文档库 最新最全的文档下载
当前位置:文档库 › 发酵条件对发酵豆粕中抗营养因子的影响

发酵条件对发酵豆粕中抗营养因子的影响

发酵条件对发酵豆粕中抗营养因子的影响
发酵条件对发酵豆粕中抗营养因子的影响

菌种和发酵条件对发酵豆粕中抗营养因子的影响

作者:付弘赟, 李吕木, 蔡海莹, 张邦辉, 许平辉, 孙林, 徐同宝

作者单位:付弘赟,李吕木,蔡海莹,孙林,徐同宝(安徽农业大学动物科技学院,安徽,合肥,230036), 张邦辉(安徽天邦饲料科技有限公司,安徽,和县,238201), 许平辉(郑州博凯生物化工有限公

司,河南,郑州,450001)

刊名:

畜牧与兽医

英文刊名:ANIMAL HUSBANDRY & VETERINARY MEDICINE

年,卷(期):2009,41(6)

引用次数:0次

参考文献(16条)

1.Barth C A.Lurnling B.Schmitz M Soybean trypsin inhibitors reduce absorption of exogenous and increase loss of endogenous protein in miniature pigs 1993

2.于平.励建荣.顾振宇.陈秋东去除大豆抗营养因子的研究[期刊论文]-营养学报 2001(4)

3.Kiers J L.Meijer J C.Nout M J R Effert of fermented soy beans on diarrhcoa and feed efficiency in weaned piglets 2003(3)

4.陈静.潘健存.李华.李兴芳.王士长芽孢杆菌和乳杆菌的生物学特性研究[期刊论文]-黑龙江畜牧兽医 2006(10)

5.周春晖.黄惠华大豆胰蛋白酶抑制子失活方法的研究进展[期刊论文]-食品科学 2001(5)

6.季伟.徐学明乳酸链球菌固态发酵豆粕的研究[期刊论文]-粮食与饲料工业 2006(5)

7.李素芬.霍贵成.杨丽洁.张永成黑龙江省主要大豆品种中胰蛋酶抑制因子含量研究[期刊论文]-中国饲料

2001(5)

8.傅岩高.李慧荃三氯化铁测定植酸含量的研究 1997(2)

9.中华人民共和国知识产权局查看详情 2001(21)

10.Kerovuo J.Weymam N.Povelaynen M A new efficient expression system for Bacillus and its

application to production of recombinant phytsoe 2000(16)

11.陈惠.朱继喜.吕道俊芽孢杆菌对生长育肥猪肠道菌群及酶活性的影响 1994(z)

12.毕德成.柳燕乳酸发酵对某些谷物营养价值的影响 1988(12)

13.傅翠真.徐文英中国大豆脂肪氧化酶类型鉴定及酶活性分析 1996(1)

14.Kitamura K Biochemical characterization of lipoxygenase mutants Ll-loss,L-2-loss and L-3-less soybean 1984

15.Ida S Y.Masaki M Y Theisolation ofmultiple forms and product specificity of rice lipoxygenase 1983

16.丁安林.张艳.常汝镇大豆脂肪氧化酶研究进展 1995(1)

相似文献(10条)

1.期刊论文陈乃松.杨志刚.崔惟东.周洁.马建忠.王战付.郑剑伟.CHEN Nai-song.YANG Zhi-gang.CUI Wei-dong.

ZHOU Jie.MA Jian-zhong.WANG Zhan-fu.ZHENG Jian-wei酶制剂体外酶解豆粕中抗营养因子的研究-大豆科学

2008,27(4)

为了评价几种单一酶、复合酶以及钙离子对豆粕中的相关抗营养因子的水解效果,进行了体外酶解试验.共有4种单一酶制剂(植酸酶、果胶酶、纤维素酶和木聚糖酶)和3种复合酶制剂被采用,其中复合酶SB 由α-半乳糖苷酶和木聚糖酶组成,复合酶C3由植酸酶、果胶酶、纤维素酶组成,复合酶C5由植酸酶、果胶酶、纤维素酶、木聚糖酶和α-半乳糖苷酶组成.预试验显示上述酶有基本相似的最适水解反应参数:水分50%、pH 4.8~5.0、温度50℃和时间

45min.在此参数下,添加10.5 Ug-1豆粕的植酸酶,豆粕中植酸的降解率达到69.63%;添加果胶酶16 U·g-1豆粕,豆粕中果胶的降解率达到45.93%;添加纤维素酶50 U·g-1豆粕,纤维索降解率达到66.21%;分别添加木聚糖酶80 U·g-1豆粕和α-半乳糖苷酶0.7 U·g-1豆粕,豆粕中还原糖的释放量增加率分别达到84.77%和65.19%.在豆粕中添加0.2%CaCl2,植酸的降解率与对照组相比微增至71.09%,还原糖的释放量分别增加到88.68%和65.23%.但果胶和纤维素的降解率分别显著地增加到90.01%和70.43%.研究发现复合酶C3和C5对相关的抗营养因子均呈现出不同程度的协同效应.说明使用复合酶制剂并适量添加

CaCl2,体外水解豆粕中的相关抗营养因子是可行的.

2.期刊论文欧阳亮.李亮.蔡源锋.Ouyang Liang.Li Liang.Cai Yuanfeng垂直型SDS-PAGE分析发酵豆粕中蛋白类

抗营养因子的研究-饲料工业2008,29(21)

为探索发酵豆粕中蛋白类抗营养因子的情况,文章详细研究了聚丙酰胺凝胶电泳法分析固态发酵豆粕蛋白质分子量的操作步骤,试剂配制方法、操作要点,研究结果表明,豆粕经过微生物固态发酵以后,分子量有所降低,抗营养因子有明显改善,但不同发酵豆粕在蛋白类抗营养因子方面的质量有一定差异.

3.学位论文陈斌微生物发酵对豆粕中抗营养因子及营养价值的影响2005

本课题以豆粕和发酵豆粕为研究材料,通过测定其中的抗营养因子含量和营养物质的价值,利用体外消化的研究方法和动物饲养试验研究和探讨发酵对豆粕的营养价值的影响,结果表明,发酵豆粕组试验猪的末重、平均日增重、平均日采食量分别比豆粕组提高了13.99﹪、24.58﹪、和26.39﹪,料重比降低了1.43﹪,腹泻率降低了8.1﹪。发酵豆粕组仔猪的日粮干物质表观消化率、粗蛋白质表观消化率、粗脂肪表观消化率分别比豆粕组高8.89﹪、11.81﹪和35.88﹪,利用微生物发酵豆粕,可以降低豆粕中几种主要的抗营养因子,同时提高了豆粕的消化率和营养价值,证实发酵豆粕在养殖上使用是可行的。

4.期刊论文胡婷.陆文清.王翔.郭春.陈超豆粕中抗营养因子及其消除方法-饲料与畜牧2008(10)

大豆是重要的植物蛋白质和油脂来源,具有极高的营养价值,在畜禽饲料中得到广泛应用.但大豆中的抗营养因子限制了大豆及其制品在畜禽饲料中的利用水平.因此,人们对大豆抗营养因子的钝化方法进行研究.本文简要介绍了几种主要的大豆抗营养因子,并对使大豆抗营养因子失活的方法和发酵豆粕的营养特性进行了综述.以期为发酵豆粕在畜禽饲料中的广泛应用提供依据.

5.期刊论文郑裴.吕峰.徐玉霞.程茂基植物乳杆菌发酵豆粕及其抗营养因子的研究-安徽农学通报2009,15(10)

采用植物乳杆菌固态发酵豆粕,对豆粕中抗营养因子进行降解,结果表明,豆粕中尿素酶活由原来的0.373u/g降低到0.166u/g,胰蛋白酶抑制剂含量由原来的40.42mg/g降低到1 8.01mg/g.

6.学位论文陈伟抗营养因子对牙鲆(Paralichthys olivaceus)利用大豆蛋白源的影响2009

本文选择我国典型的肉食性鱼类牙鲆(Paralichthys olivaceus)为研究对象,采用传统养殖实验、体外细胞培养和胃内灌喂三种不同的实验模式比较研究影响牙鲆利用大豆蛋白的因素,阐明水生动物不能有效利用植物性蛋白源的原因。研究内容包括:(1)大豆皂甙对牙鲆摄食、生长和组织学的影响;(2)大豆异黄酮对牙鲆摄食、生长和组织学的影响;(3)三种大豆抗营养因子对牙鲆肠上皮细胞形态、存活率、增殖、膜完整性和功能的影响;(4)等摄食条件下用豆粕替代鱼粉对牙鲆生长、饲料效率和表观消化率的影响。主要研究结果如下: (1)以鱼粉为主要蛋白源,鱼油为脂肪源,小麦粉为糖源,以三氧化二钇为外源性指示剂,制成4种等氮、等能(粗蛋白49.1%,总能20.1 KJ/g)的实验饲料,使饲料中大豆皂甙实际含量分别达到0(对照组)、0.08%、0.32%和0.64%,研究不同大豆皂甙含量对牙鲆(2.58±0.01 g)摄食、生长、饲料效率、表观消化率和组织学的影响。实验在室内循环海水养殖系统中进行,每个处理设置三个重复,每天投喂2次,达饱食水平。分别在养殖实验开始、28 d和结束时对牙鲆进行称重。实验结果表明,随着饲料中大豆皂甙水平的升高,牙鲆摄食率、平均体重、鱼体粗脂肪含量和饲料粗蛋白表观消化率均显著下降(P<0.05)。在实验前28 d,随着饲料中大豆皂甙含量的提高,牙鲆的摄食率呈线性下降趋势(r=-0.869,P<0.001),但试验结束时各组间摄食率相比较差异不显著(P>0.05)。与对照组相比较,无论在28 d还是试验结束时,饲料中添加0.64%大豆皂甙都显著降低了牙鲆的平均体重(P<0.001)。添加0.32%的大豆皂甙在28 d时的平均体重显著低于对照组(P<0.05),但是试验结束时平均体重与对照组没有显著差异(P>0.05)。高浓度的大豆皂甙(0.64%)还造成了牙鲆肝脏和后肠组织的病理性变化。通过分析认为,高含量的大豆皂甙显著抑制了牙鲆的摄食和生长性能,因此在以大豆制品来替代鱼粉饲喂牙鲆时不应该忽略大豆皂甙的抗营养作用。

(2)以鱼粉为主要蛋白源,鱼油为脂肪源,小麦粉为糖源,以三氧化二钇为外源性指示剂,制成4种等氮、等能(粗蛋白49.1%,总能20.1 KJ/g)实验饲料,使饲料中大豆异黄酮实际含量分别达到0(对照组)、0.1%、0.4%和0.8%,研究不同大豆异黄酮含量对牙鲆(2.58±0.01 g)摄食、生长、饲料效率、表观消化率和组织学的影响。实验在室内循环海水养殖系统中进行,每个处理设置三个重复,每天投喂2次,达饱食水平。实验结果表明,在饲料中添加0.1%和0.4%的大豆异黄酮对牙鲆摄食、生长、饲料效率、鱼体组成、表观消化率和组织学结构均没有显著影响(P>0.05)。而与对照组相比较,饲料中添加0.8%大豆异黄酮显著降低了牙鲆的平均体重、鱼体的粗脂肪含量和饲料表观消化率(P<0.05),并造成了牙鲆后肠组织的病理性变化。通过分析认为,如果饲料中大豆异黄酮的含量不超过0.4%,它对牙鲆的抗营养作用不明显。由于一般大豆制品中大豆异黄酮的含量在0.1~0.3%,因此本文建议在使用大豆制品来替代鱼粉饲喂牙鲆时可以不用考虑大豆异黄酮的抗营养作用。 (3)通过分离和原代培养牙鲆肠道上皮细胞,并以其为细胞模型,研究大豆中三种热稳定性抗营养因子对其形态、存活率、增殖、膜完整性和功能的影响。本实验研究的三种抗营养因子为大豆皂甙、植酸和棉子糖,其在培养液中的浓度分别为2、4和8 g L-1。结果表明:与其他三个处理组相比(对照、植酸和棉子糖),在培养液中添加2 g L-1的大豆皂甙显著抑制牙鲆肠道上皮细胞的存活、增殖和细胞碱性磷酸酶活力(P<0.001),并严重破坏了牙鲆肠上皮细胞细胞膜的完整性,改变了细胞的形态结构;与对照组相比

,在培养液中添加4 g L-1的植酸显著改变牙鲆肠上皮细胞的形态结构,并抑制细胞的存活、增殖、细胞膜完整性和细胞碱性磷酸酶活力(P<0.05);与对照组相比,在培养液中添加8 g L-1的棉子糖对牙鲆肠道上皮细胞的形态结构、存活、增殖、细胞膜完整性和细胞碱性磷酸酶活力均没有显著影响

(P>0.05)。本实验添加的浓度参考了这三种抗营养因子在一般大豆制品中的含量,也是当牙鲆摄食含有50%豆粕的饲料后它的肠上皮细胞所在环境的抗营养因子含量,比其他以细胞为研究模型的报道要高。通过分析认为,在使用大豆制品来替代鱼粉饲喂牙鲆时应重视大豆皂甙和植酸对鱼类肠道的损害作用,并设法去除,不过可以不用考虑棉子糖的抗营养作用。 (4)以鱼粉和豆粕为蛋白源,配制了4种等氮等能的实验饲料(粗蛋白50.0%,总能20.5 KJ/g)。采用长时间胃内灌喂法(被动摄食)投喂牙鲆(60.0±0.66 g),在摄食量相同的情况下,研究以鱼粉为蛋白源的饲料中添加多种抗营养因子(0.2%大豆胰蛋白酶抑制因子、0.2%大豆皂甙、0.2%大豆异黄酮、0.4%植酸钠和0.5%棉子糖)和以45%豆粕替代鱼粉为蛋白源的饲料中添加晶体氨基酸(0.75%蛋氨酸和0.25%赖氨酸)对牙鲆生长、存活、饲料效率和表观消化率的影响。实验在室内循环海水养殖系统中进行,每桶5尾鱼,每个处理设置三个重复,每天人工灌喂饲料1次,每尾鱼1ml(干重0.54 g)。研究结果表明:采用灌喂法养殖的牙鲆生长和存活状况良好,对照组饲料效率达到

1.22,且实验期间没有出现鱼体死亡现象;在摄食量相同的情况下,用豆粕替代45%的鱼粉显著降低了牙鲆的体增重、饲料效率和表观消化率

(P<0.05),且平均体增重还不到鱼粉组的一半(从15.68g到7.73g,P<0.05);在摄食量相同的情况下,饲料中添加多种抗营养因子在实验开始的前四天显著降低了牙鲆的体增重和饲料效率(P<0.05),但随着实验周期的延长,在饲料中添加多种抗营养因子对牙鲆的体增重、饲料效率和表观消化率均没有显著影响(P>0.05);在摄食量相同的情况下,与豆粕组相比较,在豆粕饲料中添加蛋氨酸和赖氨酸对牙鲆的体增重、饲料效率和表观消化率均没有显著影响(P>0.05)。通过分析认为,在用豆粕替代45%鱼粉的实验中,抗营养因子不是导致牙鲆生长下降的主要因素;在替代45%鱼粉的豆粕饲料中添加蛋氨酸和赖氨酸并不能有效改变豆粕的替代效果;由于本实验采用的是人工灌喂的投喂模式,不会存在诱食性差的因素。因此本文认为可能还存在影响牙鲆利用大豆蛋白源的其他因素,并提出了以下三个易被忽略的因素:①豆粕中存在大量不能被鱼类利用的能量物质;②大豆蛋白本身的抗营养作用

;③大豆蛋白和鱼粉蛋白水解生成的小肽混合物组成不同。

7.期刊论文何玉华.严昌国.HE Yuhua.YAN Changguo豆粕中抗营养因子及其钝化方法-吉林农业科技学院学报

2009,18(1)

豆粕中含有一些抗营养因子,它能干预营养物质的消化利用,并对动物健康和生长性能产生不良影响.本文对饲料中的几种重要的抗营养因子的作用机理及其钝化方法进行了综述.

8.期刊论文邝哲师.叶明强.丘银清.黄小光.潘木水.张玲华豆粕抗营养因子的微生物发酵降解试验-中国饲料

2007(22)

本研究采用多温相微生物发酵法对豆粕中的抗营养因子进行降解,结果表明,豆粕中的尿素酶活性由原来的0.353 mg/g·min降低到0.021

mg/g·min;大豆寡糖中棉籽糖的含量降低到0.52%,水苏四糖的含量也降低到0.61%:蛋白质分子降解为小分子多肽.

豆粕来源广泛,营养丰富,是重要的植物性饲料蛋白源。但豆粕中存在的多种抗营养因子,极大地影响了它在幼龄动物饲粮中的大量使用。目前对豆粕中抗营养因子的处理方法多以化学、物理方法为主,有一定的去除作用,但存在安全性、成本高以及对豆粕中营养价值损失大等缺陷。本研究以微生物固态发酵手段对普通生豆粕进行发酵处理,研究微生物发酵对豆粕中抗营养因子及其营养价值的影响。 1.菌种和发酵条件对发酵豆粕中抗营养因子的影响。利用枯草芽孢杆菌、蜡样芽孢杆菌、植物乳酸菌,酪酸梭状芽孢杆菌四种菌种进行单菌发酵试验,采用多因素试验设计,研究接种量、含水量、发酵时间对各菌去除豆粕中胰蛋白酶抑制因子、植酸、脂肪氧化酶、凝集素等抗营养因子的影响。结果表明,枯草芽孢杆菌在料水比1:1、接种量9%,发酵

48h条件下对豆粕中胰蛋白酶抑制因子及植酸的去除率分别达到65.36%和83.45%(P<0.01),此条件下脂肪氧化酶(lox1、lox2)也被完全灭活(P<0.01)。枯草芽孢杆菌在料水比1:1.2、接种量9%,发酵48h条件下对凝集素的去除率达到90%(P<0.01)。 2.混菌发酵对发酵豆粕中抗营养因子的影响。以普通生豆粕为原料,选用用枯草芽孢杆菌、蜡样芽孢杆菌、植物乳酸菌和酵母菌进行混菌发酵,采用L27(313)正交试验设计研究混菌接种比例对豆粕各抗营养因子以及对小肽含量的影响,确定混菌发酵作用的主次菌种和最佳菌种接种比例。结果表明:混菌发酵中枯草芽孢杆菌:蜡样芽孢杆菌:植物乳酸菌:酵母菌最佳接种比例分别为6%:4%:4%:4%,在料水比1:1、发酵24h,pH自然条件下对胰蛋白酶抑制因子去除率达到75.89%、植酸去除率达到

86.71%、大豆抗原蛋白完全去除(P<0.01)。在去除胰蛋白酶抑制因子的效应中,枯草芽孢杆菌对胰蛋白酶抑制因子的影响极显著(P<0.01),蜡样芽孢杆菌次之,影响显著(P<0.05)。枯草芽孢杆菌和酵母菌对植酸的去除中均达到显著水平(P<0.05),同时枯草芽孢杆菌在对增加小肽含量的效应中也有极显著影响(P<0.01)。各菌在去除脂肪氧化酶、凝集素的效应中影响差异不显著(P>0.05)。 3.混合发酵去除豆粕中抗营养因子最佳发酵条件研究。以普通豆粕为原料,菌种接种比例为枯草芽孢杆菌:蜡样芽孢杆菌:植物乳酸菌:酵母菌=6%:4%:4%:4%,设定4个5水平的单因素试验,分别研究起始pH值、含水量、温度,发酵时间等因素对混菌发酵效果的影响,确定混菌发酵最佳发酵条件。结果表明,混菌发酵最佳条件为料水比1:1~1:1.2、发酵温度37℃、起始pH自然(6.5),发酵时间60h,豆粕中胰蛋白酶抑制因子活性为10.21 mg/g,去除率达79.44%,植酸含量为0.07%,去除率为90.62%,凝集素含量为3.216μg/g,去除率达99.69%,脂肪氧化酶lox1活性为0.125,去除率达90%,而脂肪氧化酶lox2则被完全灭活。大豆抗原蛋白去除率达到95%,另外小肽含量也由2.7%增加至11.98%。

10.期刊论文曹钰.蔡国林.陆健.Cao Yu.Cai Guo-lin.Lu Jian提高豆粕营养价值的研究进展-饲料与畜牧

2007(6)

豆粕是饲料工业中应用最广泛的植物性蛋白原料,但由于存在多种抗营养因子,降低了动物对豆粕营养的吸收率.大量的研究工作表明采用热处理、化学法、作物育种法、酶制剂法、微生物发酵法均可以在一定程度上降解抗营养因子.比较发现,采用微生物发酵处理法可以有效地降解豆粕中主要的抗营养因子,并能积累有益的代谢产物,提高豆粕的营养价值,获得具有多种功能的优质蛋白饲料.

本文链接:https://www.wendangku.net/doc/b02220725.html,/Periodical_xmysy200906009.aspx

下载时间:2010年4月14日

抗营养因子灭活

目前, 主要通过物理、化学和生物学途径来钝化和灭活饲料中的抗营养因子。这些方法能在一定程度上降低抗营养因子的活性, 但加工处理的效果因饲料抗营养因子的种类、含量、活性等方面的不同而有差别。 3.1 物理方法 3.1.1 膨化与制粒 膨化处理是在专门的膨化机内进行的, 其原理是在一定温度下通过螺旋轴转动给予原料一定的压力, 使原料从喷嘴喷出, 原料因压力瞬间下降而被膨化, 抗营养因子会随之失活。胰蛋白酶抑制因子的失活程度可随膨化温度的升高而升高;植物凝集素对热很敏感, 在温度达120 ℃时所有的植物凝集素全部消失。Petres 等(1981)报道, 电加热至120 ℃,大约有93%的胰蛋白酶抑制因子失活。而杨丽杰等(1998)的研究证明, 单杆螺旋在121 ℃下膨化商品大豆, 可失活70 %以上的胰蛋白酶抑制因子和全部凝集素。张明峰(1998)报道, 干膨化处理可使大豆中的胰蛋白酶抑制因子的活性下降80%, 脲酶和脂肪氧化酶的活性降低至较低水平, 是目前国内外较理想的灭活方法。另外, 膨化还对饲料有剪切作用, 破坏植物细胞壁, 能降低饲料中的纤维含量, 从而提高动物对细胞内容物的利用率。在制粒过程中, 一部分热来自蒸汽(70 ~ 90 ℃, 15 ~20 s), 另一部分来自饲料成分在制粒过程中被挤压而产生的热。制粒能较彻底的灭活蚕豆和豌豆中的胰蛋白酶抑制因子, 但不同制粒工艺, 其灭活效果有较大差异, 有的工艺甚至灭活效果不明显。 3.1.2 挤压处理 挤压处理可分为干榨和湿榨2 种。Friesen 等(1993)报道, 用湿榨法处理的豆饼与未处理的豆饼相比会显著提高断奶仔猪的日增重和饲料报酬。他们的研究还表明, 饲喂湿榨处理的豆饼的断奶仔猪, 其日增重比饲喂干榨豆饼的仔猪有显著提高。Piao et al(1999)报道, 挤压处理能使大麦细胞壁的β -葡聚糖和阿拉伯木聚糖结构发生变化, 水溶性增加, 从而提高了营养成分利用率。 3.1.3 蒸汽处理 这种方法又可以分为常压和高压。常压加热的温度低,一般在100 ℃以下。常压蒸汽处理30 min 左右, 大豆中的胰蛋白酶抑制因子活性可降低90%左右, 而不破坏赖氨酸的活性。高压蒸汽处理是用专门的高压蒸汽锅或罐进行的。原料在容器内的加热时间随温度、压力、pH 值及原料性质的不同而有很大差异。全脂大豆在120 ℃蒸汽加热7 .5 min 胰蛋白酶抑制因子从20.6 mg/ g 降低到3.3 mg/g 。Johnson 等(1980)报道, 在pH 6.7 , 99~ 154 ℃范围内, 温度每升高11 ℃,胰蛋白酶抑制因子的灭活速率增加一倍, 他们的研究还指出, 在pH 6 .7, 99 ℃处理1 h, 会使胰蛋白酶抑制因子的活性降低到原来的7.6 %;在pH 6 .7, 154 ℃和pH 9.5, 143 ℃则只需40 s, 其活性就可降低到原来的7.6%。 3.1.4 去壳处理 禾谷类籽实的种皮中含有较多的非淀粉多糖, 而豆类和高粱的壳中含有较多的单宁、木质素、植酸等抗营养因子, 去壳处理就能够除掉这些抗营养因子, 同时提高其蛋白质的含量, 提高其利用率。Marquardt(1989)用蚕豆的实验证明对一些种皮单宁类含量高的豆类饲料, 去皮后其蛋白质的消化率和蛋白质质量提高;以淀粉和离散蛋白颗粒的大小为基础,利用气流分类技术就能够把豆类籽实的各部分分开, 这样不仅可以除去抗营养因子, 还可以提高蛋白质的质量。 3.1.5 微波处理

豆粕中抗营养因子及其消除方法

豆粕中抗营养因子及其消除方法 文章来源:本站原创更新时间:2008-10-8点击数:2406 评论本文 摘要:大豆是重要的植物蛋白质和油脂来源,具有极高的营养价值,在畜禽饲料中得到广泛应 用。但大豆中的抗营养因子限制了大豆及其制品在畜禽饲料中的利用水平。因此,人们对大豆 抗营养因子的钝化方法进行研究。本文简要地介绍了几种主要的大豆抗营养因子,并对使大豆 抗营养因子失活的方法和发酵豆粕的营养特性进行了综述,为发酵豆粕在畜禽饲料中的广泛应 用提供依据。 关键词:发酵豆粕,大豆抗营养因子,钝化 二十世纪九十年代以来,在英国疯牛病危机之后,引发了人们对畜禽饲料中动物来源蛋白质安全性的担忧,世界各国纷纷禁止动物源蛋白质在饲料中使用,由此相应地增加了对高质量植物蛋白的需求量。这意味着能够提供优质蛋白质的大豆和大豆蛋白制品必将在今后的畜禽饲料配制中扮演更加重要的角色。然而,大豆中含有的抗营养因子降低了养分的有效性,限制了其在动物饲料中的使用。因此,通过育种、加工和营养等手段来降低大豆及其制品中抗营养因子的含量,提高养分的利用率一直是营养学家们工作的重点。 豆粕是大豆经浸提或预压浸提制油工艺的副产物,为植物性蛋白质饲料的主要来源之一,占畜禽蛋白质饲料原料用量的百分之六十以上。大豆榨油过程中的热处理可以有效地灭活大豆中的胰蛋白酶抑制因子和大豆凝集素等抗营养因子,但生产中对热处理必须进行严格控制:加热不足不能完全灭活抗营养因子,而加热过度,有可能因发生美拉德反应而降低养分的可利用率,使得豆粕的营养特性发生很大的变化(Helena等,2003),与传统的豆粕相比,发酵豆粕在营养成分含量、氨基酸有效性和抗营养因子去除率等方面均有很大提高。 发酵豆粕是采用独特的菌种和发酵工艺,利用微生物发酵过程中分泌的蛋白酶使大豆蛋白被分解成小分子蛋白和小肽分子,游离氨基酸和UGF(未知生长因子)等物质,同时能消减抗营养因子的一些作用,使其易被幼龄动物消化吸收。因此,发酵豆粕作为功能性饲料蛋白质而受到广泛关注。大量的研究将发酵大豆蛋白和豆粕对于早期断奶仔猪的饲养效果进行比较(Cho等,2007),表明发酵过程中的酶解作用使发酵豆粕中含有较高比例的小肽(Hong等,2004)以及降低了发酵豆粕中的抗营养因子含量(Reddy和Pierson,1994)。但就目前来看,豆粕通过发酵工艺,微生物分泌蛋白酶降解蛋白的作用是否完全,抗营养因子被去除的程度,养分价值被提高的真实水平都有待探讨,所以进行动物饲养试验,并结合有效、全面的指标检测是必需的,关键是要采用简便、敏感度高的方法。 1大豆的抗营养因子 目前,人们把对营养物质的消化、吸收和利用产生不利影响以及使人和动物产生不良生理反应

豆粕营养成份及标准

豆粕营养成份及标准 [关键词]豆粕标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 豆粕 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达 85-92%。黄豆内存在着非营养成分的urease等酵素,trypsin inhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihn inhibiter含量,通常NSI 25%以下为一个指标。牛方面,加热不充分之urease活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:0.515?/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸2.5%~3.0%,色氨酸0.6%~0.7%,蛋氨酸0.5%~0.7%,胱氨酸 0.5%~0.8%;胡萝卜素较少,仅0.2~0.4mg/Kg,流胺素、核黄素各3~6mg/Kg,烟酸15~30mg/Kg,胆碱2200~2800mg/Kg。豆粕中较缺乏蛋氨酸,粗纤维 去皮与带皮豆粕组成比较 原蛋白 质Crude Protein Extract 以太纤 维Ether Fiber % 粗纤维 Crude % 能量 Energy (kcal/kg) 带皮豆 粕 44.0(8)0.5(10)7.0(7)2240(8)去皮豆 粕 48.5(10)1.0(7)3.0(10)2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕精氨酸 3.4 3.8 赖氨酸 2.9 3.2 蛋氨酸0.65 0.75 胱氨酸0.67 0.74 色氨酸0.6 0.7 组氨酸 1.1 1.3 亮氨酸 3.4 3.8 异亮氨酸 2.5 2.6 苯丙氨酸 2.2 2.7 苏氨酸 1.7 2 总价值 2.4 2.7

豆粕中抗营养因子及其消除方法

豆粕中抗营养因子及其消除方法 摘要:大豆是重要的植物蛋白质和油脂来源,具有极高的营养价值,在畜禽饲料中得到广 泛应用。但大豆中的抗营养因子限制了大豆及其制品在畜禽饲料中的利用水平。因此,人 们对大豆抗营养因子的钝化方法进行研究。本文简要地介绍了几种主要的大豆抗营养因子, 并对使大豆抗营养因子失活的方法和发酵豆粕的营养特性进行了综述,为发酵豆粕在畜禽 饲料中的广泛应用提供依据。 关键词:发酵豆粕,大豆抗营养因子,钝化 二十世纪九十年代以来,在英国疯牛病危机之后,引发了人们对畜禽饲料中动物来源蛋白质安全性的担忧,世界各国纷纷禁止动物源蛋白质在饲料中使用,由此相应地增加了对高质量植物蛋白的需求量。这意味着能够提供优质蛋白质的大豆和大豆蛋白制品必将在今后的畜禽饲料配制中扮演更加重要的角色。然而,大豆中含有的抗营养因子降低了养分的有效性,限制了其在动物饲料中的使用。因此,通过育种、加工和营养等手段来降低大豆及其制品中抗营养因子的含量,提高养分的利用率一直是营养学家们工作的重点。 豆粕是大豆经浸提或预压浸提制油工艺的副产物,为植物性蛋白质饲料的主要来源之一,占畜禽蛋白质饲料原料用量的百分之六十以上。大豆榨油过程中的热处理可以有效地灭活大豆中的胰蛋白酶抑制因子和大豆凝集素等抗营养因子,但生产中对热处理必须进行严格控制:加热不足不能完全灭活抗营养因子,而加热过度,有可能因发生美拉德反应而降低养分的可利用率,使得豆粕的营养特性发生很大的变化(Helena等,2003),与传统的豆粕相比,发酵豆粕在营养成分含量、氨基酸有效性和抗营养因子去除率等方面均有很大提高。 发酵豆粕是采用独特的菌种和发酵工艺,利用微生物发酵过程中分泌的蛋白酶使大豆蛋白被分解成小分子蛋白和小肽分子,游离氨基酸和UGF(未知生长因子)等物质,同时能消减抗营养因子的一些作用,使其易被幼龄动物消化吸收。因此,发酵豆粕作为功能性饲料蛋白质而受到广泛关注。大量的研究将发酵大豆蛋白和豆粕对于早期断奶仔猪的饲养效果进行比较(Cho等,2007),表明发酵过程中的酶解作用使发酵豆粕中含有较高比例的小肽(Hong等,2004)以及降低了发酵豆粕中的抗营养因子含量(Reddy和Pierson,1994)。但就目前来看,豆粕通过发酵工艺,微生物分泌蛋白酶降解蛋白的作用是否完全,抗营养因子被去除的程度,养分价值被提高的真实水平都有待探讨,所以进行动物饲养试验,并结合有效、全面的指标检测是必需的,关键是要采用简便、敏感度高的方法。

豆粕的质量指标以及验收指标

豆粕的质量指标以及验收指标 1主题内容与适用范围 本标准规定了饲料用大豆粕的质量指标,适用山东省明发同茂饲料有限公司所用的大豆粕(注:经预压-浸提法或浸提法提取油后的饲料用大豆粕)。 2 感官性状 浅黄色不规则碎片状,色泽一致,新鲜,有豆粕的特殊香味。无发酵、霉变、结块、虫蛀及异味异臭。不得掺入饲料用大豆粕以外的物质,若加入抗氧化剂、防霉剂等添加物时,应做相应的说明。 3 质量指标(暂行标准) 水分≤14.5% ; 粗灰分≤7.0%; 粗蛋白质≥42.0%; 65%≤蛋白质溶解度≤85% 0.03 Nmg/分钟·克≤脲酶活性≤0.3% Nmg/分钟·克 4 验收指标 感官性状,水分,粗灰分,粗蛋白,蛋白溶解度,脲酶活性。 5 卫生指标 滴滴涕(mg/kg)≤0.02 ,其余卫生指标应符合中华人民共和国《饲料卫生标准》GB 13078有关的规定。 6 检验 水分、粗蛋白质、粗纤维、粗灰分等指标按《饲料工业标准汇编》2002版执行。对公司不能检测的项目或有争议的检测结果,根据需要可送相应的检测机构进行检测。

饲料用花生粕 1主题内容与适用范围 本标准规定了饲料用花生粕的质量指标,用于明发同茂饲料公司所用的花生粕。 2 感官性状 碎屑状,色泽呈新鲜一致的黄褐色或浅褐色,无发酵、霉变、虫蛀、结块及异味异臭。不得掺入饲料用花生粕以外物质,若加入抗氧化剂,防霉剂等添加剂时,应做相应的说明。 4 质量指标 水分≤12.0% 粗蛋白质≥45.0% 粗纤维< 6.5% 粗脂肪≤2.0% 粗灰分< 8.0% 5 卫生指标 黄曲霉毒素B1(mg/kg)≤0.05,其它卫生指标应符合中华人民共和国《饲料卫生标准》GB 13078的有关规定 6 检验 水分、粗蛋白质、粗纤维、粗灰分等指标按《饲料工业标准汇编》2002版执行。对公司不能检测的项目或有争议的检测结果,根据需要可送相应的检测机构进行检测。

活性发酵豆粕

活性发酵豆粕(生物活性菌体蛋白)介绍 第一部分豆粕为什么要发酵 【豆粕发酵的目的】 一、破坏豆粕中抗营养因子 豆粕中含有胰蛋白酶抑制因子、低聚糖、凝集素、植酸、脲酶等抗营养因子,在发酵过程中通过微生物作用、酶及发酵产生有机酸的作用,使得抗营养因子被降解或者钝化,从而得到破坏。 豆粕中的抗营养因子的危害(综述) 1、胰蛋白酶抑制因子IT,抑制生长。大豆中最重要蛋白类抗营养因子,约占大豆蛋白6%,IT通过对胰蛋白酶的抑制,引起胰腺肥大和增生,甚至产生腺瘤,引起动物生长抑制。 2、大豆凝集素(SBA),影响消化吸收及免疫抑制:脱脂豆粕中约含3%,难以完整吸收进入血液,引起红细胞凝集,在消化道中损坏小肠壁粘膜结构,影响多种酶的分泌,对肠道的消化和吸收功能有严重的抑制作用,凝集素也对动物的免疫系统产生不良影响,抑制动物生长。 3、低聚糖,胃肠胀气因子:豆粕富含棉子糖与水苏糖等低聚糖,人和动物不能消化这些低聚糖,结果它们进入结肠被细菌发酵产生大量二氧化碳和氢,少量甲烷,从而引起肠道胀气,并导致腹痛、腹泻、肠鸣等。 4、脲酶:影响蛋白吸收利用,是豆粕类蛋白原料质量重要影响因素。 5、植酸:与饲料原料中的磷结合,形成难于被动物消化吸收的植酸磷,降低动物对磷的消化吸收。 6、非淀粉多糖(NSP):是植物细胞壁物质主要成分,难以被单胃动物自身分泌的消化酶水解,能在消化道形成粘性食糜,降低饲料脂肪、淀粉和蛋白等养分营养价值。 7、酚类化合物:大豆中酚类化合物如单宁可以与蛋白质如赖氨酸、甲硫氨酸相结合,使蛋白质的利用率降低。 二、消除豆粕蛋白的抗原性 豆粕蛋白具有很强的抗原性,在发酵过程中,主要是通过降解而使其失去抗原性。大量研究表明,豆粕中存在的抗原物质能引起仔猪等幼龄动物的肠道过敏--损伤,进而引起腹泻。已证实,引起断奶仔猪过敏反应的主要抗原是大豆球蛋白和β--伴大豆球蛋白。 三、降解大分子蛋白质,形成易吸收的小肽蛋白 豆粕中主要组分11S 和7S 是大分子蛋白,分子量分别为350K D 和180K D,通过发酵酶解,被降解为可溶于水的小分子氨基酸及小肽,利于动物的吸收利用。S是蛋白质超速离心机组份分离时的单位,1S=1/1013秒。豆粕蛋白应用超速离心分离方法进行分离分析,按照沉降模式,可分为2S、7S、11S和15S 共4个主要的组份,它们的比例成分为9.4%,43%,43.6%和4.6%,7S、11S含量达86%以上。

大豆抗营养因子及其消除方法

大豆抗营养因子及其消除方法 【摘要】大豆中含有胰蛋白酶抑制因子和脂肪氧化酶等多种抗营养因子,它们直接影响大豆食品与饲料的营养价值和食用安全性,降低了大豆的利用率。本文综述了胰蛋白酶抑制剂和脂肪氧化酶的抗营养作用以及消除方法的研究进展。 【关键词】胰蛋白酶抑制剂;脂肪氧化酶;抗营养作用;消除方 【正文】 (一)大豆因其蛋白质含量高和氨基酸平衡性好而成为人类植物蛋白和脂肪的主要来源,同时又是发展家畜、家禽和鱼的重要蛋白质饲料来源,但是其中还含有很多 抗营养因子,如胰蛋白酶抑制剂、脂肪氧化酶、凝集素、单宁、植酸等,它们不 但使大豆的营养价值受到影响,还对畜禽的健康产生不同程度的影响,从而降低 了大豆及其加工产品的利用效率。本文对近几十年来国内外学者对胰蛋白酶抑制 剂和脂肪氧化酶的理化性质、抗营养作用机理以及大豆主要抗营养因子消除方法 的研究和报道进行了综。 (二)大豆抗营养因子的消除方 1、物理失活:大豆中部分抗营养因子对热不稳定,充分加热即可使之变性失活。目 前,膨化法是抗营养因子热失活最常用的方法,对全脂大豆及其副产品进行膨化,不仅可降低其所含胰蛋白酶抑制剂等抗营养因子的活性;还会改善大豆所含蛋白质的品质,提高其消化、吸收和利用率,因此得到了广泛的应用。大豆胰蛋白酶抑制剂的失活可以分为耐热性不同的两个阶段,第一个阶段是KTI的热失活,而第二个阶段则是BBI热失活,BBI的热稳定性之所以比KTI强,是由于BBI的分子结构中含有3个二硫键,而KTI则只有2个二硫键。大豆制品中的胰蛋白酶抑制剂的失活程度,多数报道认为失活70%~85%效果较好。刘寅哲利用膨化豆粕代替普通豆粕饲喂肉仔鸡的研究结果表明,肉仔鸡对蛋白质的消化吸收率提高12.9%,31~49日龄肉仔鸡平均日增重提高13.5%,膨化豆粕应用价值明显好于普通豆粕。 2、化学失活:利用抗营养因子的化学特性,添加某些化合物消除或缓解抗营养物质。 用化学试剂处理破坏KTI和BBI分子结构中的二硫键结构,可破坏其活性,同时氨基酸的组成不发生明显变化。张建云等人采用化学钝化法研究了多种化学物质及其浓度、作用时间等因素对胰蛋白酶抑制剂活性的影响,研究结果表明,5%的尿素加20%水处理豆粕30d效果最好,使胰蛋白酶抑制剂的失活率达78.55%。化学方法对不同的抗营养因子均有一定的效果,可节省设备与资源,但存在化学物质残留,影响饲料品质,降低适口性,且排出的脱毒液会造成污染环境,对动物机体也会产生毒害作用。 3、作物育种方法:大豆优良品种的选育是消除抗营养因子的根本,培育专门化品种 是解决大豆及豆制品适口性和品质问题的关键,因为通过加热等物理化学方法将大豆抗营养因子失活的同时,也降低了大豆种子中丰富蛋白的可溶性,而且其中所耗的费用最终加入到产品的成本中,提高了产品的价格。因此,多年来,科学家们一直在寻找低含量或不含胰蛋白酶抑制剂和脂肪氧化酶等抗营养因子的大豆新品。

发酵豆粕中微生物影响

发酵豆粕中三种微生物的功能 发酵豆粕又名生物肽,生物豆粕,生物活性小肽,大豆肽,它是通过微生物的发酵最大限度地消除豆粕中的抗营养因子,有效地降解大豆蛋白为优质小肽蛋白源,并可产生益生菌、寡肽、谷氨酸、乳酸、维生素、UGF(未知生长因子)等活性物质。目前常见的发酵豆粕中的微生物一般为乳酸菌、酵母菌和枯草芽孢杆菌,三种微生物在发酵豆粕以及对动物本身的作用有以下几点。 一、乳酸菌 乳酸菌在豆粕中通过发酵产生有机酸、特殊酶系,能刺激组织发育,对机体的营养状态生理功能免疫反应等具有促进作用。 1、提供营养物质,促进机体生长。 乳酸菌的正常代谢可以在机体内为宿主提供可以利用的必需氨基酸和各种维生素,还可以提高矿质元素的生物活性,进而达到为宿主提供必要的营养元素的目的。 2、改善胃肠道功能,维持肠道菌群平衡 动物的整个消化道在正常的情况下都寄生着大量的微生物,因其作用不同分为三类,有共生性类型、致病性类型和中间性类型,乳酸菌就可以抑制有害菌的繁殖,调整肠道内菌群的平衡状态,进而改变肠道内的环境,是宿主恢复抵抗力。

3、改善免疫力 乳酸杆菌和双歧杆菌能明显激活巨噬细胞的吞噬作用,达到天然自动免疫的作用。他们还能刺激腹膜巨噬细胞诱导产生干扰素、促进细胞分裂。所以能够增强机体的免疫力,提高抗病能力。 4、抗菌作用 乳酸菌对一些腐败菌和低温细菌有较好的抑制作用,可用于防治腹泻、肠炎等。 二、枯草芽孢杆菌 在豆粕发酵的过程中会闻到有氨的气味,因为枯草芽孢杆的蛋白酶活力较强,能把大豆粕中的蛋白质分解为短肽和氨基酸,枯草芽孢杆菌在氨基酸代谢中有脱羧作用产生有机氨,这表明枯草芽孢杆菌能产生的酶的活性较强,另外它还有以下重要作用。 1、拮抗致病微生物,改善体内外生态环境 枯草芽孢杆菌进入机体后能显著降低肠道大肠杆菌和沙门氏菌的数量,使机体内的有益菌增加、有害菌减少,净化体内外环境,减少疾病的发生。 2、产生多种消化酶 芽孢杆菌能提高动物生产性能使其产生多种消化酶的一个重要体现,这一点在枯草芽孢杆菌上尤其突出。有很强的蛋白酶、淀粉酶、

发酵豆粕的研究与应用

发酵豆粕的研究与应用 [提要] 豆粕是饲料工业中常用的一种优质植物蛋白原料,其营养丰富,蛋白质含量高,氨基酸组成比例合理,但是豆粕中存在多种抗营养因子,降低了畜禽对其营养的吸收和利用。用微生物发酵的方式处理豆粕,不仅可以有效去除豆粕中的抗营养因子,还能够将豆粕的蛋白质降解成小肽,更利于消化吸收,同时还能够产生有益的微生物代谢产物,大大提高了豆粕的营养价值。本文从豆粕营养价值、发酵豆粕特点、发酵豆粕的应用等方面进行阐述。 关键词:发酵豆粕;抗营养因子;营养价值 一、豆粕的营养特点 豆粕是大豆榨油之后的副产品,一般其粗蛋白含量在43%~48%之间,含有人体所必需的8种氨基酸,尤其是赖氨酸的含量比较高,其含量约为2.5%~2.8%。目前豆粕在饲料工业和畜牧养殖上有广泛的应用。与棉粕、菜粕、花生粕相比,豆粕具有氨基酸含量平衡、消化率高、适口性好等特点;与动物来源蛋白(如鱼粉、骨肉粉、血浆蛋白粉等)相比,豆粕具有货源充足、不易被病原菌污染或氧化腐败,含毒害物质概率低、安全系数高等特点。所以豆粕是一种优良的植物性蛋白饲料源。 (一)豆粕中的抗营养因子。豆粕虽然营养价值很高,但是豆粕中还存在着许多抗营养因子。这些抗营养因子会影响动物对豆粕营养成分的消化。在豆粕中主要有胰蛋白酶抑制剂、植酸、大豆凝血素、脲酶、低聚糖、脂肪氧化酶、大豆抗原蛋白及致甲状腺肿素等多种抗营养因子。它们的存在,一方面对动物体内某些消化酶起抑制作用或与营养物质络合成不易消化的成分等,使得豆粕的消化率和动物的吸收率下降;另一方面对动物体内的某些器官起到破坏作用,对动物的生理、生长、健康造成不良的影响。 豆粕中常见抗营养因子有以下几类: 1、胰蛋白酶抑制因子(TI)。这是大豆中的主要蛋白类抗营养因子。胰蛋白酶抑制剂会造成动物出现消化吸收功能紊乱,抑制鸡、猪等畜禽的生长、抑制动物体内胰蛋白酶活性,刺激胰腺大量分泌胰蛋白酶,引起胰腺的肿大。 2、植酸。能在肠胃中与多种二价阳离子结合,形成难溶性的植酸盐络合物,大大降低了动物对微量矿物质的吸收与消化,会使动物出现矿物质缺乏症状,如厌食、消瘦、生长迟缓和脱毛等。 3、脲酶。本身是没有毒性,但能将豆粕中部分含氮化合物分解成氨,降低氮的利用率,大量氨的存在会引起肌体氨代谢障碍,可引起动物中毒。 4、脂肪氧化酶。约占豆粕蛋白质的2%左右,能使大豆产生豆腥味和苦涩味,

抗营养因子

饲料中抗营养因子的处理 抗营养因子是指一系列具有干扰营养物质消化吸收生物因子。抗营养因子存在与所有的植物性食物中,也就是说,所有的植物都含有抗营养因子,这是植物在进化过程中形成的自我保护物质,起到平衡植物中营养物质的作用。抗营养因子有很多,已知道抗营养因子主要有蛋白酶抑制剂、植酸、凝集素、芥酸、棉酚、单宁酸、硫苷等。一些抗营养因子对人体健康具有特殊的作用,如大豆异黄酮、大豆皂苷等,这些物质在食用过多的情况下,会对人体的营养素吸收产生影响,甚至会造成中毒。抗营养因子的作用主要表现为降低饲料中营养物质的利用率、动物的生长速度和动物的健康水平。总之,将饲料中对营养物质的消化、吸收和利用产生不利影响的物质以及影响畜禽健康和生产能力的物质,统称为抗营养因子。 一、玉米-豆粕型饲料原料中的抗营养因子 1.非淀粉多糖(NSP) NSP是植物组织中由多种单糖和糖醛酸经糖苷键连接而成的,大多有分支的链状结构,常与无机离子和蛋白质结合在一起,是细胞壁的主要成分,一般难于被单胃动物自身分泌的消化酶所分解。非淀粉多糖主要分为水溶性非淀粉多糖(SNSP,如木聚糖、β-葡聚糖、甘露聚糖、果胶等)和非水溶性非淀粉多糖(NNSP,如纤维素、木质素等)。由于植物细胞内的营养物质被细胞壁包被,植物细胞壁由各种聚合物组成,含有大量纤维素组成的微纤维,埋在木质素、半纤维素和果胶的连续链状结构中,形成稳定坚固而且极其复杂的细胞外壳。饲料粉碎工序难以破坏细胞壁,单胃动物消化酶也无法消化细胞壁物质。因此,植物细胞壁阻止了消化酶与其包裹着的淀粉、蛋白质、脂肪等营养物质的接触,降低了动物对营养物质的消化吸收。 2.退化淀粉 玉米淀粉主要为支链淀粉,支链淀粉在高温制粒时易糊化,而且部分糊化淀粉在冷却和贮存过程中发生聚合,形成和蛋白质、纤维交联在一起的“退化淀粉”。退化淀粉抵抗消化酶的消化,未经消化就转移到后肠道中,使玉米淀粉回肠消化率降低。添加支链淀粉酶,降解“退化淀粉”,可使淀粉回肠末端消化率几乎提高15%,从而提高肉仔鸡的生产性能。 3.植酸 植酸(Phytic acid)又称为肌醇六磷酸酯,广泛分布于植物性饲料中,其中以禾本科和豆科籽实的含量最丰富。植酸的抗营养作用是因为它在很宽的pH值范围内均带负电荷,是很强的螯合剂,能牢固地粘合带正电荷的Ca、Zn、Mg、Fe等金属离子和蛋白质分子,形成难溶性的植酸盐螯合物,导致一些必需矿物元素的生物学效价降低(尤其是锌和铁)。因此,饲粮中植酸盐的含量过高时,可使钙、锌等元素(特别是锌)的利用率大为降低。另外,高含量的植酸可使单胃动物对钙的吸收率降低达35%。同时,植酸还能与动物消化道中的胃蛋白酶结合,使其活性降低,结果导致蛋白质消化利用率降低。 4.大豆抗营养因子 生大豆中含有蛋白酶抑制剂、植物凝集素、球蛋白、皂甙、致甲状腺肿物质、α-半乳糖苷低聚糖、果胶、植酸等多种抗营养因子,对人和动物的生长、健康及生理有不良影响,对婴儿和消化道发育欠佳的幼龄动物更甚,是限制大豆蛋白营养价值的关键因素。其中胰蛋白酶抑制因子可引起动物生长抑制、胰腺肥大和胰腺增生,对家禽影响最大。另一抗营养因子是大豆抗原,其中主要抗原是大豆球蛋白和b -伴大豆球蛋白,它们引起仔猪和犊牛肠道过敏反应,这是仔猪腹泻的主要原因。虽然豆粕中胰蛋白酶抑制因子、植物凝集素等抗营养因子在大豆热处理过程中被钝化,但其中难以消化的碳水化合物如NSP、寡糖等仍然是影响其营养价值的因素。

饼粕类饲料原料的抗营养因子的种类、危害与消除方法-zbs

论文题目饼粕类饲料原料的抗营养因子 的种类、危害与消除方法 2013年6月9日 -赵必圣 摘要:为了更进一步了解什么是抗营养因子,为了更清晰的了解抗营养因子的种类与危害以及消除饲料中抗营养因子的方法。本文特地针对饼粕类饲料原料中出现的所有已知的抗营养因子种类、危害与消除方法进行了综述。 关键词:抗营养因子;饼粕;危害;种类;消除 1 抗营养因子的概念及其作用 饲料是动物生产的物质基础,现今配合饲料中90%以上的组成成分为植物性饲料,包括大豆、豆粕、谷物、玉米、油脂、肉骨粉等。1O余种的饲料原料植物性饲料中都含有一种或多种抗营养因子(Antinutritional factors.ANF)。抗营养因子是指饲料中所含的一些对养分的消化、吸收和利用产生不利影响的物质以及影响畜禽健康和生产能力的物质的统称不但影响了饲料的营养价值和适口性而且给动物的健康生长和生产带来了很大的危害。抗营养因子普遍存在于植物性饲料中,其作用主要表现为降低饲料中蛋白质、脂肪、淀粉等营养物质的利用率,降低动物的生长速度和动物的健康水平。通过科学的技术去除抗营养因子的影响,从而有利于饲料营养价值的充分发挥,提高饲料利用率,降低生产成本,提高经济效益。 2 抗营养因子的分类 饼粕类饲料原料中含抗营养因子的主要是大豆粕、菜籽粕、棉籽粕、花生粕。根据不同的抗营养作用可以把抗营养因子分为6大类:(1)抗蛋白质消化和利用的营养因子,如胰蛋白酶抑制因子、植物凝集素、酚类化合物、皂化物等。(2)抗碳水化合物的营养因子,如淀粉酶抑制剂、酚类化合物、胃胀气因子等。(3)抗矿物元素利用的营养因子,如植酸、草酸、棉酚、硫葡萄糖苷等。(4)维生素拮抗物或引起动物维生素需要量增加的抗营养因子,如双香豆素、硫胺素酶等。(5)刺激免疫系统的抗营养因子,如抗原蛋白质等。(6)综合性抗营养因子,对多种营养成分利用产生影响,如水溶性非淀粉多糖、单宁等。 3 大豆饼粕中的抗营养因子及处理方法

豆粕营养成份及标准

豆粕营养成份及标准集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

豆粕营养成份及标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达85-92%。黄豆内存在着非营养成分的urease等酵素,trypsininhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihninhibiter含量,通常NSI25%以下为一个指标。牛方面,加热不充分之urease活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:0.515?/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸2.5%~3.0%,色氨酸 0.6%~0.7%,蛋氨酸0.5%~0.7%,胱氨酸0.5%~0.8%;胡萝卜素较少,仅0.2~0.4mg/Kg,流胺素、核黄素各3~ 6mg/Kg,烟酸15~30mg/Kg,胆碱2200~2800mg/Kg。豆粕中较缺乏蛋氨酸,粗纤维主要来自豆皮,无氮浸出物主要是二糖、三糖、四糖,淀粉含量低,矿物质含量低,钙少磷多,维生素A、B、B2较少。表2反映的是豆粕与其他各种油粕的组成比较。 去皮与带皮豆粕组成比较 原蛋白质 CrudeProteinExtract 以太纤维 EtherFiber% 粗纤维 Crude% 能量 Energy(kcal/kg)带 皮 豆 粕 44.0(8)0.5(10) 7.0 (7) 2240(8) 去 皮 豆 粕 48.5(10) 1.0(7) 3.0 (10) 2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕精氨酸 3.4 3.8 赖氨酸 2.9 3.2 蛋氨酸0.650.75 胱氨酸0.670.74 色氨酸0.60.7 组氨酸 1.1 1.3 亮氨酸 3.4 3.8 异亮氨酸 2.5 2.6 苯丙氨酸 2.2 2.7 苏氨酸 1.72 总价值 2.4 2.7 豆粕在饲养中的应用 大约85%的豆粕用于家禽和猪的饲养。豆粕中富含的多种氨基酸对家禽和猪摄入营养很有好处。实验表明,在不需额外加入动物性蛋白的情况下,仅豆粕中含有的氨基酸就足以平衡家禽和猪的食谱,从而促进它们的营养吸收。在生猪饲料中,有时也会加入动物性蛋白作为额外的蛋白质添加剂,但总体看来,豆粕得到了最大限度的利用。只有当其他粕类单位蛋白成本远低于豆粕时,人们才会考虑使用其他粕类作为替代品。 在奶牛的饲养中,味道鲜美、易于消化的豆粕能够提高出奶量。在肉用牛的饲养中,豆粕也是最重要的油籽粕之一。但是,在牛的饲养过程中,有些时候并不需要高质量的豆粕,用其他粕类可以达到同样的喂养效果,因此,豆粕在牛饲养的地位要略逊于生猪饲养中的地位。 最近几年来,豆粕也被广泛应用于水产养殖业中。豆粕中含有的多种氨基酸枣例如蛋胺酸和胱胺酸枣能够充分满足鱼类对氨基酸的特殊需要。由于鱼粉用鱼捕捞过度原因,造成世界鱼粉减产,供给的短缺使鱼粉价格居高不下,因此,具有高蛋白质的豆粕已经开始取代鱼粉。在水产养殖业中发挥越来越重要的作用。 此外,豆粕还被用于制成宠物食品。简单的玉米、豆粕混合食物同使用高动物蛋白制成的食品对宠物来说,具有相同的价值。美国依利诺斯大学进行的一次实验表明,豆粕具有同猪肉一样的高蛋白,却不含影响营养消化的低糖酸盐。

豆粕的生产工艺和性质

目前制作豆粉的原材料主要有以下两种[1]: 第一种是以豆粕为原料,豆粕来源主要有两种,一种是经萃取出脂肪的豆子残渣(也就是市场上标明的浸出油),此类豆粕可称为一次豆粕,还有一种是在萃取出脂肪的豆粕基础上再次提取一些其他大豆提取物后的豆粕(如提取大豆异黄酮等,市场上欣靓、天雌素等产品就是采取这种方法),姑且称其为二次豆粕,二种豆粕在检验上不好区分,除非使用非常精密的仪器。 豆粕由于需要先萃取油脂的,因此其大多选取的是脂肪含量较高的转基因大豆,经过萃取工艺后,脂肪残留量大多≤0.5%,以此为原料制作的豆粉,细度可达80目、100目、120目甚至更多(有的厂家声称能提供200目豆粉),但这种豆粉有一种特点,由于其脂肪含量很低,所以在发酵生产中,必须辅以大量的消沫剂,否则泡沫无法控制。 此外此种豆粉的初始原料大多是脂肪含量较高的转基因大豆,因此其本身蛋白质含量相对偏低,相对以非转基因大豆为原料制成的豆粉蛋白质含量就更没有优势。但目前有些产品就专门使用这种豆粉,比如有的生产厂家的阿维菌素就采用此种豆粉。 第二种是采用豆子为原料(包括非转基因中国大豆和转基因大豆),这两者原料做成的豆粉在物理、化学性质,无法区别,可能在生物性质上有所区别。 先采取压榨方法压出油脂后(也就是市场上标明的压榨油),再进行炒饼,磨粉。这种豆粉相对豆粕豆粉价格要高一些,优点有以下几点: 1、此种豆粉由于压榨法取油,可以根据客户需要调整压力,从而控制最终豆粉中的残留脂肪含量,这种豆粉与上一种豆粉的最大区别,在发酵生产使用中可以减少消沫剂的用量,因为脂肪也具有消泡功能,而且由于脂肪自然均匀地分布在豆粉中,其消泡效果相应地好于同等效果消沫剂。 基础料中使用消沫剂一方面价格昂贵,另一方面对生产菌种也有一定的毒性;即使选用植物油也会因油脂漂浮在发酵液表层,影响发酵液的溶氧水平和菌丝的呼吸。 2、如果选用非转基因中国大豆,其蛋白质含量要高于转基因大豆及及以其为原料制成的豆粕。 此外还有一些其他类型的豆粉:有的是将前两种豆粉按比例混合,有的干脆是掺假(有的掺土、有的掺玉米粉),假货的检测方法也比较简单,只要检测蛋白质含量,即知道是否掺假;后一种检测比较麻烦,但如果您要求采购高脂肪残留的豆粉,哪么只要脂肪残留量检测合格,就基本可以断定其真实性或仅仅掺和了较少量的豆粕粉;但有些产品就要求使用按比例掺和豆粉,这就另当别论了。 制作工艺 这是豆粉制作的关键,决定着的豆粉的质量及外观、颜色 豆粕豆粉: 原料如果由豆粕的话,其颜色相对偏浅一些,因为大多数豆粕原料都是比较小的片状物体,由于脂肪含量极低,极易粉碎,以此原料做豆粉的厂家,大多不再炒豆粕,或仅进行简单地温度较低的炒制,这主要因为一方面豆粕在萃取出油的过程,为了提高出油速度和出油率,已经进行过适当加热,另外由于豆粕片比较小,含水量都非常低,比较干燥,相对表面

发酵豆粕现状研究及发展趋势

2016-2022年中国发酵豆粕行业发展研究分析与发展趋势预测报告 报告编号:1608182

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.wendangku.net/doc/b02220725.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:2016-2022年中国发酵豆粕行业发展研究分析与发展趋势预测报告 报告编号:1608182←咨询时,请说明此编号。 优惠价:¥6750 元可开具增值税专用发票 网上阅读:_QiTaHangYe/82/FaJiaoDouPoShiChangDiaoYanYuQianJingYuCe.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 《2016-2022年中国发酵豆粕行业发展研究分析与发展趋势预测报告》依据国家权威机构及发酵豆粕相关协会等渠道的权威资料数据,结合发酵豆粕行业发展所处的环境,从理论到实践、从宏观到微观等多个角度对发酵豆粕行业进行调研分析。 《2016-2022年中国发酵豆粕行业发展研究分析与发展趋势预测报告》内容严谨、数据翔实,通过辅以大量直观的图表帮助发酵豆粕行业企业准确把握发酵豆粕行业发展动向、正确制定企业发展战略和投资策略。 中国产业调研网发布的2016-2022年中国发酵豆粕行业发展研究分析与发展趋势预测报告是发酵豆粕业内企业、相关投资公司及政府部门准确把握发酵豆粕行业发展趋势,洞悉发酵豆粕行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。 正文目录 第一章发酵豆粕产品概述 第一节发酵豆粕产品定义、性能 一、发酵豆粕的基本概念 二、发酵豆粕产品的优点 三、发酵豆粕的应用效果 第二节发酵豆粕生产设备技术 一、发酵豆粕的工艺流程 二、发酵豆粕的关键技术

饲料中抗营养因子

1棉籽中的抗营养因子 1.1基本知识 棉籽饼粕中主要对动物有毒的物质为棉酚。棉籽的胚叶上布满褐色圆形或其椭圆形的色素腺体,腺体内除了油脂和树脂外,还含有大量的色素物质,其中以棉酚为主,占色素腺体质量的20.6%~39.0%。此外,还含有多种棉酚的衍生物。主要种类及其性质如下。 1.1.1棉酚 棉酚是一种复杂的多元酚类化合物,分游离型和结合型两种,结合型棉酚不被动物体吸收,直接排出体外,游离棉酚与氨基酸结合,对动物有害。具有活性羟基、活性醛基的多元酚类化合物称为游离棉酚,它呈黄色、具有三种异构体,分子式为C3H3O2,分子量为518.57。而与蛋白质、氨基酸、磷酯等物质结合,没有活性酸羟基、醛基的称为结合棉酚,其丧失了活性,对动物是无毒的。 1.1.2棉紫酚 又称棉紫素,呈紫红色,它经常与棉酚存于棉籽中,并随棉籽储存期的延长和温度的升高而增加其含量。棉紫酚除了在棉籽中以天然状态存在外,还能在棉籽加工的热处理过程由棉酚转化而成。棉紫酚在酸中能被分解转化为游离棉酚。 1.1.3棉绿酚 又称棉绿素,为深绿色的晶体物质。1963年才从棉紫色腺体中分离出来。 1.1.4棉蓝素 又称棉蓝素,呈蓝色,分子式为C30H32O8,是棉酚的不稳定氧化产物。在生棉籽中不存在,只存在于加热过的熟棉籽中。 1.1.5二氨基棉酚 呈黄色,以液态氨和棉酚进行反应可合成二氨基棉酚。棉籽在高温下进行储存时,有自然产生的二氨基棉酚。 1.1.6棉黄素 又称棉橙素、棉橙酚,呈橙色,分子式为C35H34O8N2,经硫酸作用可转变为棉酚,酸解产生的棉酚量为82%~86%。 1.2危害 1.2.1对动物、人、环境的影响 棉酚主要由其活性醛基和活性羟基产生毒性和多种危害。棉酚还对动物生殖系统的机能有害,特别是雄性动物的生殖机能。 1.2.2动物临床中毒机理 棉酚可降低饲料中赖氨酸的有效性。在棉籽榨油过程或制颗过程中由于受湿热的作用,棉酚的活性羟基、醛基与蛋白质中赖氨酸的ε氨量结合,发生美拉德反应,使结合的赖氨酸不能吸收、利用。 1.2.2.1单胃动物 对单胃动物来说,棉酚在体内大量积累,可损害肝细胞、心肌和骨胳肌,与体内硫和蛋白质稳定地结合,损害血红蛋白中的铁,并导致贫血。此外,棉籽中尚含有一种具有环丙烯结构的脂肪酸,导致母鸡卵巢和输卵管萎缩、产卵量降低及卵变质。 1.2.2.2反刍动物 由于反刍动物消化过程中特殊的瘤胃环境,使棉籽饼粕中游离棉酚的毒性减小。瘤胃中可溶性蛋白量很大,加上瘤胃中高度的还原环境和水热条件,促使游离棉酚与赖氨酸的ε-氨基结合为结合棉酚,其吸收率很低。因此,对于成年的反刍动物来说,饲料游离棉酚的危害很小,可以把棉籽饼粕作为一种正常的蛋白饲料而大量饲用。但对于瘤胃功能发育不全的幼畜来说,棉酚还有一定的毒性。

豆粕营养成份及标准

, 豆粕营养成份及标准 [关键词]豆粕标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 豆粕 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达 85-92%。黄豆内存在着非营养成分的urease等酵素,trypsin inhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihn inhibiter含量,通常NSI 25%以下为一个指标。牛方面,加热不充分之urease活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸%~%,色氨酸%~%,蛋氨酸%~%,胱氨酸%~%;胡萝卜素 去皮与带皮豆粕组成比较 原蛋白 质Crude Protein Extract 以太纤 维Ether Fiber % 粗纤维 Crude % ~ 能量 Energy (kcal/kg)带皮豆 粕 (8)(10)(7)2240(8)去皮豆 粕 (10) : (7) (10)2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕; 精氨酸 赖氨酸 蛋氨酸 {胱氨酸 色氨酸 组氨酸 [ 亮氨酸 异亮氨酸 ( 苯丙氨酸 苏氨酸 2 总价值

豆粕营养成份及标准

豆粕营养成份及标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达85-92%。黄豆内存在着非营养成分的urease等酵素,trypsin inhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihn 去皮与带皮豆粕组成比较 原蛋白 质 Crude Protein Extract 以太纤 维 Ether Fiber % 粗纤维 Crude % 能量 Energy (kcal/kg) 带皮 豆粕 (8)(10)(7)2240(8) 去皮 豆粕 (10)(7)(10)2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕 精氨酸 赖氨酸 蛋氨酸 胱氨酸

指标。牛方面,加热不充分之urease活性高 者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热 过度,太浅则表示加热不足。整批豆粕色泽 应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、 焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉 状或粒状,不含过量杂质。 比重:?/FONT>l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸%~%, 色氨酸%~%,蛋氨酸%~%,胱氨 酸%~%;胡萝卜素较少,仅~Kg,流胺素、

相关文档