文档库 最新最全的文档下载
当前位置:文档库 › 反应离子刻蚀技术的原理

反应离子刻蚀技术的原理

反应离子刻蚀技术的原理
反应离子刻蚀技术的原理

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频Author: 刘晓明from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。[attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特征尺寸(CD)。传统的单射频系统为了提高刻蚀速率,通常会增加RF功率以提高电场强度,从而增加离子浓度(Ion Density)、加快刻蚀。但离子的能量(Ion Energy)也会相应增加,损伤硅片表面。为了解决这一问题,半导体设备厂商普遍采用了双射频系统设计,也就是在原有基础上,增加一个置于腔体顶部的射频感应电场来增加离子的浓度。其工作原理如下,如图2所示,一个射频电源(Source RF)加在一个电感线圈上,产生交变磁场从而产生感应电场。该电场加速产生更多的离子,而又不直接轰击硅片。[attach]201184[/attach] 图2. 电感耦合原理图此

外,在反应腔四周安装电磁场也是被广泛应用的以增加离子浓度的重要手段。电子在磁场和电场的共同作用下将作圆柱状回旋运动而不是电场下的直线运动。磁场的存在将直接导致反应气体电离截面的增加。磁场的引进会增强离子密度,并使得等离子刻蚀技术可以在更低气压下得以运用(<10 mT)。由于离子密度的增加,撞击表面的离子能量也可以在不降低刻蚀速率的情况下被降低,从而提高刻蚀选择比。反应腔功能与结构一个典型的刻蚀腔体(Plasma Etch Chamber)主要由以下几个部分组成:1. 反应腔由铝合金反应腔体、换洗套件(Swap Kit)和工艺套件(Process Kit)组成。它们与阴极(Cathode)和腔体上盖一起构成产生等离子体的反应室。在设备的定期保养和清洗过程中,只需更换换洗套件、工艺套件和腔体上盖,从而延长了腔体的使用寿命、缩短了保养时间、提高了生产效率。2.真空及压力控制系统刻蚀反应腔工作在真空状态下,工作压力一般在10-3~10-2Torr之间。整个系统主要由干泵(Dry Pump)、分子泵(Turbo Pump)、调压阀(Throttle Valve)、门阀(Gate Valve)、隔离阀(Isolation Valve)、真空计和各种真空检测开关组成。干泵真空度通常能达到100mT,分子泵则能达到0.1mT,分子泵的选型根据刻蚀压力和刻蚀腔容积的不同而不同。随着硅片由200mm发展到300mm,极限真空的要求越来越高,分子泵的抽速越来越大。从300-2200L/s发展到1600-2500L/s。为了进一步提高刻蚀的均匀性,某些产品还采用了双分子泵设计,如应用材料公司的300mm EMAX。压力的测量是由真空计来实现的,要求具有精度高、稳定性好的优点。薄膜式电容真空计(Manometer)则因具备上述特点,而被业界广泛应用。其量程范围有100mT,1T和10T三种。金属和多晶硅刻蚀多选用100mT 真空计,而介电材料刻蚀选用1T真空计。压力控制由电动调压阀(Throttle Valve)来完成。3. 射频(RF)系统射频系统由射频发生器(RF Generator)和匹配器(RF Match)组成,发生器产生的射频信号首先输出到匹配器,然后输出到反映腔阴极。该系统通常有两种组合方式:常用的为固定频率射频发生器和可调匹配器;另一种则为变频式射频发生器和不可调匹配器。当反应腔内的等离子体形成后,整个腔体为可变电容性负载。对于第一种组合方式,射频发生器的输出频率和功率固定,匹配器则自动调节其内部的可变电感(L)实现共振;同时调节可变电容器来实现阻抗匹配(50Ω)以减小反射频率,从而使发生器的功率最大限度地输出到阴极。对于第二种组合方式,匹配器由固定的电容和电感组成,射频发生器通过调节频率实现共振,同时增大实际输出功率来保证输出到阴极的功率达到设定值。4. 静电吸盘和硅片温度控制系统在200mm和300mm集成电路制造设备中,各供应商普遍采用了静电吸盘(Electrostatic Chuck)技术,而抛弃了传统的机械固定模式。它提高了刻蚀均匀性、减少了尘埃微粒(Particle)。同时,热交换器和硅片背面氦气(He)冷却技术进行温度控制的运用确保了整个硅片在刻蚀过程中的温度均匀,从而减少了对刻蚀速率均匀性的影响。静电吸盘按照原理分为库仑力静电场吸附和Johnsen-Rahbeck效应两种,主要是利用吸盘上所加高电压(HV)与硅片上因等离子效应而产生的负电压(DC Bias)之间的电压差将硅片吸附到吸盘上。它们采用了不同的介电材料,前一种采用高分子聚合物(Polymer),后一种则采用氮化铝(AlN)。它们与高电压(HV Module)发生器相配合,产生可通过软件设定的电压值。总的来说,高分子聚合物静电吸盘所需电压较高,漏电流也大,使用寿命较短。而陶瓷静电吸盘(ALN Ceramic ESC)价格相对昂贵,但使用寿命长,能提供更稳定的吸附力(Chucking Force)和背氦控制。5.气体流量控制系统刻蚀气体的流量由质量流量控制器(MFC)来控制,其流量范围一般为50-1000sccm,控制精度可达+/-1%,流量稳定时间<1s 。该控制器按照内部结构可分为模拟电路型,数字电路型及目前最先进的压力变化补偿型(PTI-Pressure Transient Insensitive Technology)。该控制器能够自动补偿气源压力的波动,保证输出流量稳定。6.刻蚀终点检测系统该系统被广泛应用于先进刻蚀设备中,以保证刻蚀深度。其工作原理为通过检测特定波长的光,来确定刻蚀是否结束。通常有两种方式:一是检测参与反应的化学气体浓度突然升高,或者检测反应生成物的浓度骤然下降。该设备按

照检测波长的范围可分为单波长(High Optical Throughput)和分光镜(Monochromator)两种。前者只能通过特定波长的光,后者可通过电机控制分光镜的角度将所需波长的光分离出来。7.传送系统传送系统由机械手(Robot)、硅片中心检测器和气缸等主要部件组成。机械手负责硅片的传入和传出。在传送过程中,中心检测器会自动检测硅片中心在机械手上的位置,进而补偿机械手伸展和旋转的步数以保证硅片被放置在静电吸盘的中心。硅片在反应腔中通常有硅片刻蚀时的位置硅片被传送时的位置,它们是通过气缸带动波纹管上下运动来实现的。8.系统软件及控制随着软件技术的发展,用在刻蚀设备上的专业控制软件也从传统的DOS 或类DOS 操作界面过渡到了Windows操作系统。同时,还引入了分布式控制系统的概念。每个反应腔都具备了独立的控制软件和硬件,即使在主机台停机的情况下仍可继续完成整个刻蚀过程以提高设备的可靠性。此外,Ethernet通讯技术和DNET 现场总线技术的引进实现了设备的远程控制,方便了工厂的管理。结束语随着集成电路的特征尺寸向着纳米级发展,对半导体设备的要求越来越高。双Bias RF技术、电加热型静电吸盘、更精确的终点检测和在线特征尺寸检测技术成为了各个设备厂商发展的重点。

刻蚀简介

刻蚀简介.txt遇事潇洒一点,看世糊涂一点。相亲是经销,恋爱叫直销,抛绣球招亲则为围标。没有准备请不要开始,没有能力请不要承诺。爱情这东西,没得到可能是缺憾,不表白就会有遗憾,可是如果自不量力,就只能抱憾了。本文由bshxl1贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 等离子刻蚀简介 自 1970 年代以来组件制造首先开始采用等离子刻蚀技术,对于等离子化学新的了解与认知也就蕴育而生。在现今的集成电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于等离子刻蚀是现今技术中唯一能极有效率地将此工作在高良率下完成,因此等离子刻蚀便成为集成电路制造过程中的主要技术之一。等离子刻蚀主要应用于集成电路制程中线路图案的定义,通常需搭配光刻胶的使用及微影技术,其中包括了1) 氮化硅(Nitride)蚀刻:应用于定义主动区;2) 多晶硅化物/多晶硅(Polycide/Poly)刻蚀:应用于定义栅极宽度/长度;3) 多晶硅(Poly)刻蚀:应用于定义多晶硅电容及负载用之多晶硅;4) 间隙壁(Spacer)刻蚀:应用于定义 LDD 宽度;5) 接触窗(Contact) 及引线孔(Via)刻蚀:应用于定义接触窗及引线孔的尺寸大小;6) 钨回刻蚀(Etch Back):应用于钨栓塞(W-Plug)的形成;7) 涂布玻璃(SOG)回刻蚀:应用于平坦化制程;8) 金属刻蚀:应用于定义金属线宽及线长;接脚(Bonding Pad)刻蚀等。 9) 影响等离子刻蚀特性好坏的因素包括了:1) 等离子刻蚀系统的型态;2) 等离子刻蚀的参数;3) 前制程相关参数,如光刻胶、待刻蚀薄膜的沉积参数条件、待刻蚀薄膜下层薄膜的型态及表面的平整度等。何谓等离子体?基本上等离子体是由部份解离的气体及等量的带正、负电荷粒子所组成,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电(Glow Discharge) 现象。刻蚀用的等离子体中,气体的解离程度很低,通常在 10-5-10-1 之间,在一般的等离子体或活性离子反应器中气体的解离程度约为 10-5-10-4,若解离程度到达 10-3-10-1 则属于高密度等离子体。等离子体形成的原理:等离子体的产生可藉由直流(DC)偏压或交流射频(RF)偏压下的电场形成,如图 1-3 所示,而在等离子体中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子(Secondary Electron),在直流(DC)电场下产生的等离子体其电子源主要以二次电子为主,而交流射频(RF)电场下产生的等离子体其电子源则以分子或原子解离后所产生的电子为主。在等离子刻蚀中以直流方式产生辉光放电的缺点包含了:需要较高的功率消耗, 1) 也就是说产生的离子密度低; 2) 须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗;3) 所需之电极材料必须为导体。如此一来将不适用于晶圆制程中。在射频放电(RF Discharge)状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。而射频放电所需的振荡频率下限将视电极间的间距、压力、射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为 50kHz。一般的射频系统所采用的操作频率大都为13.56MHz。相较于直流放电,射频放电具有下列优点:1) 放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了;由于电子来回的振荡, 2) 因此离子化的机率大为提升,蚀刻速率可因而提升;3) 可在较低的电极电压下操作,以减低电浆对组件所导致之损坏;4) 对于介电质材料同样可以运作。现今所有的等离子体系统皆为射频系统。另外值得一提的是在射频系统中一个重要的参数是供给动力的电极面积与接地电极面积之比。等效电子及离子温度:存在于等离子体中的电场分别施力于带正电荷之离子与代负电荷之电子,F=E*q ,而加速度 a=F/M,由于离子质量远大于电子,因此电子所获得的加速度与速度将远大于离子,以致电子的动能远大于离子,电子与离子间处于一非平衡状态。从气体动力论中,得知 Ekinetic = (3/2) kT,由此可知,等效电子温度远大于等效离子温度,如此可视为“热”电子处于“冷”等

反应离子刻蚀技术的原理

反应离子刻蚀技术的原理-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频 Author: 刘晓明 from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。 [attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特

离子束加工原理特点及其应用研究

本科课程论文 题目离子束加工原理特点及其应用研 究 学院 专业机械设计制造及其自动化 年级2012 学号 姓名 指导教师 成绩

2014年12 月10 日 目录 1 前言 (1) 2 离子束加工的原理 (2) 3 离子束加工的优缺点 (3) 3.1离子束加工的优点 (3) 3.1.1加工精度高 (3) 3.1.2污染少、无氧化 (3) 3.1.3对材料影响小 (3) 3.2离子束加工的缺点 (3) 4 离子束加工的分类 (3) 4.1离子蚀刻 (3) 4.2离子溅射沉积 (3) 4.3离子镀 (4) 4.4离子注入 (4) 5离子束加工的主要应用 (4) 5.1刻蚀加工的定义及具体应用领域 (4) 5.1.1刻蚀加工的定义 (4) 5.1.2刻蚀加工的应用领域 (4) 5.2离子镀膜加工的定义及具体应用 (4) 5.2.1离子镀膜加工的定义 (4) 5.2.2离子镀膜加工的具体应用 (5) 5.3离子注入加工的定义及具体应用 (5) 6离子束加工应用现状 (5)

7结语 (5) 参考文献 (6)

离子束加工原理特点及其应用研究 摘要:本文分析离子束加工的原理特点,阐述了离子束加工作为加工精度最高的特种加工方法在微电子学领域中特别是纳米加工的重要性。离子束加工按照其所利用的物理效应和达到的目的不同,可以分为四类,即离子蚀刻、离子溅射沉积和离子镀,离子注入。离子束加工作为最近几年才发展起来的特种加工方法,极大的拓宽了人类对微细材料领域的探索;但是离子束加工的潜力还有待继续挖掘;目前因为加工设备费用贵,成本搞,加工效率低,一些技术还处于研发阶段等问题,离子束加工还未能普及。但我们相信未来离子束加工必将被广泛应用,为人类发展带来更多的贡献。 关键词:离子束加工原理分类现状 1 前言 特种加工是现代先进制造工程技术中较为重要和实用的新技术之一,而且获得了较为广泛的应用,它是我国从制造大国过渡到制造强国的重要技术手段之一。经过最近十几年的迅猛发展,各种特种加工方法在生产中的应用日益广泛,无论是在国内还是国外电加工机床年产量的年平均增长率均打打高于金属切削机床的增长率。作为近年来获得较大发展的新兴特种加工方式,离子加工极高的加工精度和加工质量在精密微细加工方面,尤其是在微电子学领域中得到了较多的应用,比如亚微米加工和纳米

第四章+聚焦离子束的应用-2016

第四章聚焦离子束的应用聚焦离子束是一种用途广泛的微纳米加工工具。

主要内容 1.简介 2.液态金属离子源 3.聚焦离子束系统 4.离子束在固体材料中的散射 5.离子束加工 6.聚焦离子束曝光

(一)简介 聚焦离子束(focused ion beam, FIB)与聚焦电子束的本质是一样的,但是两者又有很大的不同。主要差别在于它们的质量,最轻的离子(如氢离子)也比电子重1000多倍。 离子束当然用来曝光,但不仅只用来曝光,还可以对材料进行溅射和沉积,因此聚焦离子束是一种更广泛的加工工具。 自1910年Thomson发明了气体放电型离子源后,离子束技术主要应用于物质分析、同位素分离和材料改性。 早期的离子源是等离子体放电式的,属大面积离子源。真正的聚焦离子源始于液态金属离子源的出现。

液态金属离子源产生的离子具有高亮度、小尺寸的特点,是目前所有聚焦离子束系统的离子源。液态金属离子源加上先进的离子光学系统,可以获得只有5nm的最细离子束。一方面,离子束本身可以对材料表面剥离加工;另一方面,以不同的液态金属作为源材料可以将不同的元素注入材料之中,起到对衬底材料掺杂的作用。 聚焦离子束与化学气体配合可以直接将原子沉积到衬底材料表面。这些应用与聚焦离子束的高分辨能力相结合,使它们都具有微小尺度的特点。 因此,聚焦离子束是一种用途广泛的微纳米加工工具。

(二)液态金属离子源 又名:熔融金属场发射离子源 电流体动力离子源

(1)电子轰击型离子源:通过热阴极发射的电子,加速后轰击气体分子,使气体分子电离。这类离子源多用于质谱分析仪。特点是束流不高,但能量分散小。 (2)气体放电型离子源:由气体等离子体放电产生电子。如:辉光放电、弧光放电、火花放电离子源等。这类离子源的特点是产生离子束流大,因此广泛应用于核物理研究,如高能加速器的离子源和离子注入机的离子源。 离子源分类 (3)场致电离型离子源 (4)液态金属离子源都是在大范围内(如电离室)产生离子,通过小孔将离子流引出。因此离子流密度大,离子源面积大,不适合于聚焦成微小束。

深硅刻蚀工艺原理

硅蚀刻工艺在MEMS中的应用 文章来源:本站原创 点击数:97 录入时间:2006-4-7 减小字体增大字体 Dave Thomas / Trikon Technologies,Newport,Wales,United Kingdom 本文介绍了在现代微机电系统(MEMS;Micro Electro-Mechanical System)制造过程中必不可少的硅蚀刻流程,讨论了蚀刻设备对于满足四种基本蚀刻流程的要求并做了比较,包括块体(bulk)、精度(pre cision)、绝缘体上硅芯片(SOI;Silicon On Insulator)及高深宽比的蚀刻(high aspect ratio etching)等。并希望这些基本模块能衍生出可提供具备更高蚀刻率、更好的均匀度、更平滑的蚀刻侧壁及更高的高深宽比的蚀刻能力等蚀刻设备,以满足微机电系统的未来发展需求。 微机电系统是在芯片上集成运动件,如悬臂(cantilever)、薄膜(membrane)、传感器(sensor)、反射镜(mirror)、齿轮(gear)、马达(motor)、共振器(resonator)、阀门(valve)和泵(pump)等。这些组件都是用微加工技术(micromachining)制造的。由于硅材料的机械性及电性众所周知,以及它在主流IC制造上的广泛应用,使其成为微加工技术的首要选择材料。在制造各式各样的坑、洞、齿状等几何形状的方法中,湿式蚀刻具有快速及低成本的优势。然而,它所具有对硅材料各方向均以相同蚀刻速率进行的等向性(isotropic)蚀刻特性、或者是与硅材料的晶体结构存在的差异性、产生不同蚀刻速率的非等向性(a nisotropic)等蚀刻特性,会限制我们在工艺中对应用制造的特定要求,例如喷墨打印机的细微喷嘴制造(非等向性蚀刻特性总会造成V形沟槽,或具锥状(tapered walls)的坑洞,使关键尺寸不易控制)。而干式蚀刻正可克服这个应用限制,按照标准光刻线法(photolithographic)的光罩所定义的几何图案,此类干式蚀刻工艺可获取具有垂直侧壁的几何图案。举例来说,通常要蚀刻定义出较大尺寸的组件,如电容式加速微传感器(capacitive accelerometers)。通常我们会优先考虑湿式蚀刻方式,但对于需要更精确尺寸控制、或是整体尺寸需微缩的组件的制造,则会考虑选择采用干式蚀刻来达到工艺要求。 硅蚀刻 广泛应用的硅蚀刻方法,是起源于德国Robert Bosch公司开发的非等向性硅蚀刻工艺方法,被称为Bosch 气体交替技术(Bosch gas-switching technique)[1]。利用具有非等向性蚀刻反应的等离子源,与通过反应形成高分子蔽覆层(polymeric passivation layer)的另一种等离子源,两者反复交替进行的方法,以达到硅蚀刻的工艺要求。常用的在硅蚀刻生产过程中的气体选择,多是采用SF6(六氟化硫),因其可在能量只有2 0eV的条件下即可分解出6个氟原子,而这些氟原子会继续与Si反应形成挥发性SiF4(四氟化硅)。理论上,已定义几何图案的6寸硅晶圆占据了大约15%的裸片面积,设定等离子反应室内压力>30mtorr、SF6

Ar等离子体下的反应离子刻蚀

Vol.34,No.5Journal of Semiconductors May2013 Reactive ion etching of Si2Sb2Te5in CF4/Ar plasma for a nonvolatile phase-change memory device Li Juntao(李俊焘)1;2; ,Liu Bo(刘波)1; ,Song Zhitang(宋志棠)1,Yao Dongning(姚栋宁)1, Feng Gaoming(冯高明)3,He Aodong(何敖东)1;2,Peng Cheng(彭程)1;2, and Feng Songlin(封松林)1 1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai200050,China 2University of Chinese Academy of Sciences,Beijing100049,China 3United Laboratory,Semiconductor Manufacturing International Corporation,Shanghai201203,China Abstract:Phase change random access memory(PCRAM)is one of the best candidates for next generation non- volatile memory,and phase change Si2Sb2Te5material is expected to be a promising material for PCRAM.In the fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching characteristics of Si2Sb2Te5films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We observed a monotonic decrease in etch rate with decreasing CF4concentration,meanwhile,Ar concentration went up and smoother etched surfaces were obtained.It proves that CF4determines the etch rate while Ar plays an im- portant role in defining the smoothness of the etched surface and sidewall edge https://www.wendangku.net/doc/b712854101.html,pared with Ge2Sb2Te5, it is found that Si2Sb2Te5has a greater etch rate.Etching characteristics of Si2Sb2Te5as a function of power and pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of10/40,a background pressure of40mTorr,and power of200W. Key words:reactive ion etching;phase-change material;Si2Sb2Te5 DOI:10.1088/1674-4926/34/5/056001PACC:7360F;8160 1.Introduction Nowadays,phase change random access memory (PCRAM)has been regarded as one of the most promising non-volatile memories,and has received more and more attention because of its superior performance and other mer-its?1;2 .It was devised by Ovshinsky in1968?3 based on the rapid reversible phase change effect in some materials under the influence of an electric current pulse,and the different resistances between crystalline and amorphous states define the logic state of an individual bit. Phase change Si2Sb2Te5material,expected as a promising material for PCRAM,possesses a wider band-gap comparing to Ge2Sb2Te5.The band-gap width of amorphous and poly-crystalline Si2Sb2Te5are determined to be0.89and0.62eV by means of Fourier transform infrared spectroscopy?4 .The mate-rial possesses a low threshold current from amorphous to poly-crystalline state in voltage–current measurement,and shows a good data retention.These properties prove Si2Sb2Te5is a po-tential material?4;5 . In this paper,the reactive ion etching(RIE)process of Si2Sb2Te5films in CF4/Ar plasma is described.The etch rate and surface roughness were examined systematically as a func-tion of pressure,power,and Ar concentration in the CF4/Ar mixture gas.A smooth surface was successfully obtained us- ing the optimization approach described below. 2.Experiment In this study,Si2Sb2Te5films were deposited with the ra- dio frequency(RF)-magnetron sputtering method using single element targets at room temperature.The thickness of the films was about400nm measured by a cross-sectional scanning elec- tron microscope(SEM,Hitachi S-4700).The compositions of films were determined by means of energy dispersive spec- troscopy(EDS).Shipley6809photo-resist was used for pattern definition.An Oxford80plus RIE system with a maximum RF power of600W was used to etch the Si2Sb2Te5films.The etch gas ratio was controlled by mass flow controllers,and the gas pressure in the chamber was adjusted by a clapper valve. The temperature of the sample holder was controlled by heat transfer fluid(Hexid)and held at30?C.The experimental con-trol parameters were the gas flow rate,chamber background pressure,CF4/Ar ratio and the incident RF power applied to the lower electrode.A total flow rate of CF4C Ar was50sccm throughout the experiment,while the CF4/Ar ratio was varied as an optimization parameter. Etching depths were measured using a surface profile- *Project supported by National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004),the Na-tional Integrate Circuit Research Program of China(No.2009ZX02023-003),the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001),the Science and Technology Council of Shanghai(Nos.11DZ2261000, 11QA1407800),and the Chinese Academy of Sciences(No.20110490761). ?Corresponding author.Email:jet_lee@https://www.wendangku.net/doc/b712854101.html,;liubo@https://www.wendangku.net/doc/b712854101.html, Received25August2012,revised manuscript received3December2012?2013Chinese Institute of Electronics

反应离子刻蚀实验

反应离子刻蚀硅阵列实验 一、实验目的: 1、掌握反应离子刻蚀的基本原理。 2、掌握利用单晶硅刻蚀硅阵列的实验流程。 3、了解刻蚀后的硅阵列的表征方法。 二、实验原理 刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀是传统的刻蚀工艺,把硅片浸泡在一定的化学试剂或试剂溶液中,使没有被抗蚀剂掩蔽的那一部分薄膜表面与试剂发生化学反应而被除去,其优点是操作简便、对设备要求低、易于实现大批量生产,并且刻蚀的选择性也好。但是,它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3μm以上。干法刻蚀是应大规模集成电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。 反应离子刻蚀(Reactive Ion Etching,RIE)是干法刻蚀的一种,是以物理溅射为主并兼有化学反应的过程,通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,其基本工作原理是刻蚀气体(主要是F基和Cl基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。而质量较大的正离子,被阴极附近带负电的鞘层电压有效的加速,垂直轰击放置于阴极表面的硅片,以较大的动量进行物理刻蚀,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。 三、实验装置 ME-3A型多功能磁增强反应离子刻蚀机 四、实验内容和步骤

离子束加工原理

离子束加工原理 离子束加工(ion beam machining,IBM)是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。 因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。 2.离子束加工特点 加工精度高。因离子束流密度和能量可得到精确控制。 在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。 加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 当所带能量为0.1~5keV、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子或分子间键合力时,材料表面的原子或分子被逐个溅射出来,以达到加工目的 这种加工本质上属于一种原子尺度的切削加工,通常又称为离子铣削。 离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等高精度图形。 2)离子溅射沉积 采用能量为0.1~5keV的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。 实际上此法为一种镀膜工艺。 3)离子镀膜 离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa), 此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。4)离子注入 用5~500keV能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。 此法不受温度及注入何种元素及粒量限制,可根据不同需求注入不同离子(如

第六讲 等离子体刻蚀

干法体硅加工―― 深反应离子刻蚀技术 干法体硅加工的必要性: 高深宽比微结构是MEMS体系必不可少的特征之一,基于硅的优异机械特性和半导体工业的积累,硅被选择作为MEMS 的主要结构材料,但是,湿法刻蚀难以实现任意形状的图形转移,复杂微结构的硅材料在高深宽比硅干法刻蚀获得进展之前是非常困难和有很多限制条件的,因此,人们在硅的深刻蚀加工方面倾注了大量的精力,因此也取得了长足进步,发展称为独具特色的专用加工设备,大有取代湿法刻蚀的趋势。 内容: 等离子体刻蚀技术 硅的刻蚀与高深宽比机制 应用

等离子体刻蚀技术 等离子体的形成: 当一定量的化学气体进入一定压力的腔体,在上下电极加上高电压,产生电弧放电,生成大量的离子和自由电子,这种由部分离化的气体组成的气相物质被称为等离子体 对于气体分子AB,其等离子体中可能含有: A,B,A+,B+,AB+,A*,B*,AB*,e 其中激发态的粒子会自发放电,产生辉光,称为辉光放电现象。于是: 直流激发的辉光放电被称为直流辉光放电 射频电流激发的放电就称为射频放电 对于直流等离子体反应,其典型气压约在1mTorr,典型装置如下:

平板间距决定了激发电源的电压,大约是5厘米对应500V,10厘米对应1000V的水平 处于两极之间的等离子体,正电粒子向负极运动,电子向正极运动,电子更快。 离子最终撞击阴极将产生更多的二次电子,二次电子再向正极运动,并被极间电场加速,当能量足够高时,与腔室内的气体分子碰撞,又可以产生新的离子,如此反复,就可以维持腔室内一定区域的等离子状态。 研究表明:等离子体中绝大多数仍为气体分子,自由基和带电粒子只占很小部分,对于简单的直流放电等离子体,自由基约占1%,而离子更是只有大约0.01% 因此,一般等离子体刻蚀反应主要是由自由基去完成的

反应离子刻蚀技术的原理

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频Author: 刘晓明from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。[attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特征尺寸(CD)。传统的单射频系统为了提高刻蚀速率,通常会增加RF功率以提高电场强度,从而增加离子浓度(Ion Density)、加快刻蚀。但离子的能量(Ion Energy)也会相应增加,损伤硅片表面。为了解决这一问题,半导体设备厂商普遍采用了双射频系统设计,也就是在原有基础上,增加一个置于腔体顶部的射频感应电场来增加离子的浓度。其工作原理如下,如图2所示,一个射频电源(Source RF)加在一个电感线圈上,产生交变磁场从而产生感应电场。该电场加速产生更多的离子,而又不直接轰击硅片。[attach]201184[/attach] 图2. 电感耦合原理图此

RIE深刻蚀SiC工艺

Published in Materials Research Society Symposium Proceedings Vol. 622 ? 2000 Materials Research Society Deep RIE Process for Silicon Carbide Power Electronics and MEMS Glenn Beheim and Carl S. Salupo1 NASA Glenn Research Center Cleveland, OH 44135 1Akima Corporation Cleveland, OH 44135 ABSTRACT Reactive ion etching (RIE) of silicon carbide (SiC) to depths ranging from 10 μm to more than 100 μm is required for the fabrication of SiC power electronics and SiC MEMS. A deep RIE process using an inductively coupled plasma (ICP) etch system has been developed which provides anisotropic etch profiles and smooth etched surfaces, a high rate (3000 ?/min), and a high selectivity (80:1) to the etch mask. An etch depth of 100 μm is demonstrated. INTRODUCTION Deep RIE processes for SiC are needed to realize the intrinsic advantages of SiC for power electronics and harsh environment MEMS. Etch depths from 10 μm to more than 100 μm are required for trench isolation of SiC power devices, through-wafer vias for advanced packaging schemes, and bulk micromachined SiC structures. The ideal deep RIE process would provide a high rate (at least several thousand ?/min), a highly anisotropic etch profile (e.g. vertical sidewalls with minimal bowing), and smooth etched surfaces. In addition, a high selectivity with respect to an easily deposited and patterned etch mask is required. Deep RIE of SiC has previously been demonstrated using conventional capacitive-type RIE systems [1]. Previously, inductively coupled plasma (ICP) etching has been shown to provide high rates for SiC [2-4]. The effectiveness of ICP for deep etching of SiC is demonstrated here. Key advantages of ICP relative to conventional RIE include: (1) a considerably higher plasma density, which provides a greater flux of energetic ions and reactive species (e.g. atomic fluorine) to the sample; (2) capability for operation at lower pressures, which helps minimize bowing of the etch sidewalls and can also help to eliminate residues caused by the redeposition of nonvolatile etch products (e.g. sputtered mask materials) onto the etched surfaces; (3) capa-bility for independent control of the plasma density and the energy with which ions bombard the sample, through the use of separate RF generators for the coil and substrate bias electrode. EXPERIMENT A: ETCH RATE AND SELECTIVITY MEASUREMENTS For this study deep ICP etching was performed on the silicon face of n-type 6H-SiC using an STS Multiplex ICP [5]. The 10-mm square SiC samples were attached to 100-mm diameter silicon carrier wafers using a drop of photoresist. Typically, the silicon carrier wafer etches at a fairly rapid rate (about 2 μm/min) because Si readily reacts to form a volatile product with atomic fluorine. The sacrificial carrier wafer helps to minimize roughness caused by the sputtering of nonvolatile materials onto the etched SiC surface, which leads to micromasking. The loading effect caused by the silicon carrier wafer varies with different process parameters. For the baseline process (described below), the same etch rate was obtained whether the SiC

相关文档