文档库 最新最全的文档下载
当前位置:文档库 › 平面向量基本定理及其坐标表示

平面向量基本定理及其坐标表示

平面向量基本定理及其坐标表示
平面向量基本定理及其坐标表示

第2讲 平面向量基本定理及其坐标表示

【2013年高考会这样考】

1.考查平面向量基本定理的应用. 2.考查坐标表示下向量共线条件. 【复习指导】

本讲复习时,应理解基本定理,重点运用向量的坐标进行加、减、数乘的运算以及向量共线的运算.

基础梳理

1.平面向量基本定理

如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2叫表示这一平面内所有向量的一组基底. 2.平面向量坐标运算

(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则

a +

b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.

(2)向量坐标的求法

①若向量的起点是坐标原点,则终点坐标即为向量的坐标.

②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示

设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线.

一个区别

向量坐标与点的坐标的区别:

在平面直角坐标系中,以原点为起点的向量OA

→=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如

点A (x ,y ),向量a =OA →

=(x ,y ).

当平面向量OA →平行移动到O 1A 1→时,向量不变,即O 1A 1→=OA →=(x ,y ),但O 1A 1→

的起点O 1和终点A 1的坐标都发生了变化. 两个防范

(1)要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.

(2)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1

y 2,因为x 2,

y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.

双基自测

1.(人教A 版教材习题改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ). A .(4,3)

B .(-4,-3)

C .(-3,-4)

D .(-3,4)

解析 a 1+a 2+…+a n -1=-a n =(-3,-4). 答案 C

2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ). A .3a +b B .3a -b C .-a +3b D .a +3b 解析 设c =x a +y b ,则??? x -y =4,x +y =2,∴???

x =3,

y =-1.

∴c =3a -b . 答案 B

3.(2012·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( ).

A .-1

B .1

C .-2

D .2

解析 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1. 答案 A

4.设向量a =(1,-3),b =(-2,4),若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c =( ).

A .(4,6)

B .(-4,-6)

C .(4,-6)

D .(-4,6)

解析 设c =(x ,y ), 则4a +(3b -2a )+c =0,

∴??? 4-6-2+x =0,-12+12+6+y =0,∴???

x =4,y =-6. 答案 C

5.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析 a +b =(1,m -1).∵(a +b )∥c , ∴2-(-1)(m -1)=0,∴m =-1. 答案 -1

考向一 平面向量基本定理的应用

【例1】?(2012·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM

→=λAB →+μAC →,则λ+μ=________.

[审题视点] 由B ,H ,C 三点共线可用向量AB

→,AC →来表示AH →.

解析 由B ,H ,C 三点共线,可令AH

→=xAB →+(1-x )AC →,又M 是AH 的中点,

所以AM

→=12AH →=12xAB →+12(1-x )AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=1

2. 答案 12

应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角

形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.

【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,

则x =________,y =________.

解析 以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,

令AB =2,则AB

→=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由

已知得DF =BF =3,则AD →

=(2+3, 3). ∵AD

→=xAB →+yAC →,∴(2+3,3)=(2x,2y ). 即有??

?

2+3=2x ,3=2y ,

解得???

??

x =1+3

2,y =32.

另解:AD →=AF →+FD →=? ????1+32AB →+32AC →, 所以x =1+32,y =3

2. 答案 1+32 3

2

考向二 平面向量的坐标运算

【例2】?(2011·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,

CN

→=2CB →.求M ,N 的坐标和MN →. [审题视点] 求CA

→,CB →的坐标,根据已知条件列方程组求M ,N .

解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA

→=(1,8),CB →=(6,3). ∴CM

→=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6). 设M (x ,y ),则CM

→=(x +3,y +4).

∴??? x +3=3,y +4=24,得???

x =0,y =20.

∴M (0,20). 同理可得N (9,2),∴MN

→=(9-0,2-20)=(9,-18).

利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原

则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.

【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),

则BD

→=( ). A .(-2,-4) B .(-3,-5) C .(3,5)

D .(2,4)

解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-

2(2,4)=(-3,-5). 答案 B

考向三 平面向量共线的坐标运算

【例3】?已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反?

[审题视点] 根据共线条件求k ,然后判断方向.

解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4). 若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0. 解得k =-13.这时k a +b =? ????-103,43,

所以k a +b =-1

3(a -3b ). 即两个向量恰好方向相反, 故题设的实数k 存在.

向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是

用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值.

【训练3】 (2011·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ). A.? ????79,73 B.? ????-7

3,-79 C.? ??

??73,79

D.? ??

??-7

9,-73 解析 设c =(m ,n ),

则a +c =(1+m,2+n ),a +b =(3,-1).

∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-7

3. 答案 D

阅卷报告5——平面几何知识应用不熟练致误

【问题诊断】 在平面几何图形中设置向量问题,是高考命题向量试题的常见形式,求解这类问题的常规思路是:首先选择一组基向量,把所有需要的向量都用基向量表示,然后再进行求解.

【防范措施】 一是会利用平行四边形法则和三角形法则;二是弄清平面图形中的特殊点、线段等.

【示例】?(2011·湖南)在边长为1的正三角形ABC 中,设BC →误.=2BD →,CA →=

3CE →,则AD →·BE →=________. 错因 搞错向量的夹角或计算错 实录 -1

2(填错的结论多种).

正解 由题意画出图形如图所示,取一组基底{AB →,AC →},结合图形可得AD

→=12(AB →

+AC

→),BE →=AE →-AB →=23

AC →-AB →,

∴AD →·BE

→=12(AB →+AC →)·? ????23AC →-AB →=13AC →2- 12AB →2-16AB →·AC →=13-12-16cos 60°=-1

4. 答案 -14

【试一试】 (2011·天津)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. [尝试解析]

以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .

∴D (0,0),A (2,0),C (0,a ),B (1,a ), P (0,x ),P A →=(2,-x ),

PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,∴|P A →+3PB →|的最小值为5. 答案 5

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

1 平面向量系数

平面向量系数 1、如右图,在△ABC 中, 13 AN NC =,P 是BN 上的一点,若29AP m AB AC ??→??→??→ =+,则实数m 的值为( ) A. 19 B 3 1 C. 1 D. 3 【答案】A 2、在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,AB i j =+, 2AC i m j =+,则实数m= . 答案 -2或0 3、在△ABC 中,已知D 是边AB 上的一点,若AD →=2DB →,CD →=13CA →+λCB → ,则λ=______. 答案:23 4、在△ABC 中,=++===n m n m 则若,,2,2( ) A . 3 2 B 97 C .9 8 D .1 答案 B 5、在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A . 21 33 +b c B .5 233 - c b C . 2133 -b c D .1 2 3 3+ b c 答案 A 6、在OAB ?中,=a ,=b ,M 为OB 的中点,N 为AB 的中点,ON ,AM 交于点P ,则= ( ) A . 32a -31b B .-32a+31b C .31a -32b D .-31a+32 b 答案 B 7、在△ABC 中,1 ,3,,,2 BD DC AE ED AB a AC b BE ====若则=( ) A .1133a b + B .1124a b -+ C .1124a b + D .11 33 a b -+ 8、在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点 F .若AC =a ,BD =b ,则AF = ( ) A . 11 42 +a b B . 2133+a b C .11 24+a b D .1 2 3 3+ a b 答案 B 9、已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14 OB →, 则OA →与OC → 的夹角大小为 o 60 10、在ABC △中,已知D 是AB 边上一点,若2AD DB =, CD =1 3 CA CB λ+,则λ=( ) A . 23 B .13 C .13- D .23 -选A. 11、如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为 B A O N

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

巧妙确定平面向量基本定理中基底系数间的关系

巧妙确定平面向量基本定理中基底系数间的关系 濮阳市华龙区高中张杰 平面向量作为高中数学的解题工具之一,选择恰当基底,确定基底系数的关系,进而用基底表示相关向量往往是能否顺利解决问题的关键,而如何确定平面向量基本定理中基底系数的关系对学生而言通常很难形成有效解决办法,下面通过实例给出一个巧妙确定平面向量基本定理中基底系数间的关系的办法。 问题:点P是平行四边形ABCD对角线BD上一点,若AD y AB x AP+ =,则系数x,y 满足何种关系是什么?若点P是ABD ?内部一点呢? 确定办法:将基底转化为正交单位基底,在正交单位基底下x,y的关系即为所求。如图在正交基底下BD对应直线1 = +y x,所以1 = +y x即为所求。若点P在ABD ?内部,则有 ? ? ? ? ? < + < < < < < 1 1 1 y x y x 考题链接:已知点P是ABC ?内一点,且满足()R y x AC y AB x AP∈ + =,,则x y2 -的取值范围是() A.()1,2- B.()2,1- C.()2,1 D.[]1,2- -解析:因为点P是ABC ?内一点,且满足()R y x AC y AB x AP∈ + =,,∴ ? ? ? ? ? < + < < < < < 1 1 1 y x y x 由线性规划问题的解法可知()1,2 2- ∈ -x y,所以选A. 考题链接:如图,已知四边形OABC是边长为1的正方形,3 = OD,点P为BCD ?内(含边界)的动点,设(,) OP OC OD R αβαβ =+∈ ,则αβ +的最大值等于___. 解析:如图,将基底转化为正交单位基底,则点D C B, ,的坐标分别为:? ? ? ? ? 1, 3 1 ,()1,0,()0,1,

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

向量的坐标表示及其运算

第八讲向量的坐标表示及其运算 一、知识点 (一)向量及其表示: 1.平面向量的有关概念: (1)向量的定义:既有大小又有方向的量叫做向量. (2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示. (3)模:向量的长度叫向量的模,记作|a |或|AB |. (4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定. (5)单位向量:长度为1个长度单位的向量叫做单位向量. (6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线. (7)相等的向量:长度相等且方向相同的向量叫相等的向量. 2向量坐标的有关概念 (1)基本单位向量 (2)位置向量 (3)向量的正交分解 3.向量的坐标运算:设 4.向量的摸:22y x a += (二)向量平行的充要条件: 1向量共线定理:向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa ,即b ∥a ?b =λa (a ≠0). 2设a =(x 1,y 1),b =(x 2,y 2)则b ∥a ?1221y x y x = (三)定比分点公式: 1线段的定比分点是研究共线的三点P 1,P ,P 2坐标间的关系.应注意:(1)点P 是不同于P 1,P 2的直线P 1P 2上的点;(2)实数λ是P 分有向线段21P P 所成的比,即P 1→P ,P →P 2的顺序,不能搞错;(3)定比分点的坐标公式??? ????++=++=λλλλ112121y y y x x x ,(λ≠-1). 2中点坐标公式 3三角形重心坐标公式 二、典型例题 例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少? 例2 下列哪些是向量?哪些是标量? (1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ?ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ?重心,求GA 的坐标 例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()3若a BD AC a 求,-=

平面向量的基本定理

平面向量的基本定理 各位老师大家好,今天,我说课的内容是:人教B版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析 一、说教材 1.关于教材内容的分析 (1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。 (2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它、也为平面向量坐标表示的学习打下基础。 (3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。 2.关于教学目标的确定 根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。 1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量

②会把任意向量表示为一组基地的线性组合。掌握线段中点的向量表达式 2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力 3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。 3.重点和难点的分析 掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。 二、说教学方法与教学手段 结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。 此模式的流程为激发兴趣--发现问题,提出问题--自主探究,解决问题--自主练习, 采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。

平面向量基本定理说课稿

一、说教材 .教材的地位和作用 ()向量是近代数学中重要和基本的数学概念,是沟通代数、几何与三角函数的一种工具, 它有着及其丰富的实际背景,又有着广泛的实际应用,因此,它有很高的教育价值。 ()平面向量基本定理揭示了平面向量的基本关系和基本结构,是进一步研究向量问题的基础;是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。 ()平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔 的应用空间。 .教学目标 ()知识与技能:了解平面向量基本定理及其意义,会利用平面向量基本定理解决简单问题;理解记忆直线的向量参数方程式和线段中点的向量表达式. ()过程与方法:通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法,培养学生的归纳总结能力;体验用基底表示平面内任一向量的方法. ()情感态度与价值观:通过本节课的学习培养学生的理性思维能力。 .重点和难点 根据学生的认知规律及教学内容,我认为本节课的 重点是:对平面向量基本定理的探究。 难点是:对平面向量基本定理的理解及其应用 二、说教学方法与教学手段 结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。此模式的流程为激发兴趣发现问题,提出问题自主探究,解决问题自主练习,科学应用。

采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。 三、说学情分析与学法指导 学情分析:前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算等;学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速 度的合成与分解等,都为学习这节课作了充分准备。 学法指导:教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、 全过程参与,保证学生的认知水平和情感体验分层次向前推进。 四、说教学过程设计 为了更好的突出教学重点,突破教学难点,完成教学目标,我把本节课的教学实施分为以下环节来进行: ()创设情景,提出问题 复习回顾平行向量基本定理,强调系数惟一确定,说明用一个向量就可以表示平面内任何一 个与其平行的向量.然后在平面内任意画出一个与其不平行的向量,问能不能只用前一个向 量来表示?学生会说不能.接下来设问:那该如何表示.提出问题同时点题. ()自主探究,解决问题 这一环节,是教学的重点,学生在富有启发性的问题下,自主作图,自主探究,不仅得出了 定理,而且思维也得到了发展。主要采用问题的形式启发学生思考,有层次、有启发性的五 个问题可以进一步使学生的思维走向深入。 .学生拿出网格,讨论该如何表示. .利用投影仪让学生观察,在平面内任意画出一个向量还能否用这两个向量来表示?表示成

向量的坐标表示(一)

向量的坐标表示(一) 【学习重点与难点】: 重点:平面向量基本定理的应用;平面内任一向量都可以用两个不共线非零向量表示 难点:平面向量基本定理的理解. 【学法与教学用具】: 1. 学法: (1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 2. 教学用具:多媒体、实物投影仪. 【课时安排】:1课时 【教学思路】: 一、思考和讨论 【问题1】:(教材69P 例1):平行四边形ABCD 的对角线AC 和BD 交于点M ,=?→?AB a ,=?→?AD b ,试用向量a ,b 表示?→?MA ,?→?MB ,?→?MC ,?→ ?MD 。 结论:由作图可得a 1λ=1e +2λ2e 【问题2】:对于向量a ,1λ和2λ是否是惟一的一组? 二、研探学习 1.共面向量定理 【探索】:(1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一的? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 学生分析设1e ,2e 是不共线向量,a 是平面内任一向量 ?→?OA =1e ?→?OM =1λ1e ?→?OC =a =?→?OM +?→?ON =1λ1e +2λ2e ?→?OB =2e ?→?ON =2λ2e 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数1λ,2λ,使a 1λ=1e +2λ2e .我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;这个定理也叫共面..向量定理. 【注意】: 1e 2e a C

向量的坐标表示及其运算

向量的坐标表示及其运算

向量的坐标表示及其运算 【知识概要】 1. 向量及其表示 1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上 面加箭头来表示,如a读作向量a, 向量也可以用两个大写字母上面加 箭头来表示,如AB,表示由A到B的向量. A为向量的起点,B为向量的终点).向量AB(或a)的大小叫做向量的模,记作AB(或a). 注:①既有方向又有大小的量叫做向量,只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别; ②长度为0的向量叫零向量,记作的方向是任意的注意与0的区别 ③长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都是只限制大

小,不确定方向. 例1 下列各量中不是向量的是( D A.浮力 B.风速 C.位移 D.密度 例2 下列说法中错误 ..的是( A ) A.B.零向 量的长度为0 C. D.零向 例 3 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D ) A.B. C. D. 2)向量坐标的有关概念 ①基本单位向量: 在平面直角坐标系中,方向分别与x轴和y轴正方向相同的两个单位向量叫做基本单位,记为i和j. ②将向量a的起点置于坐标原点O,作OA a , 则OA叫做位置向量,如果点A的坐标为(,) x y,它在

x 轴和 y 轴上的投影分别为 ,M N ,则 ,.OA OM ON a OA xi y j =+==+ ③ 向量的正交分解 在②中,向量OA 能表示成两个相互垂直的向量i 、j 分别乘上实数,x y 后组成的和式,该和式称 为i 、j 的线性组合,这种向量的表示方法叫做向 量的正交分解,把有序的实数对(,) x y 叫做向量a 的坐标,记为a =(,)x y . 一般地,对于以点1 1 1 (,)P x y 为起点,点2 2 2 (,)P x y 为终 点的向量12 PP ,容易推得122 121()()PP x x i y y j =-+-,于是相 应地就可以把有序实数对2 121(,) x x y y --叫做12 PP 的坐 标,记作12 PP =2 121(,) x x y y --. 3)向量的坐标运算:1 1 2 2 (,),(,)a x y b x y ==,R λ∈ 则1 2 1 2 1 2 1 2 1 2 (,);(,);(,)a b x x y y a b x x y y a x x λλλ+=++-=--=. 4) 向量的模:设(,)a x y =,由两点间距离公式,可求得向量a 的模()norm . 2a x =+ 注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示;

空间向量运算的坐标公式

空间向量运算的坐标公式 如果三个向量不共面那么对空间任一向量存在一个唯一的 有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个 ______基底空间任意三个不共面向量都可以构成空间的一 个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一 点O和一个单位正交基底i、j、k 。以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐 标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、 向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系 O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是 存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量 的直角坐标运算.111222axyzbxyz设则 121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例

平面向量基本定理

2.3.1 平面向量基本定理 【学习目标】 (1)了解平面向量基本定理;理解向量夹角的定义; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法; (3)培养学生观察、抽象概括、合作交流的能力.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 【学习重点】平面向量基本定理. 【学习难点】平面向量基本定理的理解与应用. 教学过程 一、学情分析,课前导入 前面我们学习过了向量的线性运算及共线向量定理。本节我们继续研究向量的其它性质,在学习之前我们来复习一下前面的内容, 二、提出问题,引入新课 师:如果向量a与非零向量b共线,那么a与b满足什么样的等式? 生:a=λb. 师:这就是我们上节课学习的共线向量定理(放幻灯片2) 结论:如果向量a与非零向量b共线,那么有且只有一个实数λ,使a=λb. (2)引导探究 师:如果a与b不共线,则上述结论还成立吗? (学生讨论) 结论:不成立. 师:也就是说一个向量不能表示另一个与它不共线的向量,两个向量能不能表示出与它们不共线的向量呢?我们来看:(幻灯片3) 师:我平时没事的时候喜欢看一些军事新闻,元旦时我看到这一新闻:新华社(12月31日电),来自中国航天科工集团第四研究院的消息,我们快舟-11固体运载火箭将于2018年上半年首飞,可一次性实现星座的快速构建,大幅提升发射效率和降低运载成本,怎么样,这技术,利害了,我的国!你们看下面的这个图:(幻灯片4) 在物理中速度可以合成,也可以分解。合成即向量的加法,分解也可以推广到向量中来。 师:我们先分析一下向量加法过程 三、任务下达,课堂探究

平面向量基本定理

一:学习目标:1:理解掌握平面向量基本定理;2:能用平面向量基本定理进行向量的合成与分解。 二:重点难点:平面向量基本定理 三:知识链接:1:向量的加法和减法运算: (1) 平行四边形法则的实施步骤: 先把两个向量的起点 ,然后 作平行四边形, 即为两个向量的和向量。 (2) 三角形法则的实施步骤: 先把两个向量首尾 ,由第一个向量的 指向第二个向量的 的向量即为两个向量的和向量。 减法可转化为加法运算。 2:向量的数乘运算:设λ为实数,则 λa 表示与a 的向量。 (1)当λ>0时,λ与方向 , = (2)当λ<0时,λ与方向 , = (3)当λ=0时,λ= 3:向量共线定理:非零向量与向量共线,当且仅当有唯一一个实数λ使 四:学习过程 : 1:如图,在平面内任取一点O ,作=1e ,=2e ,=, 如何将 a 用1e 和2e 表示出来?(提示:用平行四边形法则将a 在1e 和2e 的方向上分解) A 2:讨论探究:是否平面内任一向量都能用 1e 和 2e 表示? 3:平面向量基本定理的内容: ; 不共线的向量1e 和2e 称为 。讨论:同一平面的基底是否唯一? 4:设=,=,则 为和的夹角,记为θ,范围是 ;当θ=00 时, ;当θ=1800时, ;当0,记作 。 讨论探究: 作出下列向量的夹角 (1) (2) 1.把一个向量分解为两个互相垂直的向量,叫做把向量 2.对于平面上的一个向量a ,有且只有一对实数x,y,使得a xi y j =+,我们把有序实数对),(y x 叫做 向量a 的坐标,记作 . 比如力的分解, 6题例分析:(1):已知向量1e 和2e ,求作向量-2.51e +32e (提示:利用平行四边形法则合成) 变式练习:在平面直角坐标系中,1e 和2e 分别是x 轴和y =6, ∠AOX=600 ,试用1e 和2e 表示 提示:将向1e ,2e 的方向上分解,把两个分向量用1λ1e 和 2λ2e 表示出来,关键是求1λ和2λ (2):已知ABCDEF 是正六边形,且=,=,试用,表示 (提示:画出图形,用平行四边形法则或三角形法则进行转化) x A y O 1 e 2 e

空间直角坐标系及空间向量的坐标表示

选修2—1 第三章 空间向量与立体几何 §3.1.4 空间向量的坐标表示 总第(4)教案 (理科使用) ● 教学目的: 1、掌握空间直角坐标系的概念,会确定简单几何体的顶点坐标; 2、掌握空间向量坐标运算规律; 3、会根据向量的坐标,判断两个向量共线或垂直; 4、会用中点坐标公式解决有关问题● 教学重点:空间直角坐标系,向量坐标运算● 教学难点:空间向量的坐标的确定及运算 教学过程: 一、复习引入: 空间直角坐标系: (1)若空间一个基底的三个基向量互相垂直,长为1,这个基底叫单位正交基底,用{} k j i ,,表示; (2)在空间选定一点O 和一个单位正交基底{} k j i ,,,以点O 为原点,分别以k j i ,,的方向为 正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系 O xyz -,点O 叫原点,向量 i ,都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分 别称为xOy 平面, yOz 平面,zOx 平面;(这里建立的坐标系都是右手直角坐标系) 2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一 的有序实数组(,,)x y z ,使z y x ++= ,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作 (,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算:(类比平面向量的坐标运算) (1)若),,(321a a a a =,),,(321b b b b =,则 ),,(332211b a b a b a +++=+ ),,(332211b a b a b a ---=-, ))((321R a a a ∈=λλλλλ,,, 332211b a b a b a ++=?, ‖? 332211,,b a b a b a λλλ===(R ∈λ) 0332211=++?⊥b a b a b a 模长||3 22212a a a ++= (2)若111(,,)A x y z ,222(,,)B x y z , 则 ),,(122212z z y y x x AB ---=. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标 |AB|=2 12212212)()()(z z y y x x -+-+-

向量的坐标表示

§4.1 平面向量(四) ——平面向量的直角坐标及运算 一、复习旧知:(1)坐标系和点的坐标表示; (2)数和向量的意义和表示方法。 导入:哲学家卡尔.波普尔曾指出“科学与知识的增长永远始于问 题,终于问题——愈来愈深化的问题,愈来愈能启发新问题的问题”,这对数学亦不例外。 因此,在新课的引入中首先提出“在直角坐标系内,平面内的每一个点都可以用一对实数(即它的坐标)来表示”。同样,在平面直角坐标系内,每一个平面向量是否也可以用一对实数来表示?”启发学生思考 二、新授: 1、用坐标表示起点为原点的平面向量: i、j分别是与x轴、y轴方向相同的两个单位向量。则 一般地,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j,则对平面内任一向量a,都有唯一一对实数x、y,使得a=xi+yj我们把有序数对(x,y)叫做向量a的直角坐标,记作a=(x,y) 我们把( x , y ) 叫做向量的直角坐标,记作) , x (y

其中x 叫做a 在 x 轴上的坐标, y 叫做a 在y 轴上的坐标。 2、运算律: (1)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差: ),(2121y y x x b a ±±=±→ → (其中),(),,(2211y x b y x a ==→ → ) (2)一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标: 如果),(),,(2211y x B y x A ,则),(1212y y x x AB --=→ -; (3)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标: 若),(y x a =→,则),(y x a λλλ=→ ; 例题1: 用:单位向量→ i 、→j 分别表示向量→a 、→b 、→c 、→ d ,并求它们的坐标; 方法一:→ a =→-→-+21AA AA =2→i +3→j ,∴→a =(2,3)同理→ b =(-2,3),→ c =(-2,-3), → d =(2,-3) 方法二: A (2,2),B (4,5)∴→ a =(4,5)-(2,2)=(4-2,5-2)= (2,3) 同理→b =(-2,3),→c =(-2,-3),→ d =(2,-3) 方法三: →-OA =(2,2),→-OB =(4,5)∴→a =→-OB -→ -OA =(4,5)-(2,2)=(4-2,5-2)=(2,3) 同理→b =(-2,3),→c =(-2,-3),→ d =(2,-3)(2,2)=(2,3) 例题2:已知a =(1,2),b =(-5,3),求a +b ,a -b,3a -2b 分析:用向量的运算律进行计算 :拓展练习: 例题3:已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别为 (-2,1)、(-1,3)、(3,4),求顶点D 的坐标; 分析:本题检测如何用向量的终点和始点坐标求向量的坐标,并利用相等向量的坐标相同,建立等量关系求D 点的坐标; 解:设D 点坐标为(x ,y )→ -AB =(-1,3)-(-2,1)=(1,2) → -DC =(3,4)-(x ,y )=(3-x ,4-y )

相关文档
相关文档 最新文档