、无信息泄露的自磁屏蔽型低压大电流高温超导直流电缆在高保密要求、高稳定性要求的互联网数据中心、军用舰船上等低压大电流输电场合有着重要的应用。 3发展趋势 经过近20年发展,国际上对高温超导交流电缆的研究已取得了很大的进展,技术相对较为成熟,相继建成多条示范工程,国际上几组典型实验运行的高温超导电缆参数情况如图所示),交流高温超导电缆和常规电缆输送容量和电压等级的比较如图所示。对于交流高温超导电缆,冷绝缘结构是其实用结构。但是,电压等级不宜超过340kV,原因之一是电压等级太高,绝缘占据空间大,不能充分体现超导电缆高载流密度特性;原因之二是介质损耗太高,冷却费用大幅度增加,运行不经济。未来交流高温超导电缆技术主要是在220kV及以下电压等级,其传输容量比常规345kV交联聚乙烯电缆还高。此外,虽然国内也有几组超导电缆试验运行,但是长度都在100m及以下,且未见开发具有中间连接装置的超导电缆研发报道。电缆终端、套管、中间连接装置等附件也是未来超导电缆实用化研发的重要部件。

超导电力技术的运用

超导电力技术的运用 引言 超导电力技术将是21世纪具有经济战略意义的高新技术1。超导技术的实用化、产业化会对电力领域产生巨大影响。国际超导技术界普遍 认为,新一代高温超导带材(钇系高温超导带材)有望在5年后商品化,之后超导电力技术将会出现一个快速增长的时期,在2010年~2015年期间,各种高温超导电力装置将会陆续进入实用化阶段。据国际超导 工业界预测:2020年,全球超导电力技术产业的产值将达到750亿美元。目前,超导电力技术已进入高速发展时期2,若干超导电力设备,如超导电缆、超导变压器、超导限流器、超导储能装置等已在电力系 统试运行。采用超导电力技术,可以大大提升电力工业的发展水平、 促进电力工业的重大变革。广东电网是全国最大的省级电网,随着电 网的高速发展,系统短路电流水平稳步增大,威胁着电网的安全稳定 运行。变电站站址和线路走廊落实困难,电网建设滞后,已影响到电 力供应的安全性和可靠性。本文从超导电力设备的特点和优势出发, 初步探讨了超导电力装置在广东电网应用的可行性。 1超导电力技术简介 高温超导电缆采用无阻和高电流密度的高温超导材料作为载流导体, 具有载流能力大、损耗低和体积小的优点,其传输容量将比常规电缆 高3~5倍,而电缆本体的热损耗几乎为零。2005年4月,北京云电英纳电缆公司研发出75m、35kV/2kA三相交流高温超导电缆,安装在云 南普吉变电站试验运行。超导故障限流器的基本原理是将超导装置接 入电网,系统正常运行,电流在临界电流以下时,超导体电阻几乎为0,对系统运行无影响。发生故障时,短路电流急剧上升超过临界电流, 超导体失超,电阻迅速增加,从而限制短路电流。故障切除后一段时间,超导体又从正常态恢复到超导态。2000年ABB瑞士研究中心研制 出单相6.4MVA该型故障限流器。2009年,云南电力研究院、昆明供电局、云电英纳超导电缆有限公司等单位在云南普吉变对35kV超导限流

传统超导体简介

2014年5月24日 传统超导体简介 LH·ZW 摘要:如今超导体在社会生产中扮演着越来越重要的作用,不管是急速发展着的电子工业 还是磁悬浮列车的发展都与超导体的发展息息相关。并且一直以来有着神秘色彩超导体在我们心目中都是高端得遥不可及的,而当今社会的发展却因之而大放异彩,所以对于超导体的机制及其应用我们还是应该学习的。 关键词:电磁学超导体零电阻现象迈斯纳效应超导发电磁悬浮列车 引言 超导体与电磁相关原理不无关系。超导体没有电阻是一材料宏观表现出来的性质,并且在我们现有的认知当中,当温度到达(升高或降低)该材料的某一临界值时,其温度会变为让人们一直以来都不为理解且震惊的零值,即是不可思议的没有电阻现象。且超导的最具特点与价值的是其完全导电性和完全抗磁性,由此使得其在社会生活生产中扮演着重要的角色。 一.超导体分类 现在对于超导体的分类并没有统一的标准,通常的分类方法有以下几种: ?通过材料对于磁场的相应可以把它们分为第一类超导体和第二类超导体:对于第一类超导体只存在一个单一的临界磁场,超过临界磁场的时候,超导性消失;对于第二类超导体,他们有两个临界磁场值,在两个临界值之间,材料允许部分磁场穿透材料。 ?通过解释的理论不同可以把它们分为:传统超导体(如果它们可以用BCS理论或其推论解释)和非传统超导体(如果它们不能用上述理论解释)。 ?通过材料达到超导的临界温度可以把它们分为高温超导体和低温超导体:高温超导体通常指它们的转变温度达到液氮温度(大于77K);低温超导体通常指它们需要其他特殊的技术才可以达到它们的转变温度。 ?通过材料可以将它们分为化学材料超导体比如:铅和水银;合金超导体比如:铌钛合金;氧化物超导体,比如钇钡铜氧化物;有机超导体,比如:碳纳米管。 二.一般超导体(即第一类超导体)的微观机制 1.电阻成因:很多宏观现象可以从微观领域中得到解释。电流是导体中电子的定向移动。电子在原子间移动时,由于电子与原子核间的电磁力的作用,会引起原子振动。众所周知,在正常导体中,一些电子没有被束缚到个别原子上,而是可以通过正离子的晶格自由运动。而电流通过晶格运动时),特别是金属中电子与晶格缺陷碰撞散射,以及在运动过程中其会与晶格振动相互作用而带来宏观上的电阻现象(1)(2)。这就是电阻的成因。 2.超导形成:由电阻成因知我们欲形成超导则要使得那电磁力的作用得到消除进而使得原子消除振动,从而使得电阻为零形成超导。并且由科学研究知在低温下核外电子运转速率

高温超导材料的发展及应用

高温超导材料的发展及应用 摘要:现代社会高度物质文明和材料科学进步密切有关,本文通过介绍超导及高温超导材料的相关知识阐述目前高温超导材料的发展和应用。 Abstract: the modern social highly material civilization Closely relates to the material's science progress, this paper is about the knowledge of superconducting and HTS materials,and it introduces High temperature superconducting materials 's development and application. 关键词:超导、高温超导材料、材料、技术。 Keywords: superconductivity, high temperature superconducting materials, materials, technology. 正文:日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。 超导体由于其得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用,因而需要探索新的高温超导材料。所谓高温超导材料是指具有高临界转变温度(Tc)的超导材料,目前高温超导材料主要有:钇系(92 K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁( Mg B)。氧化物高温超 2 导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。 一、高温超导材料 1、高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及 Mg B线材带化实 2

超导输电技术的应用及问题

研究生课程考核试卷 科目:新型输电技术教师: 题目:超导输电的应用及问题 姓名:学号: 专业:电力系统类别:学术型上课时间:2015年5月~2015年7月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

超导输电的应用及问题 摘要:我国电力资源与负荷资源分布极度不匹配,电力的远距离输送不可避免,特别是未来可再生能源的规模开发与利用,将会进一步加剧这种不匹配的格局。因此大规模的电力远距离输送在我国尤其重要。超导输电技术由于其输送容量密度大、损耗极小,是实现大规模电力远距离输送的潜在解决方案之一。本文就超导输电技术发展现状,首先讲解了超导输电的原理,进一步,对国内外超导输电的应用发展情况做出详细介绍,并分析了超导输电技术的优点和大规模应用的实现问题。 关键词:超导输电高温超导超导电缆低温绝缘 1.引言 我国电力资源与负荷资源分布极度不匹配,电力的远距离传输不可避免,特别是未来可再生能源的规模开发与利用,将会进一步加剧这种不匹配的格局,大规模的电力远距离输送在我国尤其重要。但传统的电缆受铜、铝等基本导电材料的电导率限制,损耗不可避免。尤其在长距离输变电过程中,由于线缆造成的损耗约占总线路损耗的70%左右。同时,随着电能消费密度的不断增长,送电通道越来越紧张,常规技术以不能满足负荷中心高密度大容量送电的要求。在日本东京、大阪等大城市中,中心电力消费密度已达到80~100MW/km2,大容量高密度送电问题十分突出[1]。 为减少电能输变过程中的损失,也必须采用新型输电方式来实现资源节约型电能输送。超导输电技术是利用高密度载流能力的超导材料发展起来的新型输电技术。运用超导输电电缆作为电能传输媒介。由于超导材料的载流能力可以达到100~1000A/mm2,大约是普通铜或者铝的载流能力的50~500倍,且其传输损耗几乎为零(直流下损耗为零,工频交流下有少量交流损耗[2]。正是由于超导输电有诸多优点,且能够有效解决损耗和大容量大电流传输的问题,所以近年来超导输电技术受到各国的重视,先后有多个国家开展了超导输电技术的研究。 本文就超导输电的发展现状,重点介绍国内外超导输电的应用,并分析超导输电技术存在的问题。 2.超导输电技术的发展和应用 近几年来,关于超导技术的成果接连不断,让人们看到了超导技术的巨大作用和广阔的应用前景。至此,许多国家把超导技术当作21世纪具有经济战略意义的高新技术来重点发展,而重中之重就是加快超导电力技术的应用,以促进电力能源工业的重大变革。 2.1.超导原理及超导电缆结构 很低的温度下,物体会形成一个核外层电子公用的状态,这就是物质的超导态,核外层电子处于公用的状态的物体就是超导体。处于超导状态的物体电阻非常小,而电缆在传输电能过程中主要的损耗就是电阻造

浅谈超导体

浅谈超导体 徐建强 河南省卢氏县第一高级中学 来源人教网 由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。今天,这一切以成为现实。 一、超导体的基本特性 1. 零电阻效应 超导现象的发现是与低温技术的发展分不开的。1906年荷兰著名低温物理学 家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当 于-269℃),随后又获得了1.04开的低温。这是继1898年制备出液态氢获得14 开低温之后的巨大进展。随着低温技术的进展,科学家已注意到纯金属的电阻随 温度的降低而减小的现象。昂纳斯首先研究低温下水银电阻的变化。l911年发现 了水银的超导现象。在4.2开附近水银电阻突然变小。图1是水银的电阻随温度 的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。 较精确的测量给出水银的超导转变温度(临界温度)Tc=4.153 开。继续降温到 3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。 图1水银的零电阻效应 1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。昂纳斯首先将这种特殊的电学性质称为超导。昂纳斯由于液氦的制备和超导现象的研究获 l913 年诺贝尔物理学奖。 2 .完全抗磁性 1933年,德国物理学家迈斯纳(W.Meissner) 通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外 (见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。这个现象称为迈斯纳效

什么叫做高温超导电缆

什么叫做高温超导电缆 发布日期:[2008-3-26] 高温超导电缆按传输的电力形式,可分为交流和直流两种;按其结构特点来划分,根据电气绝缘材料运行温度的不同,分为热绝缘或室温绝缘超导电缆(WD)和冷绝缘超导电缆(CD)。热绝缘超导电缆的电气绝缘层与常规电力电缆的绝缘层类似,工作在常温下;冷绝缘超导电缆的电气绝缘层工作在液氮的低温环境下,对绝缘材料的要求更高。当然,也可依照常规电力电缆的分类,分为单相电缆和多相电缆。 热绝缘超导电缆的基本结构,从内到外,依次为:管状支撑物(一般为波纹管,内通液氮);超导导体层(为超导带材分层绕制);热绝缘层(为真空隔热套件);常规电气绝缘层(工作在常温下);电缆屏蔽层和护层(与常规电力电缆类似)。 冷绝缘超导电缆的基本结构,从内到外,依次为:管状支撑物(内通液氮);超导导体层(为电缆载流导体);电气绝缘层(工作在液氮低温环境下);超导屏蔽层(为超导带材绕制);液氮回流层(与管状支撑物内的液氮构成液氮回流循环);热绝缘层(为真空隔热套件);常规电缆屏蔽层和护层。 终端(Termination)是高温超导电缆结构中的重要组成部分,是HTS电缆和外部其他电器设备之间相互连接的端口,也是电缆冷却介质和制冷设备的连接端口,担负着温度和电势的过渡。终端的结构是和电缆的结构相配套的,冷绝缘结构的电缆,由于多了一层超导屏蔽层和液氮回流层,结构较复杂。 电缆本体的超导导体层和常规金属在液氮环境下连接(SC-NC接头),再由常规金属(电流头)从液氮温度引出过渡到常温,电流头的尺寸经过专门设计,以求温度过渡均匀和整体导热最小。终端的热绝缘结构将尽量降低热漏;电气绝缘保证了电流头的绝缘强度和液氮从地电位(制冷系统)到高电位(电缆终端)的过渡。 德国著名学府和研究院近期发表的一篇文章<1>,共70页,全面从详介绍了当前超导材料的科研和应用现状。加拿大皇后大学发表了一篇文章<2>,系统的总结了元素和简单化合物的超导行为。现试将其部分主要内容,结合一些相关资料,简要归纳如下,供参考A/,引言。 超导现象,自从1911年被发现后,始终是引起人们强烈兴趣的主题。没有电阻的电流意味著在节能,高效和环保等多方面难以想象的巨大经济利益。同时他又不是一个简单的完全导体,还具有在1933年发现的超导体排斥磁场的麦斯纳(M e is s n e r)效应。这是完全导体所无法解释的现象。因此应该把它看作是一种物质的全新热力学状态。<1,2> 随着制冷技术和高压实验技术的发展,特别是1968年时,实验装置所允许的最高压力为25G Pa,而今已达260G Pa.(1G Pa=10197.16k g/c m2~10000k g/c m2).于是越来越多的元素和化合物,都已观察到超导现象。超导已不再是稀有罕见的奇迹,而是相对普偏现象。 1960年后,从有机物中寻找超导体的工作已经开始。1980年第一个有机超导体,te t ra m e t hy l-tet r as e le n a f u lva l e n e-p h o s p h o r u s h exa f lo r id e <(T M T S F)2P F6>出现<13>,Tc 4.2 K.随后又有Tc值提高到10 K的报导.于是研究论文大量涌现。F u l le re n e虽属单体,但结构庞大,近似于有机物。其C60的Tc竟高达33,明显超过了1986年前的最高记录23 K<1>.近期有机超导体的研究,也有很大发展<14>。2001年M g B2超导性能的发现,引起了人们极大的注意。一方面是由于它的Tc值达到了40K,另一方面是因为他的结构简单,制造成本低。在2001年时,已能成吨生产。在此基础之上<1,16>,目前正在寻找进一步提高Tc值的新化合物。B/,应用寻找工业应用永远是推动研究的推动力。从应用角度看,初期的超导材料很容易被外界磁场所抑制。实际应用困难较多。被称为I型超导材料。能在强磁场下保留其超导特性的材料,被称为I I型超导材料,或称硬超导材料。这些材料不像I型超导材料那样临界温度转变很突然,而是有一个过度区。在此区内,Tc值随外加磁场的加大而下降,故有两个临界磁场值,H c1和H c2.<17>。I I型超导由于H c2值较大,其应用领域十分广阔。如N b T i,N b3S n已形成了数十亿欧元的市场分额,作成超导线圈,制成电磁铁,用于M R I或高能物理所用粒子加速器。这些都是常规线圈无法达成的。虽然I I型超导应用潜力很大,但深度冷冻则需要相应的资金,装备和能量。特别是大型设备所需投入很大。在成本上的竞争力还嫌不足。因此许多大型电力系统的设备或部件,尽管作了很多精心设计,都还停留在试运行或示范阶段<17-20>.随着冷冻技术的发展和小型化<21>,许多微型超导电路结合了微型冷冻装置的开发,却已领先进入了市场,如S Q UI D在医疗器械,计算机芯片制造方面的应用等。高温超导滤波器正在向手机渗透

高温超导体发展趋势

超导材料具有的高载流能力和低能耗特性,使其可广泛用于能源、 交通、医疗、重大科技工程和现代国防等领域。超导技术是具有巨大 发展潜力的高技术。以铌钛和铌三锡为主的实用低温超导体的研究和 开发起始于20世纪60年代,到70年代开始广泛用于磁体技术。目前已在两方面形成了较大规模的应用。一是重大科技工程方面,主要是高 能物理研究所需的大型粒子加速器,如正在欧洲建造的周长为27km的 大型质子碰撞机LHC,以及热核聚变反应装置,如ITER和LHD等;二是在医疗诊断方面正在广泛应用的核磁共振成像系统MRI和具有较高科学 与应用价值的核磁共振谱仪NMR。 高温超导体自1986年被发现以来,在材料的各个方面,尤其是成 材技术和超导性能方面取得了很大的进展。与此同时,各种应用开发 研究也已广泛展开,并且取得了可喜的成果。HTS材料具有较高的临界 温度(Tc)和上临界磁场(Hc2),从而使超导技术的应用在材料方面 有了更广泛的选择。首先高温超导材料可以使超导技术在液氮温区实 现应用,高Hc2值使高温超导材料成为制造高场磁体(>20T)的理想 选择。近年来,千米长线(带)材的成功制造,已使高温超导材料在 电力能源方面的应用成为现实。这些应用包括:磁体、输电电缆、电 动机、发电机、变压器、故障电流限制器等。用高温超导材料制成的 不同量级(1~20kA)的电流引线已于90年代初实现商品化,并广泛应 用于各种超导磁体系统,使得低温超导磁体可由G-M致冷机冷却,无 需液氦,实现了超导磁体可长时间稳定运行的目标。从目前的发展现 状和趋势,可以清楚地预见,在今后20年内,高温超导技术将在广泛 的领域走向实用化和商品化。 目前已发现的高温超导材料都属于氧化物陶瓷材料,不易加工成 材。同时,很强的各异性和极短的相干长度使得高临界电流密度( Jc)只能在使晶体高度取向的情况下才能实现。在众多的高温超导材 料中,铋锶钙铜氧体系和钇钡铜氧体系最具有实用价值,所以线(带) 材的研究开发主要集中在这两类超导体。超导体的实际应用除了需要 高Jc之外,还需要材料有相当的长度(>1km)和良好的机械性能及热 稳定性。所以同金属材料复合是必由之路。银(银)及其合金由于其 良好的稳定性和塑性,成为合适的高温超导线材基体材料。经过十余 年的研究和开发,高温超导线(带)材已取得重大进展。 铋-2223线(带)材铋-2223超导体具有较高的超导转变温度(Tc~110K)和上临界磁场(Hc2,0~100T)。特别是其层状的晶体 结构导致的片状晶体很容易在应力的作用下沿铜-氧面方向滑移。所 以,利用把铋-2223先驱粉装入银管加工的方法(PIT法),经过拉拔 和轧制加工,就能得到很好的织构。另外,在铋-2223相成相热处理 时,伴随产生的微量液相能够很好地弥合冷加工过程中产生的微裂纹, 从而在很大程度上克服了弱连接的影响。正由于这两个基本特性,使 人们通过控制先驱粉末、加工工艺及热处理技术,成功地制备出了高 Jc(>104A/cm2,77K)长带。 目前世界上已有多家公司在开发和生产铋-2223带材。处于前列

高温超导材料

高温超导材料 樊世敏 摘要自从1911年发现超导材料以来,先后经历了简单金属、合金,再到复杂化合物,超导转变温度也逐渐提高,目前,已经提高到164K(高压状态下)。本文主要介绍高温超导材料中的其中三类:钇系(YBCO)、铋系(BSCCO)和二硼化镁),以及高温超导材料的应用。与目前主要应用领域相结合,对高温超导材(MgB 2 料的发展方向提出展望。 关键词高温超导材料,超导特性,高温超导应用 1引言 超导材料的发现和发展已经有将近百年的历史,前期超导材料的温度一直处于低温领域,发展缓慢。直到1986年,高温超导(HTS)材料的发现,才进一步激发了研究高温超导材料的热潮。经过20多年的发展,已经形成工艺成熟的第一代HTS带材--BSCCO带材,目前正在研发第二代HTS带材--YBCO涂层导体,近一步强化了HTS带材在强电领域中的应用。与此同时,HTS薄膜和HTS块材的制备工艺也在不断地发展和完善,前者己经在强电领域得到了很好的应用,后者则在弱电领域中得到应用,并且有着非常广阔的应用前景。 2高温超导体的发现简史 20世纪初,荷兰莱顿实验室科学家卡默林昂尼斯(H K Onnes)等人的不断努力下,将氦气液化[1-7],在随后的1911年,昂尼斯等人测量了金属汞的低温电阻,发现了超导电性这一特殊的物理现象。引起了科学家对超导材料的研究热潮。从1911到1932年间,以研究元素超导为主,除汞以外,又发现了Pb、Sn、Nb等众多的金属元素超导体;从1932到1953年间,则发现了许多具有超导电性的合金,以及NaCl结构的过渡金属碳化合物和氮化物,临界转变温度(Tc)得到了进一步 Sn等超导体。直到1986提高;随后,在1953到1973年间,发现了Tc大于17K的Nb 3 年,美国国际商用机器公司在瑞士黎世实验室的科学家柏诺兹(J. G. Bednorz)和缪勒(K. A.Müller)首先制备出了Tc为35K的镧-钡-铜-氧(La-Ba-Cu-O)高温氧化物超导体,高温超导材料的研究才取得了重大突破[10,11]。临界转变温度超过90K的钇-钡-铜-氧等一系列高温氧化物超导体被发现,成为了高温超导材料

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

高温超导体基本特性的测量-物理试验

高温超导体基本特性的测量 1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。 一、实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。 二、实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器 三、实验原理 1.零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。所以总电阻可以近似表达为 R=Ri(T)+Rr (1) 当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。临界温度Tc是由物质自身的性质所确定参量。如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态

超导材料科技有限公司的自主创新之路

超导材料科技有限公司的自主创新之路 科技实力雄厚的西安,正在孕育着中国超导材料、航空用特种钛合金材料及人体植入物用钛合金材料等低碳产业实现产业化、规模化和标准化进程的雏形和希望。中国超导产业龙头——西部超导材料科技有限公司,正在这里快速崛起,令世界为之瞩目。 2010 年1月25日下午,尽管时值隆冬,但是位于西安市经济技术开发区明光路12号的西部超导材料科技有限公司却是暖意融融。胡总书记在中共中央书记处书记、中央办公厅主任令计划,中共中央书记处书记、中央政策研究室主任王沪宁,中共陕西省委书记赵乐际,省长袁纯清,省委常委、西安市委书记孙清云等的陪同下,驱车来到西部超导材料科技有限公司考察。 总书记在得知超导公司成立七年来,为国家做成了两件事、走出了一条路后,高兴地点头赞许。第一件事是研发并生产出低温超导线材,填补了国内空白,为国际热核聚变实验堆(ITER)供货;第二件事是自主研发并生产出了航空用3种新型钛合金,打破了欧美发达国家对我国关键材料的封锁,同时成功地走出了一条从实验室将科技成果转化成产业化的路子。 当得知西部超导目前是国际上唯一的铌钛超导合金锭棒及线材全流程生产企业时,总书记脸上露出了欣慰的笑容。临了,总书记勉励西部超导公司要始终坚持自主创新,奋力攻克技术难关,加快推进成果转化,为我国抢占新材料产业发展的制高点发挥积极作用。 西部超导到底是一个什么样的企业,短短七年时间他们如何破茧成蝶?西部超导为抢占新材料产业发展制高点,进程中经历了怎样的磨砺?一次深层次探寻让我们努力去寻找答案。 汇才聚力,铁骨雄风的创业团队让西部超导傲然于世 时间跨入21世纪,中国加入WTO,中国企业大步走向国际市场,在世界范围内参与竞争,民族产业大潮涌动。 以张平祥博士为首的一批留学海外的超导材料及加工专家,在著名科学家周廉院士的感召下,在科技兴国、实业报国理想的驱动下,先后放弃了国外的优厚待遇,回国投身创业。 一批国内超导材料行业的干部、专家和技术能手,立志再创人生新事业,实现超导产业化,组成了西部超导公司最初的创业团队。 2002年11月25日,原陕西省委书记李建国作出指示,把超导项目留在了西安。超导公司由此在西安生根、发展。 2003年2月28日,在国家级西安经济技术开发区内,我国最大的超导材料产业化基地——西部超导材料科技有限公司注册成立。 2003年4月6日,原陕西省委副书记、西安市委书记栗战书亲自为公司揭牌。

(完整word版)高温超导材料的研究进展

高温超导材料的研究进展 程长飞20091410404 引言 2O世纪8O年代后期高温超导的发现,在全球掀起了一股“超导热”。经过2O多年的研究发展,我国高温超导技术在超导材料技术、超导强电技术和超导弱电技术三个方面取得了重大进展和突破。在众多领域中,超导技术的应用具有非常突出的优点和不可取代的作用。随着高温超导材料和低温制冷技术的迅速发展,使超导技术的应用步伐迅速加快。超导技术在电力、通信、高新技术装备和军事装备等方面的应用也十分令人向往,具有重要的战略意义。 根据第五届国际超导工业峰会预测,高温超导应用技术将在今后5~10年时间达到实用化水平,并将在2010年前后形成较大规模的产业。到2010年,全球超导产业的产值预计将达到260亿美元,到2020年将达到2 400亿美元以上。超导技术将是21世纪具有光明前景的高新技术 一、超导的基本概述和基本原理 1911年发现,但直到1957年,美国科学家巴丁、库珀和施里弗在《物理学评论》提出BCS理论,其微观机理才得到一个令人满意的解释。BCS理论把超导

,库珀对在晶格当中可以无损耗的运动,形成超导电流。在BCS理论提出的同时,博戈留波夫(Bogoliubov)也独立的提出了超导电性的 的博戈留波夫变换至今为人常用。 电子间的直接相互作用是相互排斥的库仑力。如果仅仅存在库仑 直接作用的话,电子不能形成配对。但电子间还存在以晶格振动 正是这种吸引作用导致了“库珀对”的产生。大致上,其机理如下:电 变,形成一个局域的高正电荷区。这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换,也就没有电阻,形成所谓“超导”。 BCS理论而获得1972 BCS理论并无法成功的解释所谓第二 二、高温超导材料概述 对超导现象,BCS 理论给出了比较满意的解释。而在应用方面,超导现象具有很宽敞的应用空间,具有很高的应用价值。到了现代, 人们一直致力于对超导材料的研究。在1968 此时

超导输电的现状与发展

超导输电的现状与发展 电气1312 汤利文 9号 摘要:超导是一项尖端的技术,有所突破之后,对于人们来说会有非同一般的意义。而电的运输更是与我们的生活息息相关,有了超导技术的运用,输电将会变得极致高效。超导输电技术已逐步从实验走向生活,卓越的性能已被认可,具有良好的前景。 关键词:高温超导电缆;原理;节能;发展 引言:随着经济和社会的发展,人们对电能的需求量日益增长,使得电力系统各部分电气紧密连接,电力系统向更大规模方向发展,对电能品质和供电可靠性提出更高要求,对电气设备的环保要求和节能要求更严格。由于中国电力资源和负荷分布不均,使得长距离输电成为必然。而电能在传输中的损耗成为急需解决的突出问题。据统计,传统电线或电缆受铜、铝等基本导电材料电导率限制,2007 年中国在输变电过程中的损耗大约为7.5%(其中线路损耗约占70%左右)。为减少电能输变电过程中的损失,也需采用新型输电方式来实现资源节约型电能输送。作为智能电网基础技术之一,高温超导电缆采用具有很高传输电流密度的高温超导材料作为导体,其诸多优点已在电力工业中引起了越来越多的关注。使用了超导输电之后,那么就可以完全没有电能损失了,这样甚至可以取消目前普遍的高压传输。使用

了超导输电之后,那节省的电能相当于新建数十个大型发电厂。 原理: 在很低的温度下,物体的所有的电子速率降低,价电子运转在固定的平面上,达到临界温度,价和电子运转速率越来越低。核心习惯于常温下的核外电子快速运转,价和电子运转缓慢,造成了原子暂时缺失价电子的现象。核心就挪用相邻核心的价电子,相邻核心又挪用,所有的核心都向某一方向近邻挪用,于是就形成外层电子公用。这种核外层电子公用的状态就是物质的超导态,核外层电子处于公用的状态的物体就是超导体。通俗的讲,超导电缆的电阻非常小,而电缆在传输电能过程中主要的损耗就是电阻造成的。精确的讲,超导电缆还有特殊的结构,因为在交流系统中的阻抗不仅仅是电阻,总的来说,超导电缆有极小的导体电阻和系统阻抗,以大大降低电能传输过程中的损耗。 高温超导电缆: 英语全称High-Temperature Superconducting Power Cable,它由电缆芯、低温容器、终端和冷却系统四个部分组成。其中电缆芯是高温超导电缆的核心部分,包括骨架层、导体层、绝缘层和屏蔽层等主要部件。

高温超导材料论文 最新

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年, 发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge 超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1

相关文档
相关文档 最新文档