文档库 最新最全的文档下载
当前位置:文档库 › 用两种方法证明海伦公式

用两种方法证明海伦公式

用两种方法证明海伦公式
用两种方法证明海伦公式

求三角形面积的海伦公式

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:,它的特点是形式漂亮,便于记忆。

相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。

若 ABC ? 的三边长分别为 a ,b ,c ,则

ABC S ?==

其中 p 是 ABC ? 的半周长,即 ()2p a b c =++。

(证明一)设边 c 上的高为 h 。由于 AD DB c +=,而在 ADC ? 和 DBC ? 中,根据勾股定理有

222222AD AC CD AD DB CB CD DB ?=-?=??=-?=?? A

B C

a

b

c

h

于是有

,c +=

c =

两边平方,化简得

222.2b c a +=-

两边平方,化简得

h =

1122ABC

h S c ?== 仔细化简一下,得

ABC S ?=

===

(证明二)

11

sin 22

ABC S ab C ?=

= (1)

在 ABC ? 中,由余弦定理得

222cos .2a b c C ab

+-=

代入 (1) 式,化简得

111sin 222ABC

S ab C ?====

=

化简得

ABC S ?=

用法向量求二面角和证明两平面垂直

用法向量求二面角和证明两平面垂直 用法向量证明两平面垂直问题 要证两平面相互垂直,只需找出这两个平面的两个法向量,证明这两个法向量相互垂直。 例1.如右图,△ABC 是一个正三角形,EC ⊥平面ABC , BD ∥CE ,且CE=CA=2BD ,M 是EA 的中点。 求证:(1)DE=DA ; (2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA ; 分析(3):建立如图所示右手直角坐标系 ,不妨设CA=2, 则CE=2,BD=1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1),( ) 2,1,3-= EA ,()2,0,0=CE ,()1,2,0-=ED , 分 别假设面CEA 与面DEA 的法向量是()1111,,z y x n =、()3222,,z y x n =,所以得 11111113203200x y z y x z z ??+-==???? ?==????,22222 2222 3203202x y z x y y z z y ??+-==?????-==???? 不妨取() 0,3,11-=n 、()2,1,32=n ,从而计算得02 1 =?n n ,所以两个法向量相互 垂直,两个平就相互垂直。 用法向量求二面角 如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与 2n 所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。 例2、如下图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=a ,AD=3a ,sin ∠ADC= 5 5 ,且PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的平面角的余弦值。 分析:依题意,先过C 点CE ⊥AD ,计算得ED=2a ,BC=AE=a,建立如图右角直角坐标系,则P (0,0,a ),D(0,3a,0), C(a,a,0), () a a PD -=,3,0, () a a a PC -=,,, ()0,3,0a AD =,()0,,a a AC = 取平面ACD 的一个法向量()1,0,01=n ,设平面PCD 的法 z y x E A D B P C z y x M C B A E D

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

海伦公式

海伦公式 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长:p=(a+b+c)/2 ——————————————————————————————————————————————注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 编辑本段证明过程 证明(1) 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√

[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2) 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4{a^2*c^2-[(a

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

海伦公式的推导和应用

海伦公式 海伦公式又译作希伦公式、海龙公式、公式、海伦-秦九韶公式,传说是古代的国王希伦(,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注1:Metrica(《度量论》)手抄本中用s作为半周长,所以 S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。 —————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的着作Metrica(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] ):2证明( 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国着名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

用向量法证明海伦公式

用向量法证明海伦公式 杜云 (六盘水师范学院数学系;贵州六盘水553004) 摘要:从数与形的角度对向量进行再认识,通过应用向量方法证明海伦公式,更进一步阐明了向量是沟通代数与几何的天然桥梁,是一个重要的数学模型,它能为解决问题提供新的方法和视角。 关键词:向量;几何;海伦公式;数形结合 中图分类号:G421文献标识码:A 文章编号:1671-055X (2009)03-0063-03 To prove Heron's Formula with the Vector DU Yun (Mathematics Department of Liupanshui Nornal College;Liupanshui,553004,China) Abstract:Recognized the vector from algebra and geometry and by proving Heron's Formula further expounds ,If shows thar the vector is a natural bridge between algebra and geometry,and it is an important mathematics style,and also provides the new method and view to solve the problems. Key words :vector ;geometry;Heron's Formula;combination between algebra and geometry 收稿日期:2009-03-03 作者简介:杜云(1982-),男,贵州盘县人,助教,研究方向:高等代数与解析几何。 第21卷第3期 2009年6月六盘水师范高等专科学校学报Journal of Liupanshui Teachers College Vol.21NO.3June 2009 63--

梯度、散度和旋度

梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下 的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3) (4) 旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。 I.梯度的散度: 根据麦克斯韦方程有:

而 (5) 则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6) 称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程 当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度:

高中数学必修3海伦公式的证明方法

高中数学必修3海伦公式的证明方法 海伦公式的证明⑴ 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c 的对角分别为A、B、C,则余弦定理为[1] cosC=(a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b- c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 海伦公式的证明⑵ 中国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角

形,要找出它来并非易事。所以他们想到了三角形的三条边。如果 这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来 求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜 求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方, 送到上面得到的那个。相减后余数被4除,所得的数作为“实”, 作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 当P=1时,△2=q, △=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 因式分解得 △^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2] =1/4[(c+a)^2-b^2][b^2-(c-a)^2] =1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/4[2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c)

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

用向量方法证明直线垂直,求两直线夹角

3.2.2用向量运算证明两条直线垂直或求两条直线所成的角 学习目标: 1、进一步理解向量的坐标表示和坐标运算 2、能建立适应的空间直角坐标系并利用坐标方法求空间两个向量的夹角 3、利用向量的数量积解决与立体几何有关的问题 复习回顾 1、 向量数量积的运算及其性质? 2、 向量夹角与线线夹角的联系与区别? 3、 如何求向量的夹角? 一、课前达标: 1、异面直线所成的角: 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示), 则 .||||| |cos b a b a ??=θ 2、预习检测 (1)如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证EF ⊥DA 1 . (2)如图,在正方体ABCDA ′B ′C ′D ′中,E `1 、F 1分别是A 1B `1、C 1D 1的四等分点,求BE 1与DF 1所成的角.

二、典例分析: 1、建立坐标系证明线线垂直,求夹角 例3 在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值;⑶求FH 的长。 注意思考: (1) 如何建立坐标系、把已知条件转化为向量表示? (2) 如何对已经表示出来的向量进行运算才可获得所需结论? 巩固练习:练习A 1 练习B 1 2、选取基向量求解线线夹角:例4、(见课本100页) O -A B C ,O A =4,O B =5,O C =3; A O B =B O C = C O A =90,M ,N O A ,B C M N ,B C ∠∠∠三棱锥分别是中点,求直线所成角 注意:基向量的选取;如何用基向量来表示未知向量。 巩固练习:练习B 3 三:作业:如下图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

向量法证明几何命题

毕业论文 论文题目向量法证明初等几何命题 学院数学与统计学院 专业数学与应用数学 年级 2011级 学号 4 学生平 指导教师峰 完成时间 2015 年 4 月 学院教务处制

向量法证明初等几何命题 平 摘 要 本文使用向量的数量积,向量积,混合积证明一些初等几何的命题.例如,勾股定理,余弦定理,海伦公式. 关键词 初等几何;数量积;向量积;混合积 1引言 向量这个名词对于大家来说并不陌生,在高中的教材中已经接触了不少向量的容.在力学、物理学已及日常生活中,咱们常常遇到很多的量,譬如像温度、时间、质量、密度、功、长度、面积与体积等,这些量在规定的单位下,都可以由一个数来完全确定,这种只有大小的量叫做数量.其余又有一些比较复杂的量,比方像位移、力、速度、加速度等,他们不仅有大小,而且还有方向,这类量便是向量. 向量最初被应用于物理学.不少物理量如力,速度,位移一集电场强度,磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个了的组合作用可用著名的平行四边形则来得到.“向量”一词来自力学、解析几何中的有想线段.最早使用有向线段表示向量的是英国大科学家牛顿. 从数学发展历史来看,历史上很长一段时间,空间的向量结构并未被数学家们所了解,直到19世纪未20世纪初,人们才把空间的性质与向量运算关联起来,使向量成为具备一套优良运算通性的数学体制. 向量可以进入数学并得到发展,最初使用于复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔初次使用坐标平面上的点来表示复数a bi +(a 、b 为有理数,且不同时等于0),把坐标平面上的点用向量表示出来,并使用拥有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并用向量的几何表示用于研究几何问题与三角问题.人们逐渐接受了复数,也学会了利用复数来表述和研究平面中的向量,向量就这样平静地投入了数学中. 因为向量法证明许多几何命题都是比较简化,所以许多命题都有向量法去证明,许多学生因为学习了向量,从而激发他们的兴趣,在许多熟悉的问题上都想向量法去证明,但他们不清楚不了解向量法的基本思路和证明技巧,不仅仅学生,甚至老师也有时候还是用比较繁琐的方法去证明初等几何命题. 本论文主要介绍向量的基本运算法则,还有对几个经典的问题进行证明,分别用一般的方法和向量法对一些初等的几何命题进行证明,然后作对比,比较一下向量法和一般的方法有什么不一样,看看哪一种方法更加简捷和实用. 2结果与讨论 2.1向量的基本运算[1] 向量的加法运算: AB BC AC +=,a b b a +=+,0a a +=,()0a a +-=,()()a b c a b c ++=++.

海伦公式几种证明方法

已知三角形的三个边c b a 、、求它的面积S ,有公式))()((c p b p a p p S ---=, 其中)(21 c b a p ++=。这就是大家所熟知的“海伦公式”,在中学几何课本上一般都有介紹。人们认为这 个公式一定是海伦所首先发现,其实并不然。在一些有关数学史著作中,对此早有不同提法。海伦是古希腊的数学家,同时他还是一位优秀的测绘工程师及亚历山大学派的科学家,他对于物理学和机械学很有研究,发明了不少很有价值的机械和仪器。对于他的准确生活时代我们还不知道,大概在公元1-3世纪期间。 为何会出现海伦公式?由于当时数学的应用性得到了很大的发展,其突出的一点就是三角术的发展,三角术是由于人们想建立定量的天文学,以使用来预报天体的运行路线和位置以帮助报时,计算日历、航海和研究地理而产生的。而在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边c b a 、、直接求出三角形的面积,据说这个问题最早是由古希腊的数学家阿基米德解决的,于是他得到了海伦公式。 而本文的重点归纳研究海伦公式几种证明方式,希望这些方法对其它有关解三角形问题有一定的启发作用。 一种方法是用解三角形基本的知识解决。 已知三角形的三边为c b a 、、,设)(2 1 c b a p ++=, 求证:三角形的面积))()((c p b p a p p S ---=. 证明:由正弦定理C ab S sin 21= 可得)(C b a C b a S 2222222cos 14 1sin 41-==, 又由余弦定理2 2222222222 4)(2cos b a c b a ab c b a C -+=-+=)(,从而有 )((222222222 4141b a c b a b a S -+-=16412 22222)(c b a b a -+-= ]4[1612 22222)(c b a b a -+-= ]2(2[(161222222))c b a ab c b a ab +---++= )])(()[((1612222b a c c b a ---+=)))()()((16 1b a c b a c c b a c b a +--+-+++= 2 ) (2)(2)(2)(b a c b a c c b a c b a +-?-+?-+?++= 2 )2(2)2(2)2(2)(a b a c b b a c c c b a c b a -++?-++?-++?++=

海伦公式的证明(精选多篇)

海伦公式的证明(精选多篇)第一篇:海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在变形此我们用三角公式和公式变形来说明。设三角形的三边a、b、c 的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2- c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1- (a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2- c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2- b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a- b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:莉莉公式的几种证明与推广 海伦公式的几类证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重要且优美的公式——海伦公式〔heron"s formula〕:换言之有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1

《海伦-秦九韶公式》说课稿

海伦-秦九韶公式 教学内容:人教版数学八年级下册第十六章“阅读与思考”内容 教学对象:八年级学生 教材分析:本节内容是初中数学八年级下册第十六章,是阅读与思考部分中的内容,《初中数学新课程标准》中并没有做要求。教材中只占用一页篇幅,叙述了秦九韶公式与海伦公式的记载历史,并未给出证明和应用。本节内容之前学生已经学习了解三角形,二次根式等相关知识,它是三角形面积公式的延续与拓展。本节课的主要设置对象为数学学习程度较好的学生――在完成《初中数学新课程标准》中要求的学习之后仍有余力的同学,意在引领学生运用所学知识对海伦公式与秦九韶公式进行转换,并会有简单应用,让同学们从中体会到数学之美。 学情分析:八年级学生在进入本节课的学习之前,需要熟悉前面已学过的二次根式、三角形面积公式以及平方差公式和完全平方公式等知识。 教学目标: 1、知识与技能: (1)了解秦九韶公式与海伦公式历史及意义。 (2)会对秦九韶公式与海伦公式进行转换,理解秦九韶公式与海伦公式的本质相同; (3)会用海伦-秦九韶公式解决简单的涉及到三角形三边与面积之间关系的问题。 2、过程与方法:(1)经历转换秦九韶公式及海伦公式的全过程,培养学生严谨的数学逻辑思维;(2)提高学生应用海伦公式解决涉及三角形三边与面积之间关系问题的能力。 3、情感态度价值观:(1)体会到数学的简洁美;(2)体会数学以不变应万变的魅力。 教学重难点:

1、重点:转换秦九韶海伦公式的过程 2、难点:海伦-秦九韶公式的应用 教学准备:多媒体课件 教学方法:引导探究、实例运用。 教学过程: 一、回顾旧知引出新知 1、回顾三角形面积公式。通过提问,让学生回答出已经学习过的公式。板书:1/2*底*高 2、已知三边a,b,c,求三角形面积 (1)已知三边具体值你会求三角形面积吗? (2)适时出示海伦公式 设计意图:直接以古希腊数学家海伦发现的公式作为问题背景,让学生对S 作出猜想.S是三角形的周长还是面积? 教师适时引导学生根据公式的特点,作出合理的猜想.例如可以从等式的右边根号里量纲的特征,开根号的结果是边长的平方,应该和面积有关;还可以根据对称性,使根号里面的每一条边地位平等,培养学生敏锐的观察能力,发展学生的合情推理和概括能力. 二、介绍海伦公式与秦九韶公式的历史与意义(PPT) 1、海伦公式的历史与意义、 古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。这个公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。 海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地得出答案。

第三讲:散度、旋度

1.4矢量场的通量与散度 1.5矢量场的环流与旋度 1、理解散度、旋度的物理意义,掌握其计算公式和方法; 2、理解散度定理、斯托克斯定理的物理意义,能灵活运用其作积分变换; 3、知道散度、旋度描述了矢量场的不同性质,掌握它们的主要区别。 重点:散度、旋度的物理意义,计算公式。 难点:旋度的概念及其物理意义。 讲授、练习 学时:2学时 1.4矢量场的通量与散度 若所研究的物理量是矢量,则该物理量所确定的场称为矢量场,如:电场、磁场、 速度场等。矢量场F 可用矢量函数来描述。如:直角坐标系中 ()()()()???,,,,,,,,x x y y z z F F x y z e F x y z e F x y z e F x y z ==++ 1、矢量线 1)方程:0F d r ?= 与坐标系的选择有关,在直角坐标下: 二维场: y x F F dx dy = 三维场:y x z F F F dx dy dz == 2)性质:任意两条矢量线不相交 2、矢量管 由于矢量线不相交,通过场中任一闭合线的各矢量线构成一封闭管。 1S 2S 通过任意面的矢量线的条数: N F S F S ⊥?=??=? 或 /F N S ⊥=??(矢量线密度) 即:用矢量线的疏密可以表示矢量场的大小。 一、矢量场的几何描述——矢量线

二、矢量场的通量 1、有向曲面 ? n dS e dS = 封闭面:外法线 开面:与闭合线绕行方向构成右螺旋 2、通量 矢量F沿有向曲面S 的面积分 S F dS ψ=? ? 称为矢量F穿过S 面的通量。若S 为封闭面,则 S F dS ψ=? ? 3、通量的物理意义 ψ=无源或正源和负源相等0 ψ<负源或负源多于正源0 ψ>正源或正源多于负源根据净通量的大小可大致判断闭合面中源的性质。 三、矢量场的散度 1、散度的概念 设封闭面S 所包围的体积为V ?,则: S F dS V ? ? ? 就是矢量场F在V ?中单位体积的平均通量,或称平均通量密度。 当闭合曲面S 及其所包围的体积V ?向其内某点M收缩时,若平均通量密度的极限值存在,便记作 规定:有向曲面法线方向 +3q -q -q +q 如何准确确定封闭面内源的 分布及某一点源的强弱?

相关文档
相关文档 最新文档