文档库 最新最全的文档下载
当前位置:文档库 › 迹为零的矩阵的一些性质

迹为零的矩阵的一些性质

迹为零的矩阵的一些性质
迹为零的矩阵的一些性质

矩阵可交换性的应用讲解

2015届学士学位毕业论文矩阵可交换性的应用 学号:11404111 姓名:郭冬冬 班级:数学1101 指导教师:闫慧凰 专业:数学与应用数学 系别:数学系 完成时间:2014年4月

学生诚信承诺书 本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:日期: 指导教师声明书 本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。 指导教师签名:时间

摘要 矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。 关键词:矩阵;可交换

目录 1.绪论 (1) 2.基础知识 (1) 2.1 矩阵相关概念 (1) 2.2 线性变换相关概念 (2) 3.矩阵可交换的应用 (3) 3.1线性变换与矩阵(可交换)之间的联系 (3) 3.2上三角矩阵可交换的应用 (4)

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目幂等矩阵的性质及应用 英文题目Properties and Application of Idempotent Matrix 院系理学院 专业数学与应用数学 姓名邱望华 年级A0411 指导教师王侃民 二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。 [关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices. [Key Words] the idempotent, the nature, the idempotence, linear combination

正规矩阵

第二学期第八次课 设A 是n 维酉空间V 内的线性变换,如果V 内的线性变换A * 满足? α,β∈V,有 (A α,β)=(α,A * β) 则称A * 是A 的共轭变换. A * 为A 的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭转置. 共轭变换的五条性质: 1)E *=E 2)(A * )*= A 3)(k A )* =k A * 4)(A +B )* =A * +B * 5)(AB )* =B * A * 如果A *= A,则称A 是一个厄米特变换. 设A 是n 阶复矩阵,如果A '=A,则称A 是一个厄米特矩阵. n 个复变量n 21x x x ,, ,?的二次齐次函数 ∑∑===n i n j j i ij x x a f 11 (ji ij a a =) 称为一个厄米特二次型.(对称变换、实对称矩阵、实二次型的推广)。 (酉变换和厄米特变换都是下面的正规变换的特殊情形.) 如果A *A = A A * ,则称A 为一个正规变换. (将酉变换的性质推广,有一般的结果:) 命题 酉空间V 上的线性变换A 的不变子空间M 的正交补⊥ M 是共轭变换A * 的不变子空间. 证明 ? α∈M, β∈⊥M ,有 (α,A * β)=(A α,β)=0 这表明A * β∈⊥ M .

命题酉空间上的正规变换A的属于特征值λ的特征向量ξ的是共轭变换A*的属于特征值λ的特征向量. 证明按假设,有Aξ=λξ则 (A*ξ-λξ,A*ξ-λξ)=((A-λE)*ξ, A*ξ-λξ) =(ξ,(A-λE)(A-λE)*ξ) =(ξ,(A-λE)*(A-λE)ξ) =(ξ,0)=0 从而A*ξ=λξ. 命题酉空间上的正规变换的属于不同特征值的特征向量互相正交. 证明设Aξ=λξ,Aη=μη则 λ(ξ,η)=(Aξ,η)=(ξ,A*η)=(ξ,μη)=μ(ξ,η) 必有(ξ,η)=0. 定理n维酉空间上的正规变换在某组标准正交基下的矩阵是对角阵. 证明对维数n做数学归纳法. 推论n维酉空间上的酉变换在某组标准正交基下的矩阵是对角阵. 命题厄米特变换的特征值都是实数. 证明若Aξ=λξ,则λξ=A*ξ=Aξ=λξ?λ=λ?λ是实数.

可交换矩阵

可交换矩阵 目录 1矩阵可交换的几个充分条件和必要条件定理1 1定理2 1定理3 1定理4 1定理5 1定理6 1可交换矩阵的一些性质性质1 1性质2 展开 满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A。高等代数中可交换矩阵具有一些特殊的性质。下面所说的的矩阵均指n 阶实方阵.。 编辑本段矩阵可交换的几个充分条件和必要条件 定理1 下面是可交换矩阵的充分条件:(1) 设A , B 至少有一个为零矩阵,则A , B 可交换; (2) 设A , B 至少有一个为单位矩阵, 则A , B可交换; (3) 设A , B 至少有一个为数量矩阵, 则A , B可交换; (4) 设A , B 均为对角矩阵,则A , B 可交换; (5) 设A , B 均为准对角矩阵,则A , B 可交换; (6) 设A*是A 的伴随矩阵,则A*与A可交换; (7) 设A可逆,则A 与A 可交换; (8) 设AB = E ,则A , B 可交换. 定理2 (1) 设AB =αA +βB ,其中α,β为非零实数,则A , B 可交换; (2) 设A m +αAB = E ,其中m 为正整数,α为非零实数,则A , B 可交换. 定理3 (1) 设A 可逆,若AB = O 或A = AB或A = BA ,则A , B 可交换; (2) 设A , B 均可逆, 若对任意实数k , 均有A = ( A - k·E) B ,则A , B 可交换. 矩阵可交换的几个充要条件 定理4 下列均是A , B 可交换的充要条件: (1) A - B = ( A + B) ( A - B) =( A - B) ( A

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

正投影及其性质

29.1 投影 第2课时正投影 【学习目标】 (一)知识技能: 1.进一步了解投影的有关概念。 2.能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【知识回顾】 正投影的概念:投影线于投影面产生的投影叫正投影。 【自主探究】 活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面: (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状? (1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1; (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2; (3)当线段AB垂直于投影面P时,它的正投影是。 设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。 活动2 如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

关于矩阵的Kronecker积的一些性质

关于矩阵的Kronecker积的一些性质 作者:王秀清, 陈兆英, 于朝霞 作者单位:济南大学理学院,250022,济南 刊名: 山东师范大学学报(自然科学版) 英文刊名:JOURNAL OF SHANDONG NORMAL UNIVERSITY(NATURAL SCIENCE) 年,卷(期):2010,25(4) 参考文献(10条) 1.徐仲;张凯院;陆全矩阵论简明教程 2007 2.陈邦考矩阵Kronecker积的推广[期刊论文]-大学数学 2004(04) 3.杜鹃;范啸涛;杨健康自伴矩阵与Hermite二次型[期刊论文]-成都理工大学学报(自然科学版) 2007(04) 4.Li J S·Kronecker products of positive semidefinite Matrices 1997(03) 5.陈公宁矩阵理论与应用(第二版) 2007 6.Britz T;Olesky D D;Van Den Driessche P The Moore-Penrose inverse of matrices with an acyclic bipartite graph[外文期刊] 2004(0) 7.Berr Israel A;Greville T N E Generalized Inverse:Theory and Applications 2003 8.George V A quantitative version of the Bservation that the Hadam and product is a principal submatrix of the kronecker product 2000 9.James V B Schur majorization inequalities for symmetrized sums with applications to tensor products[外文期刊] 2003(0) 10.樊树平;段五朵亚正定矩阵的Kronecker积[期刊论文]-大学数学 2006(02) 本文读者也读过(10条) 1.王伟贤.王志伟.WANG Wei-xian.WANG Zhi-wei一类逆M矩阵的判定[期刊论文]-曲阜师范大学学报(自然科学版) 2009,35(2) 2.王宏羽.张湘茹.孙燕.李龙芸.李丽庆.宋恕平.周立中.刘基巍盐酸托烷司琼防治NP方案治疗非小细胞肺癌引起恶心呕吐的临床试验研究[期刊论文]-中国肿瘤临床与康复2004,11(4) 3.周金森.ZHOU Jin-sen关于代数张量积的性质研究[期刊论文]-龙岩学院学报2007,25(6) 4.王礼萍.Wang Liping核运算的矩阵构造[期刊论文]-哈尔滨师范大学自然科学学报2000,16(5) 5.杨载朴复亚正定矩阵的一些性质[期刊论文]-数学研究与评论2000,20(1) 6.黄允发.HUANG Yun-fa二阶K-可换矩阵Kronecker积的性质[期刊论文]-高师理科学刊2010,30(2) 7.胥德平.何淦瞳.XU De-ping.HE Gan-tong矩阵块Kronecker积的性质及一些不等式[期刊论文]-贵州大学学报(自然科学版)2004,21(4) 8.杨胜良.YANG Sheng-liang两类下三角形Pascal矩阵的相似性[期刊论文]-数学杂志2011,31(1) 9.贺爱玲.马玉明.刘慧.陈业红.HE Ai-ling.MA Yu-ming.LUI Hui.CHEN Ye-hong关于矩阵相似的一个注记[期刊论文]-山东轻工业学院学报(自然科学版)2005,19(3) 10.周相泉.刘利英.ZHOU Xiang-quan.LIU Li-ying模糊数矩阵及其运算[期刊论文]-山东理工大学学报(自然科学版)2005,19(3) 本文链接:https://www.wendangku.net/doc/b56546926.html,/Periodical_sdsdxb-zrkx201004043.aspx

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

交换矩阵

可交换矩阵的一些基础知识 来到大学进入数学系学习才第一次知道了矩阵,了解到其实它是数学中极其重要的一个工具.如同我们最了解的数字符号一样,矩阵也有着自己的运算法则.这整个的矩阵理论是建立在矩阵的运算上的.所以对于矩阵运算的研究在矩阵理论中骑着至关重要的作用.这篇论文我着重讨论一下可交换矩阵. 一、可交换矩阵 我们都知道矩阵的乘法是不满足交换律的即一般情况下对于矩阵,A B 是 AB BA ≠。 为什么会会出现这种情况呢,总的来说两个矩阵相乘可能出现以下情况: (1)AB 有意义时候,BA 不一定就有意义; 比如说:1111n s sn a a A a a ?? ?= ? ??? ,1111n m mn b b B b b ?? ? = ? ? ?? 。s p ≠, 所以A B =1111 q s sq c c C c c ?? ? = ? ? ?? 。但是BA 却是无意义的。 (2)AB 与BA 均有意义时候两者阶数不一定相同,自然就不相等了; 比如说有1111n m mn a a A a a ?? ?= ? ??? , 1111 m n nm b b B b b ?? ? = ? ? ?? 。 依此有AB =C =1111m m mm c c c c ?? ? ? ??? ,但是BA =D =1111n n nn d d d d ?? ? ? ??? 。 显然有C D ≠。 (3)AB 与BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是不一样。 比如说:矩阵A =2111??????,B =1212?? ?? ?? 。 AB =211236111224?????? =???????????? =C ;

M矩阵的性质、定理及证明

M 矩阵的性质、定理及证明 一、M 矩阵的概念 定义1 设n n ij a A ?=)(,且0≤ij a ,j i ≠,01≥-A ,称A 为M 矩阵。 定义2 设n n ij a A ?=)(,且0≥ij a ,若1-A 为M 矩阵,则称A 为逆M 矩阵。 引理1 如果n n ij a A ?=)(,且0≤ij a ,j i ≠,A 为M 矩阵的充要条件是A 可做三角分解,R L A ?=,其中L 为下三角阵,R 为上三角阵,L 和R 的主对角元都是正值。 二、M 矩阵的判定定理与证明 定理1 若n n ij a A ?=)(为M 矩阵,则R L A ?=,其中下三角阵L 和上三角阵R 的主对角线元素为正,且其余元素为非正值。 证明 若A 为M 阵,则当j i ≠,0≤ij a ;j i =,0>ij a 。由引理1,A 可做三角分解R L A ?=。设 ????????????=nn n n l l l l l l L 21222111000 , ? ???? ? ??????=nn n n r r r r r r R 00 022211211 则?????? ??????+++++=nn nn n n n n n n n r l r l r l r l r l l r l r l r l r l r l r l r l A 1122 21211112212122221221112111112111111, 故0,,1111211≤n r l r l 。 因011>l ,故0,,112≤n r r ;因,0,0,,111111121>≤r r l r l n 故0,,121≤n r r ;因 022321231≤+r l r l ,故02221≤r l ,从而021≤l ;因023221321≤+r l r l ,故023≤r 。类

矩阵可交换性质

矩阵可交换的条件及其性质 摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法. 关键词:矩阵;可交换;可交换矩阵 The Conditions For The Commutation Of Matrix and Some Properties Abstract: Matrix in higher mathematics is a very important and widely used concept, is the core of the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced. Key words:Matrix;Commutation;The Commutation Of Matrix

目录 1 引言........................................................................................................................................ - 1 - 2 可交换矩阵的基本定义........................................................................................................ - 1 - 3 矩阵可交换的条件................................................................................................................ - 1 - 3.2 矩阵可交换的几个充要条件............................................................................................... - 3 - 4 可交换矩阵的性质.................................................................................................................. - 5 - 5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 - 5.1 定义法.......................................................................................................................... - 5 - 6 结论(结束语).................................................................................................................... - 9 - 7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.wendangku.net/doc/b56546926.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

浅谈幂等矩阵的性质

2009年7月(上 ) [摘要]幂等矩阵的种常规的正定性,虽然在几何学,物理学以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩阵的 其他学科的发展,越来越不能满足人们的需要,现代经济数学等众多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应用上都是有意义的。[关键词]幂等矩阵;高等代数;线性变换浅谈幂等矩阵的性质 侯君芳 黄丽莉 (郑州旅游职业学院,河南郑州 450009) 在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:A T 矩阵A 的转置,A H 矩阵A 的共轭转置R (A )矩阵A 的值域,N (A )矩阵A 的核空间。 幂等矩阵 定义[1]设A ∈C n ×n ,若A 2=A 则称A 是幂等矩阵。定理1若P 是幂等矩阵,则 1)P T ,P H ,E-P T ,E-P H 是幂等矩阵。2)P (E-P)=(E-P )P=03)Px=x 的充要条件是x ∈R (P ) 证明:1)P 2=P =>(P T )2=(P 2)T =P T =>P T 为幂等矩阵P 2=P =>(P H )2=(P 2)H =P H =>P H 为幂等矩阵 (E-P )2=(E-P )(E-P )=E 2-EP-PE+P 2=E-2P+P 2=E-P 故E-P 为幂等矩阵 (E-P T )2=(E-P T )( E-P T )=E 2-EP T -P T E+(P T )2 =E-P T 故E-P T 为幂等矩阵 (E-P H )2=(E-P H )( E-P H )=E 2-EP H -P H E+(P H )2=E-P H 故E-P H 为幂等矩阵 2)P (E-P )=PE-P 2=P-P 2=0(E-P )P=EP-P 2=P-P 2=0故P (E-P )=(E-P )P=0 3)设x 满足Px=x ,则x ∈R (P )。反之,若x ∈R (P ),则必存在y ∈C n ,使得Py=x ,于是,Px=P (Py )=Py 结论的几何意义是P 的特征值为1的特征子空间就是P 的值域。定理2秩为r 的n 阶。矩阵P 是幂等矩阵的充要条件是存在C ∈C n ×n 使得 C -1PC= Er 0(1) 证明:必要性:设J 是P 的Jordan 标准形,C ∈C n ×n ,且 C -1PC=J=J 1J 2··J i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i s ,J i = λi 1λi 1··λi i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i ×n i J i 是Jordan 块。由于P 2=P ,则J 2i =J i (i=1,2,3…s )。欲使J i 2=J i ,必须n i =1。因此J 是对角阵。又由P 2=P 。知λi =0或1,故r=rankJ=trP 。 充分性:由 Er 02 =Er 0知P 2 =P 。推论[1]rankP=trP 证明:由上题的(1)知幂等矩阵的特征值非1即0。且r=rankP 又有式(1)知 trP=λ1+λ2+…+λN =r 其中λ1,λ2…λN 是P 的n 个特 征值 矩阵的性质通常从以下几方面来研究:矩阵的秩,矩阵的相似对角化,矩阵的特征值对于幂等矩阵我们也从这几方面入手,讨论其具有的性质。 性质1若A 为n ×n 矩阵且A 2=A ,则A 相似于一对角阵 Er 证明:取一线性空间V (n 维)及一组基ε1,ε2…εn 定义一线性变换A :V →V ,A α=A α则A (ε1,ε2,…εn )=(ε1,ε2…εn )A 。由A 2=A ,则A 2=A 。A α∈A ∩A -1(0),设α=A β,β∈V ,A α=A 2β=β=α。又A α=0,则α=0,则AV+A -1(0)为直和。所以V=A +A -1(0)。在子空间AV 中取基η1η2…ηr ,在子空间A -1(0)取基ηr+1ηr+2…ηn ,则向量组η1,η2…ηr ηr+1…ηn 就是V 的一组基。又A η1=η1,A η2=η2…A ηr =ηr 且A ηr+1=0,A ηr+2=0…A ηn =0,A (η1,η2…ηn )=(η1,η2…ηn )Er 所以А相似于Er 性质2若А为n ×n 幂等矩阵,且R ( A 2 )=R (A )则有以下结论成立 1)Ax=0与A 2x=0同解 2)对于任意自然数P ,均有R (A p )=R (A ) 证明:设R (A )=r 显然Ax=0的解均为A 2x=0的解;设有一基础解系η1,η2…ηn-r 则此基础解系也为A 2x=0的解,并且线性无关,而 R (A 2 ) =r ,所以η1,η2…ηn-r 也为A 2x=0的基础解系,那么Ax=0与A 2x=0同解 若α为A 2x=0的解,则A 2α=0= >A 3α=0,则α为A 3E=0的解,反之,若α为A 3x=0的解,则A 3α=0即A 2A α=0,说明向量A α=0为方程组A 2x=0的解,由(1)则A α为Ax=0的解,则有A 2α=0,即α也为A 2x=0的解,所以A 2x=0与A 3x=0同解。因此,照 此方法类推,则必有R ( A p ))=R (A )。性质3若A 为n 阶方程,且R (A )+(E-A )=n ,则A 2=A 证明:设V 为n 维线性空间,其基ε1,ε2...εn 定义下述线性变换A :V →V ,A (ε1,ε2...εn )=(ε1,ε2...εn )A (E-A )(ε1,ε2...εn )=(ε1,ε2...εn )(E-A ),dim (AV )=R (A ),dim [(E-A )]=R (E-A )由题设,则dimAV+dim (E-A )=n (1) A α∈V ,α=A α+(α-A α)∈AV+(E-A )V ,则V=AV+ (E-A )V 则V=AV +(E-A )V 。下证A 2=A ,其实A α∈V ,有A 2α-A α=A (A-E )α∈AV ∩(E-A )α={0}。因此A 2α=A ,则 A 2=A ,从而A 2=A 。 下面通过三个例题说明幂等矩阵的性质与应用 例1设A 为n ×n 矩阵,且R (A )=r ,证明:A 2=A 当且仅当A=CB ,其中C 为n ×r 矩阵,秩为r ,B 为r ×n 矩阵,秩也为r ,且有BC=E r 。 证明:必要性:由于A 2=A ,由性质(1)则A 必(下转第13页)6

矩阵分析

I. QUESTION I Summarize the known constructions of orthogonal matrices and unitary matrices. Give some numerical examples for each construction. 1》正交矩阵:是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这 里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵不一定是实矩阵。实正交矩阵可以看做是一种特殊的酉矩阵,但存在一种复正交矩阵,复正交矩阵不是酉矩阵。 正交矩阵有以下几种等价定义及其判定 (满足的结构性质) 定义1.1 A 为n 阶实矩阵,若E AA =',则称A 为正交矩阵. 定义1.2 A 为n 阶实矩阵,若E A A =',则称A 为正交矩阵. 定义1.3 A 为n 阶实矩阵,若1-=A A ,则称A 为正交矩阵. 定义1.4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向量,则称A 为正交矩阵. 实例: ??? ???-θθθθ c o s s i n s i n c o s ?? ????1001 2》酉矩阵:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基, 则U 是酉矩阵。酉矩阵是正交矩阵往复数域上的推广。 酉矩阵的相关性质: 设有矩阵 ,则 (1)若是酉矩阵,则的逆矩阵也是酉矩阵; (2)若是酉矩阵,则也是酉矩阵; (3)是酉矩阵的充分必要条件是,它的个列向量是两两正交的单位向量。

一个简单的充分必要判别准则是: 酉矩阵的共轭转置和它的逆矩阵相等 酉矩阵基本性质:(A 是酉矩阵) 1.A 的行列式的模等于1 2.H A A =-1,11)()(--=H H A A 3.1-A 也是酉矩阵,两个n 阶酉矩阵的乘积也是酉矩阵 4.A 的每个(列)行向量(看作酉空间n C 的向量)是单位向量;不同的两个(列)行向量是酉矩阵正交的。 实例: ?? ? ? ??++ββαα s i n c o s 00s i n c o s i i (βα,为任意角度) II. QUESTION II A Hadamard matrix of order n is an n n ?matrix with elements in {}1,1+- such that T n n HH nE ?=where T H is the transpose of H and n E is the identity matrix of order n .This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any order? Please list a Hadarmard matrix of order n with 20n ≤ if such a matrix exists. Q2 Design two Hadamard matrices []12 ;;; n H h h h =and 12; ; [; ]n G g g g = of order 2m n = (where m is odd) such that: 12/2; ;{}; n h h h is orthogonal to 12/2 ; ;{}; n g g g ;and

(整理)可交换矩阵成立的条件和性质.

内蒙古财经大学本科学年论文 可交换矩阵成立的条件与性质 作者: 系别: 专业: 年级: 学号: 指导教师: 导师职称:

指导教师评语: 该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间内的完 成。在开题以后,对论文题目理解正确,在指导下能完 成论文初稿的书写,书写基本符合规范。但对参考书目 及参考文献的依赖性太大,应在论文中添加自己独立的 理解及总结。 成绩:中 指导教师:

内容提要 矩阵是高等数学中一个重要的内容,在数学领域中以及其他科学领域中有着重大的 理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下, AB BA.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多 特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交 换的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵. 关键字:矩阵可交换条件性质上三角矩阵 Abstract Matrix is an importantcontent inaltitude-mathematics,it has agreattheoretic significanceintheaspectofbothmathematicsandothersciencefields.Asfaraswe haveconcerned,themultiplicationofmatrixcouldnotsatisfytheexchangeruleunder thenormal condition,thatis tosay,normally, AB BA.Whereas, insomecertain conditions, the multiplicatio n of matrix couldsatisfy the exchange rule. The exchangeable matrixhasmanyspecial properties and important effections. This paperdiscussessomeconditionsofthematrixexchangeandpartsofthepropertyof theexchangeablematrix,andalsointroducesseveralkindsofspecificexchangeable matrix.All of thesearediscussed from the conceptof exchangeable matrix and relativeinformation. KeyWords:matrix interchangeable conditions property upper triangularmatrix

相关文档
相关文档 最新文档