文档库 最新最全的文档下载
当前位置:文档库 › 400m^2烧结机返矿率偏高的原因分析

400m^2烧结机返矿率偏高的原因分析

400m^2烧结机返矿率偏高的原因分析
400m^2烧结机返矿率偏高的原因分析

高炉炼铁对烧结矿的要求

高炉炼铁对烧结矿的要求(1) 高炉对烧结矿总的要求是:含铁品位高、碱度合适和有害成分少、化学成分稳定、还原性好;强度好,粉末少,粒度均匀。 一、烧结矿化学成分对对高炉生产的影响 1、入炉烧结矿品位高、脉石少、冶炼时渣量就少,炉料在高炉中下降就顺利,炉渣带出的热量就少,这就有利于提高产量、降低焦比。 烧结矿品位提高1%,可降低焦比2%,高炉增产3%。 2、烧结中有害杂质(硫、磷、锌、铅、钛等)在高炉冶炼时有的进入生铁中,会影响生铁的品质,影响钢的性能,有的进入炉渣、有的变成气态,都会使高炉设备受到侵蚀或结瘤。 3、烧结矿化学成分波动大时,都会引起高炉炉矿波动,增加燃料消耗,影响产量。实践证明:品位波动由1%降到0.5%,焦比可降低1%、产量可提高2%。 4、碱度波动会引起造渣的波动,降低脱硫能力,容易出号外铁。在一般情况下,碱度波动从0.05%降到0.025%时,高炉产量可提高0.5%,焦比降低0.3%。 5、亚铁(FeO)一般用作衡量烧结矿还原性的指标,在保证强度的条件下,我们不希望它过高,同时希望它稳定,否则会引起高炉炉缸内热的波动。实践证明:亚铁降低1%,焦比下降1.5%,产量2%。 二、烧结矿物理性能对高炉有哪些影响: 强度好、粉末少、粒度均匀是对烧结矿物理性能最主要的要求。因为,强度不够必然会产生较多的粉末,给高炉冶炼带来以下影响: 1、恶化料柱透气性,炉矿失常、冶炼强度降低,恶化冶炼指标。 2、烧结矿粒度均匀,可以增加料柱的空隙度,提高透气性和改善气流分布,有利于高 炉冶炼增产结焦。 实践证明:入炉矿中小于5毫米的粉末每降低10%,可使高炉增产6%~8%;烧结矿6毫米至50毫米的粒度每增加1%,焦比可降低2%。 烧结矿强度差,粉末就多,使高炉炉尘吹出量增加,增加了炼铁的原料消耗,浪费了资源。一个1000万吨生铁的炼铁厂,若吨铁炉尘量增加50公斤,则一年多吹走的路尘量就达50万吨。

烧结矿冶金性能的有关参数

烧结矿冶金性能的有关参数 一、低温还原粉化性能 (1)RDT-3.15 30%时RDT+6.3一般在41%左右 这个范围的低温还原粉化性能有一定恶化,但仍处在可维护中、小高炉冶炼所允许的范围之内。 (2)RDT-3.15 20—25%时RDT+6.3一般在60—50% 这个范围基本能满足较高冶强的顺行要求。 (3)RDT-3.15 17—19%时RDT+6.3一般在67—63% 这个范围的低温还原粉化性能应该说非常好,非常有利于改善高炉块状带的透气性,但要注意对还原性能的检验,还原度不能低于75%。 (4)RDT-0.5一般在6—7%范围 一般烧结矿中磁铁矿和硅酸铁含量的增加,有利于改善低温粉化性能,同时随着FeO%含量的相应提高(从6%逐步提高到12%以下)也有利于低温还原粉化性能的改善。 二、烧结矿的还原性能 还原度RI(900℃时)在75—80%左右时,应该是比较好的还原性能指标。 凡还原度的降低都不利于降低高炉冶炼燃料比,一般情况下,当采取减少低温粉化率措施的同时,还原度相应降低,它往往也与难还原的磁铁矿和硅酸铁含量的增加有关,FeO%>10%RG,还原度也会出现明显的降低趋势。 三、烧结矿荷重软化性能 一般烧结矿碱度在 1.85±0.1条件下,软化的开始温度在1200—

1220℃,软化终了温度在1320—1330℃,软化温度区间在110—120℃,凡软化温度区间(T2—T1)变小,对降低高炉软熔带的透气性是有利的。反之,如果软化开始温度↓软化温度区间自然变大,不利于软熔带透气性的改善,一般影响烧结矿荷重软化性能,主要有两个因素: 一是烧结矿的还原性能:烧结矿还原性能的改善有利于烧结矿在升温过程中形成液相的温度升高,导致烧结矿的软化开始温度升高。 二是烧结矿中脉石的熔点,在烧结矿碱度基本不变的条件下,烧结矿中脉石的熔点不变,R2低熔点低,R2高熔点高。

烧结矿中FeO对烧结矿质量的影响

烧结矿中 FeO 对烧结矿质量的影响
发表时间:[2007-12-12] 作者:苏东学董艳春刘倬彪于原浩张有东((国丰钢铁公司炼铁厂) 编辑录入:admin 点击数:8064 摘要 本文针对国丰钢铁公司的原料条件,从原料成分、烧结燃料配加量、碱度、Mg(=)含量和料层高度等工艺参数的角度出发,系统分析了不同工艺参数对烧结矿 Fe()含量和烧结矿质量的影响
关键词 烧结矿 FeO 质量
1 前言 烧结矿 FeO 含量是炼铁和烧结十分重视的质量指标之一,炼铁工作者也把烧结矿中 FeO 含量作为评价烧结矿质量,特别是烧结矿强度和还原性能好坏的重要标志,
在一定条件下(如碱度相同,SiO2 相近),烧结矿中 FeO 含量与其强度密切相关,烧结矿中 FeO 含量对高炉上、中部间接还原也有很大影响。几年来,我们一直遵循在 保证烧结矿强度的前提下,降低烧结矿 FeO 含量的方针组织生产。
烧结过程的配碳量与烧结矿 FeO 含量呈正相关关系,控制 FeO 可以达到降低烧结能耗的目的,更重要的是有利于高炉冶炼焦比的降低,根据经验,烧结矿 FeO 含 量每降低 1%,高炉焦比可降低 1.5%左右。
为了能为高炉冶炼提供容易还原、FeO 含量适宜的高强度烧结矿,本文就国丰钢铁公司烧结生产的实际情况,对影响烧结矿 FeO 含量的因素、生产中如何控制 FeO 含量及控制水平等技术措施进行分析如下。
2 影响烧结矿中 FeO 含量的因素 烧结矿中 FeO,一是从原料中带人,二是烧结过程中的气氛。因此,烧结矿中 FeO 含量的高低,主要与所用铁料、烧结过程中的氧化气氛强弱及温度水平高低有关。
2.1 含铁原料与 FeO 的关系 一般认为,烧结生产使用以磁铁精矿为主的铁料时,烧结矿中 FeO 要比赤铁矿生产时高(因为磁铁矿 FeO 含量高达 20—25%,赤铁矿 FeO 含量只有 0.5—4.5 %),
实际生产并非如此。几年来,我厂使用了不同比例的赤铁矿粉、磁铁矿粉、特别是使用了 FeO 含量高的氧化铁皮(FeO 含量 60%)、美国粗粉(FeO 含量 44%)及热压铁

烧结机烟气量如何计算

有关烧结机的烟气量计算 已知: 现有一台烧结机: 风机型号: 入口流量:9000m3/min 烟气温度:150℃ 当地大气压:87KPa 试求:入脱硫塔烟气量(标况)? ************************************************* 一、本人认为这样计算,不知道对否? 1.由烧结机参数可知:风机进口绝压== 风机出口绝压== 2.风机出口工况烟气量=抽风机进口流量×进口静压/出口静压==h 3.入塔标况烟气量=风机出口表烟气量=工况烟气量×[273/(273+烟气温度)]×[(当地大气压+烟气压力)/标准大气压]=(273+150)=h 二、如果是估算可以按风机进口流量计算,由于烧结机烟气量波动较大,最好要求业主提供准确流量范围. 三、记得以前搞烧结机的时候,看他们烧结工艺的人一般估算是根据烧结的上面的风速,好像1m/s左右。 估算就可以如下:烧结机风速?烧结机面积*3600(单位换算)=估算风量(或许还要考虑温度因素)。 四、烧结机的确很不稳定,甚至烧结矿的配比都经常改动变化。 不过你按风机上限计算也无所谓了。经常烧结机超负荷满负荷生产, 五、最后一个公式好像不对吧。。。 Q=Q0*[273/(273+T)]*(P0+P测法 当废气排放量有实测值时,采用下式计算: Q年= Q时× B年/B时/10000 式中: Q年——全年废气排放量,万标m3/y; Q时——废气小时排放量,标m3/h;

B年——全年燃料耗量(或熟料产量),kg/y; B时——在正常工况下每小时的燃料耗量(或熟料产量),kg/h。 2.系数推算法 1)锅炉燃烧废气排放量的计算 ①理论空气需要量(V0)的计算a. 对于固体燃料,当燃料应用基挥发分V y>15%(烟煤),计算公式为:V0= ×Q L/1000+[m3(标)/kg] 当Vy<15%(贫煤或无烟煤), V0=Q L/4140+[m3(标)/kg] 当Q L<12546kJ/kg(劣质煤), V0=Q L对于液体燃料,计算公式为:V0= ×Q L/1000+2[m3(标)/kg] c. 对于气体燃料,Q L<10455 kJ/(标)m3时,计算公式为: V0= × Q L/1000[m3/ m3] 当Q L>14637 kJ/(标)m3时, V0= × Q L/[m3/ m3] 式中:V0—燃料燃烧所需理论空气量,m3(标)/kg或m3/m3; Q L—燃料应用基低位发热值,kJ/kg或kJ/(标)m3。 各燃料类型的Q L值对照表 (单位:千焦/公斤或千焦/标米3) 燃料类型 Q L 石煤和矸石 8374 无烟煤 22051 烟煤 17585 柴油 46057 天然气 35590 一氧化碳 12636 褐煤 11514 贫煤 18841 重油 41870 煤气 16748 氢 10798

提高减少烧结矿强度、改善粒级组成

提高减少烧结矿强度、改善粒级组成 刘永刚王艳于占海 (宣钢炼铁厂) 摘要:炼铁厂针对影响烧结矿强度、小粒级的因素,制定科学有效的攻关措施,并对攻关措施逐项落实,强度提高,小粒级指标有明显改善 关键词:强度粒级改善 前言 近年来,高炉冶炼技术高速发展,“精料方针”越来越受到冶金工作者的高度重视。特别是降低烧结矿5-10mm小粒级含量对高炉强化冶炼具有重要意义.宣钢有64m2烧结机两台,86m2烧结机一台,36m2步进式烧结机六台,360 m2烧结机一台;烧结系统围绕提高产量进行了较大的改造,但受原燃料质量波动等因数影响,烧结矿强度不高,5-10mm粒级含量高,高炉槽下烧结返矿率偏高。为提高烧结矿有效烧结矿量,降低机烧损耗,提高烧结矿强度,减少烧结矿小粒级含量展开技术攻关。 1、减少烧结矿小粒级措施 1.1 优化入烧原料、熔剂、燃料粒级。 入烧原燃料粒级粗,会造成大部分矿物颗粒之间仅靠点接触粘结,用手即可掰开、强度差,5-10mm粒级明显增加,为从源头解决影响我厂烧结矿小粒级的因数,我们采取了以下作法: (1)、对进口原矿进行破碎,除产生高炉使用的合格块外,进圆锥破碎机加工成烧结用粉料,控制烧结粉料+5mm粒级≤15%;对进厂粒级较粗的伊朗矿进行筛粉处理,筛上物经破碎,粒度合格后入烧。 (2)、控制灰石、云石、钙灰、镁灰粒度-3mm达到85%,调整入烧燃料粒级由原来的-3mm在80%以下,为-3mm在82以上。 1.2 优化高炉返矿和自循环返矿粒级。 烧结车间定期更换烧结冷、热筛筛板,加强日常检修对筛板缝的补焊,控制烧结自循环返矿+5mm粒级在20%以下。将一烧冷筛改为棒条筛,提高筛粉效果。加强高炉槽下返矿粒度的测定,及时更换和修补入炉矿筛筛板,保高炉槽下返矿+5mm 粒级在25%以下。 1.3 优化铁混料结构,确定适宜360m2烧结机烧结参数,控制烧结矿适宜碱度、FeO、

烧结矿FeO含量的影响因素及控制

中文摘要 烧结矿FeO含量是反映烧结矿性能的一个重要指标,适当地控制好FeO含量,有利于烧结降低固体燃耗,增加高炉生铁产量,降低焦比。文中分析了在一定的烧结工艺技术条件下影响烧结矿FeO含量的主要因素及调整措施。 关键词:烧结矿影响因素探讨 FeO含量降低固体燃耗改进措施

The content of sinter FeO influence factors and the control Abstract The sinter FeO content is re flected the sinter performance is one of important index, properly control the FeO content, be helpful for sintering reduce solid fuel consumption, increase the blast furnace pig iron production, reduce of coke. This paper analyzes the in certain sintering process technology conditions affect the content of sinter FeO factors and adjustment measures. Key words:Sinter Influence factors discussed FeO content Reduce solid fuel consumption Improvement measures

提高白云石配比对烧结生产的影响

烧结提高白云石配比试验效果分析 魏愈宋 2006年4月1日,烧结厂按照公司高MgO试验的统一安排,将白云石配比由原来的1.8%提高到4%,4月8日根据生产要求白云石配比调整为3.5%。针对白云石配比调整前后烧结的生产实际及指标变化情况,进行试验总结。 一、试验期前后原料配比情况 表1 试验期前后原料配比情况

二、提高白云石配比对烧结矿产、质量指标的影响 试验条件:烧结矿碱度为1.7。 影响因素: A、老系统2#、1#机分别于3月27日和4月6日全密封技术改造完成开始投入使用;130烧结机4月8日全密封技术改造完成开始投入使用。 B、130烧结机系统3月份进行增效剂的开发试用与对比试验。 表2 白云石配比对130m2烧结机产、质量指标的影响 表3 白云石配比对老系统烧结机产、质量指标的影响

由表2、表3可见,白云石配比提高到3.5~4%后: 1、新、老系统烧结矿转鼓指数与3月份相比均降低约1~1.8%。而130m2烧结机转鼓指数与2006年1、2月份相比降低约2.1%(因3月份进行增效剂的开发试用与对比试验,转鼓指数有所降低),降低的幅度更大; 2、内部返矿率提高1~1.5%,外部返矿率较3月份提高1%、较1、2月份提高1.5%,较05年提高2.7%。而白云石配加3.5%时由于全密封及烧结混匀料烧结性能变化等因素的影响,内、外部返矿率明显降低; 外部返矿率新、老系统分开: 130m2烧结机系统外部返矿率由于成4#电子秤校称及全密封技术的应用影响,没有反应出实际的变化情况。 3、利用系数,排除全密封、烧结矿送料情况、烧结机开、停机及原料烧结性能变化等因素的影响,利用系数略有降低。 从以上数据及分析来看,提高白云石配比后,烧结矿的强度明显降低。提高白云石配比使烧结矿强度降低的原因是:首先,白云石配比提高后,烧结温度必须有所提高,高温保持时间也需延长,所需燃料用量稍高,否则,对分解后的MgO矿化不利,会出现大量未反应的MgO 颗粒被烧结过程中生成的铁酸镁(MgO·Fe2O3)液相所胶结;其次,白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,其结晶细小,

废气污染物排放量计算

废气污染物排放量计算 1、主要排放口计算 主要排放口有烧结机头烟囱、烧结机尾烟囱、竖炉焙烧烟囱、1#高炉矿槽及出铁场烟囱、2#高炉矿槽及出铁场烟囱、1#转炉二次除尘烟囱、2#转炉二次除尘烟囱、自备电厂燃气锅炉烟囱。 主要排放口计算公式为: 其中:M—为第i个排放口污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公司现有生产装备及生产能力核实意见的函》(鄂经信重化函[2016]419号); C—为污染物许可排放浓度限值,单位为mg/Nm3; Q—为基准排气量,单位为Nm3/t产品。基准排气量取自《排污许可证申请与核发技术规范钢铁工业》。 主要排放口年许可量: 主要排放口污染物种类申请许可排 放浓度限值 mg/Nm3设计产量 万t/a 基准排气 量 Nm3/t 申请年许可 排放量t/a 烧结机头二氧化硫200 132 2830 747.12 颗粒物50 2830 186.78 氮氧化物300 2830 1120.68 烧结机尾颗粒物30 132 1300 51.48 球团氮氧化物300 100 2480 744 二氧化硫200 2480 496 颗粒物30 2480 74.4 1#高炉矿槽、出铁场颗粒物25 60 6150 92.25 2#高炉矿槽、出铁场颗粒物25 6150 92.25 1#转炉二次除尘颗粒物20 60 1550 18.6 2#转炉二次颗粒物20 1550 18.6

2、一般排放口计算 一般排放口有:烧结配料、筛分工序排放口;高炉制煤、热风炉工序排放口;炼钢一次除尘排放口;石灰窑废气排放口;热轧加热炉排放口等。 一般排放口计算公式为: 其中:M—为第i个单元大气污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公司现有生产装备及生产能力核实意见的函》(鄂经信重化函[2016]419号); G—为第i个单元污染物一般排放口排放量绩效值,单位为kg/t。一般排放口排放量绩效值取自《排污许可证申请与核发技术规范钢铁工业》。 一般排放口污染物种类一般排放口绩效值 kg颗粒物/t 设计产量 万t/a 申请年许可排放 量t/a 烧结配料、筛分颗粒物0.105 132 138.60 炼铁制煤、热风炉颗粒物0.041 120 49.20 二氧化硫0.130 156.00 氮氧化物0.39 468.00 炼钢一次除尘排放口颗粒物0.109 120 130.80 石灰窑废气排放口颗粒物0.15 15 22.50 轧钢加热炉排放口颗粒物0.025 120 30 二氧化硫0.09 108 氮氧化物0.18 216 一般排放口排放量颗粒物/ / 371.1 二氧化硫/ / 264.00 氮氧化物/ / 684.00 3、无组织排放量计算 钢铁工业排污单位污染物无组织年许可排放量计算公式: 其中:W—为第i个单元大气污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公

返矿率和返矿平衡

返矿率和返矿平衡(return fines and It’s balance) 铁矿石烧结后因强度较差和未完全烧结的烧结矿经破碎筛分处理而返回烧结工序的筛下物称返矿。返矿量与烧结混合料总量之比为返矿率。在西欧国家根据控制技术方面的需要,返矿率均以返矿量占矿石量的百分比来计算。烧结产出的返矿量(R A)与烧结混合料中配入的返矿量(R E)相等时,叫返矿平衡(B),即B=R A/R E=1。它是烧结过程得以进行的必要条件。 返矿的种类烧结矿返矿分为热返矿、冷返矿和高炉料槽下返矿3种。(1)热返矿。烧结台车运行到烧结机尾时,烧结机两侧和表层的未烧好的烧结矿;黏结成块的热烧结饼经机尾单辊破碎机剪切和热振动筛筛分后的筛下物。(2)冷返矿。热烧结矿经冷却和整粒后的筛下物。(3)高炉料槽下返矿。高炉料槽中的烧结矿在入炉前进行筛分时的筛下物。返矿粒度一般都在5mm以下;热返矿送到烧结混合料皮带上返回烧结;冷返矿和高炉料槽下返矿则返回烧结配料室。 返矿率与返矿质量烧结返矿率取决于原料的性质、原料的准备技术和设备状况以及烧结的操作技术。赤铁矿、褐铁矿和含结晶水脉石高的矿粉,以及不易脱水的高湿度的细精矿等返矿率一般较高,可达40%~50%。混合料的混合和制粒不好、烧结机的布料不均、烧结点火热量不足、烧结终点控制不好或未能烧透以及烧结矿卸出后的多次破碎及筛分等都会增加返矿率。此外,当烧结制度(如料层高度、点火温度、燃料用量、抽风负压等)与原料性质不相适应,或烧结作业失常未能及时调整时,返矿率也会升高。返矿中如含有大量未经烧结的烧结混合料,则返矿细粉多、含碳高、质量差,对烧结过程有不利的影响。质量良好的返矿多数是已烧结成矿但机械强度较差的粒状物料,其粒度一般应在5mm以下。

烧结机烟气脱硫技术

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 烧结机烟气脱硫技术 空气净化技术:2006年,全国SO2排放量为 2 588.8万t,比2005年增长1.5%,2007年全国SO2排放总量分别比2006年下降 3.18%,但总排放量依然惊人。因此,在十一五期间,SO2减排依然是环保工作的重点。钢铁 是SO2排放的主要之一,特别是烧结生产工序的SO2排放总量占到钢铁SO2排放总量的70%左右[1],解决好烧结工序的SO2减排,就是抓住了钢铁 行业SO2减排工作的重点,将为钢铁行业完成十一五规划中要求的SO2减排任务打下坚实的基础。 1 烧结机技术现状 技术主要分为干/半干法和湿法技术。干/半干法烟气脱硫技术主要包括喷 雾旋转干燥吸收工艺(SDA)、循环流化床烟气脱硫工艺(CFB)等;湿法主要包括:石灰石-石膏湿法工艺、氨法烟气脱硫工艺、氧化镁湿法工艺等。 钢铁行业的烧结机烟气脱硫起步较晚,相比于电厂广泛采用石灰石-石膏湿法烟气脱硫技术而言,钢铁行业采用的烟气脱硫技术可谓百花齐放,百家 争鸣。 宝钢、梅钢采用石灰石-石膏湿法烟气脱硫技术[2];三钢、济钢采用循环 流化床烟气脱硫技术[3];攀成钢、柳钢采用氨法烟气脱硫技术;五矿营口中板、韶钢采用氧化镁法烟气脱硫技术等。烧结机烟气脱硫多借鉴于电厂 的烟气脱硫技术,但何种技术更适合烧结机烟气脱硫,各钢铁仍在摸索前 进中。 2 烧结机烟气的特点 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中产生 的含尘,烧结烟气的主要特点是:(1)烧结机年作业率较高,达90%以上,烟气排放量大;(2)烟气成分复杂,且根据配料的变化存在多变性;(3)

烧结质量指标

. 评价烧结矿的质量指标主要有:化学成分及其稳定性、粒度组成与筛分指数、转鼓强度、落下强度、低温还原粉化性、还原性、软熔性等。 化学成分主要检测:TFe,FeO,CaO,SiO2,MgO,Al2O3,MnO,TiO2,S,P等,要求有效成份高,脉石成份低,有害杂质(P、S等)少。 根据《我国优质贴烧结矿的技术指标》(YB/T-006-91),TFe≥54%,允许波动±0.4%;FeO<10%,允许波动±0.5%;碱度R(CaO/SiO2)≥1.6,允许波动±0.05;S<0.04%。 粒度组成与筛分指数:取100Kg试样,等分为5份,用筛孔为5X5的摇筛,往复摇动10次,以<5mm出量计算筛分指数:C=(100-A)/100*100%,其中C为筛分指数,A为大于5mm粒级的量。 落下强度:评价烧结矿冷强度,测量其抗冲击能力,试样量为20±0.2Kg,落下高度为2m,自由落到大于20mm钢板上,往复4次,用10mm筛分级,以大于10mm的粒级出量表示落下强度指标。F=m1/m2X100%,其中F为落下强度,m1为落下4次后,大于10mm的粒级出量,m2为试样总量。F=80~83%为合格烧结矿,F=86~87%为优质烧结矿。 转鼓强度(重要指标):GB3209标准,转鼓为?1000X500mm,装料15Kg,转速25r/min,转200转,鼓后采用机械摇动筛,筛孔为6.3X6.3mm,往复30次,以<6.3mm的粒级表示转鼓强度。 转鼓强度T=m1/m0X100%,抗磨强度A=(m0-m1-m2)/m0X100%,其中m0为试样总质量,m1为+6.3粒级部分质量,m2为-6.3+0.5mm粒级部分质量,T,A均取两位小数。要求:T≥70.00%,A≤5.00%。 还原性:是模拟炉料自高炉上部进入高温区的条件,用还原气体从烧结矿中排除与铁结合的样的难易程度的一种度量。是评价烧结矿冶金性能的主要质量标准。 实验条件:反应罐:双壁?内75mm;试样粒度:10.0~12.5mm,500g;还原气体:CO/N2=30/70,H2、CO2、H2O<0.2%,O2<0.1%;还原温度:900±10摄氏度;气体流量:15Nl/min;还原时间:180min。还原度:还原t时间的还原度Rt=[(0.11W1)/(0.43W2)+(m1-mt)/(m0X0.43W2)X100]X100%;其中m0为试样质量,m1还原开始前试样质量,mt还原t时间后试样质量,W1实验前试样中FeO含量,W2实验前试样的全铁含量。 低温还原粉化性: 实验条件:反应罐:双壁?内75mm;试样粒度:10.0~12.5mm,500g;还原气体:CO/N2=30/70,H2、CO2、H2O<0.2%,O2<0.1%;还原温度:500±10摄氏度;气体流量:15Nl/min;还原时间:60min;转鼓实验:?130X120mm,转速30r/min,时间:10min。 还原强度指数RDI+6.3=m1/m0X100%;还原粉化指数RDI+3.15=( m1+m2)/ m0X100%; 磨损指数RDI-0.5=(m0- m1- m2-m3)/ m0X100%;其中m0 为还原后转鼓前的试样质量,m1转鼓后+6.3mm的出量,m2转鼓后+3.15~-6.3mm的出量,m3转鼓后-0.5mm的出量。 还原软化-软熔特性:一般以软化温度及软化区间,熔融带透气性,熔融滴下物的性状作为评价指标。 如有侵权请联系告知删除,感谢你们的配合! 精品

烧结矿中有害元素对高炉的危害和抑制

烧结矿中有害元素对高炉的危害和抑制 黄克存、班友合、孟德礼 (国丰钢铁有限公司技术部) 摘 要 随着我公司的高炉逐步进入炉役后期,延长高炉寿命不仅可以直接减少昂贵的大中修费用,还可以避免由于停产造成的经济损失。造成高炉损坏的原因和机理错综复杂,但烧结矿带入的碱金属和锌的破坏作用应引起我们的高度重视。 关键词 高炉 碱负荷 锌负荷 危害 为适应当前严峻的钢铁形势,进一步降低铁水成本,各钢铁企业都采用低价的外矿粉进行烧结,并充分利用烧结、炼铁、炼钢工序所产生的各种除尘灰,利用其低价和含有大量的C、Fe 、CaO 、MgO 等有利成分的优势,来降低烧结料消耗,从而达到降低成本的目的。但由于各种外矿粉及除尘灰都含一定量的K 、Na 、Zn 等有害元素,大量配加会造成高炉碱负荷、锌负荷超标,高炉炉墙结厚结瘤,加剧炉缸侵蚀,影响炉况稳定顺行。 1. 烧结矿中有害元素的来源 烧结所有外矿粉有害元素含量如下表所示: 表1 烧结外矿粉有害元素含量(%) 试样名称 Zn Na Na 2O K K 2O 信昂澳粉 0.015 0.047 0.064 0.022 0.027 雄鹰澳粉 0.025 0.119 0.14 0.076 0.092 巴姆澳粉 0.0055 0.156 0.21 0.035 0.042 繁荣巴粗 0.0091 0.031 0.042 0.216 0.26

博斯巴粗0.140.0130.0180.070.085在高炉生产中,钾、钠、锌存在两个循环,第一个循环是高炉内部的小循环,第二个循环是烧结—高炉的大循环。通过上表可看出,原料中的钾、钠、锌的量是相对稳定但不可控,要控制其富集减少对高炉的危害就是要打破第二个循环,减少高炉布袋灰、烧结机头灰等高碱、高锌灰的循环使用。以下是我公司布袋灰、烧结机头灰的有害元素成分分析: 表2 北区试样灰中有害元素含量(%) 试样名称Zn Na Na2O K K2O 红泥除尘灰0.2900.08160.1100.17430.210 36m2机头灰 2.000 5.1342 6.92048.791558.800 36m2机尾灰0.1200.09650.1300.29870.360 北区450m2高炉重力灰 1.1200.18550.2500.21570.260 北区450m2高炉布袋灰0.2400.37100.500 1.2032 1.450 表3 南区450m3高炉系统试样灰中有害元素含量(%) 试样名称Zn Na Na2O K K2O

柳钢烧结烟气脱硫塔湿烟囱高度的计算

柳钢烧结烟气脱硫塔湿烟囱高度的计算 2010年第2期冶金环境保护 柳钢烧结烟气脱硫塔湿烟囱高度的计算 易慧王责明钟威 (柳钢技术中心,广西柳州545002) 摘要本文采用P值法对柳钢烧结机头烟气脱硫系统湿烟囱的高度进行计算,并分析了不同建设高度对周围区域环境影响的程度,为今后烧结机头烟气脱硫系统烟囱的高度设计提供借鉴. 关键词烧结烟气氨法脱硫烟囱高度设计 1前言 广西柳州钢铁(集团)公司(以下简称柳 钢)2×83m烧结机头烟气脱硫工程是国内 首例钢铁企业成功实施运行的烧结烟气氨法 脱硫工程.该项目针对冶金工业烧结机头烟 气特点,采用自主研发的,具有自主知识产权 的”氨一硫铵烧结烟气深度脱硫工艺”技术 和”双循环三段式脱硫塔”装置,利用焦炉煤 气中的废氨作为脱硫剂吸附烟气中的二氧化 硫.该项目的实施,不仅填补了国内烧结机 头烟气脱硫空白,而且二氧化硫脱除效率 >95%以上,实现了烧结烟气深度脱硫,污 染物减排的目的;所产生的硫铵副产品为优 质的化工产品,具有较好的市场前景.该项 目的实施,使企业真正实现了”以废治废,循 环发展”.2008年2月,该项目在科技成果 鉴定中被中国金属学会认定为达到国际先进 水平;同年9月,被中国环保产业协会确定为 “国家重点环境保护实用技术示范工程”. 本工程采用氨法脱硫,烧结机机头的烟 气通过增压风机升压后进入脱硫塔,在脱硫 塔中先经过降温除尘段,然后进入吸收段,在 吸收段与脱硫塔上部喷晒而至的吸收液(亚 硫酸铵和氨水的混合液)逆向接触并发生化 学反应,生成亚硫酸铵经过滤,氧化,蒸发结 晶最终得到硫铵副产品,去除SO,的烟气经 由除雾器除去水雾后,由布置于脱硫塔顶部 的烟囱排人大气.烟囱设在脱硫塔顶,采用 塔基湿烟囱,原设计总高63米,经实际运行, 外排烟气含水量较大,在南风,低气压等极端 天气下,尾气下沉,形成浅雾,影响感官,同 时,烟气中所含NO也影响烧结办公楼,综

梅钢降低3#烧结机内返矿率的生产实践

梅钢降低3#烧结机内返矿率的生产实践 通过理念的创新、工艺和参数的改进、精细化的操作有效的减少了生产的波动,减少了超厚料层和小水分物料引起的生料和夹生料,强化了烧结过程,有效提高了烧结矿强度,降低梅钢3#烧结机的内返矿率。 标签:内返矿厚料层边缘效应 0 引言 内返矿是烧结过程中的筛下产物(-5mm),其中包括没有烧透和没有烧结的混合料,是整個烧结过程中的循环产物。内返矿由于粒度较粗、气孔多,加入混合料中可可改善烧结料层的透气性。同时,由于内返矿中含有已烧结的低熔点物质,它有助于烧结过程液相的生成[1]。但是,过多的内返矿不仅影响烧结成品率,降低烧结矿产量,也增加了内返矿重新加工的能源消耗,导致生产成本的上升。随着目前国际铁矿粉价格的提升,钢铁行业原料成本亦大幅度提高,降低生产成本显得尤为重要,而降低烧结矿返矿率是降低铁前成本的有效途径。 1 影响内返矿的主要因素 梅钢3#烧结机面积为180m2,自投产以来,内返矿率一直处于较高水平,生料、夹生料产生较多,混合料液相形成不足,烧结矿强度不够。造成梅钢3#烧结机生产波动大,烧结矿强度不足的主要因素有几下方面: 1.1 对内返矿率重视不够。过于侧重烧结矿产量和烧结机利用系数,脱离烧结过程参数,盲目提高烧结过程上料量,以为提高上料量就能提高产量,使得烧结终点和终点温度无法得到保障,致使烧不透、跑生料情况的经常出现。 1.2 过程波动大,稳定性不够 1.2.1 物料下料不畅通,熔剂、燃料经常出现悬料、堵料等现象,导致烧结过程热量供应不足,透气性较差,物料结晶不够充分。 1.2.2 水分的波动,由于物料、内返矿质量的波动及生石灰消化器故障,致使混合料水分无法满足生产需要。 1.2.3 设备的故障,如原料圆盘下料电子秤精度不够、设备故障导致切换过程中衔接不够精确、生石灰消化器故障影响生石灰消化效果、小矿槽窜料等。 1.3 熔剂、燃料质量和用量。熔剂和燃料的粒度和粒度组成不够合理,熔剂和燃料有效组分含量较低,岗位人员为降低能耗,最大限度减小焦粉,致使烧结过程热量不够,液相生成不足,影响烧结矿强度。烧结矿异常亚铁和碱度对烧结矿强度和内返矿率的影响见下表:

关于编制烧结机烟气处理项目可行性研究报告编制说明

烧结机烟气处理项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.wendangku.net/doc/bc13761582.html, 高级工程师:高建

关于编制烧结机烟气处理项目可行性研究 报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国烧结机烟气处理产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5烧结机烟气处理项目发展概况 (12)

提高烧结矿产能方案

提高烧结矿产量攻关方案 2008年为了充分发挥烧结机的产能,提高高炉烧结矿配比,降低铁系统配矿成本,公司要求生产管理中心牵头组织相关单位进行提高烧结矿产量攻关。 攻关目标:烧结矿平均日产量21200吨,正常日产量21800吨。要求各车间每天烧结矿最低生产量:一烧11800吨,二烧6700吨,三烧6700吨。 攻关措施分解如下: 1、优化并安定烧结配矿方案,提高混合料的烧结性能。 负责单位:生产管理中心参加单位:进出口、采购部、物流中心、科技中心一是确保进口矿配比60%左右,进口矿结构合理,其中澳矿28%以上、南非矿8-10%左右,巴西矿20%左右。二是进口矿、国内精矿和铁皮平均到达,其中铁皮采购量进出口保证2万吨/月,采购部保证3万吨/月,安定配矿方案的目标是一、二、三烧配矿方案分别至少要安定两堆混匀料,以确保烧结工艺控制安定。三是科技中心加强优化配矿方案研究,根据原燃料特点和矿石到达的不平均性,分别研究适合一、二、三烧生产特点的配矿方案。 2、加强生石灰质量管理,提高生石灰质量。 负责单位:生产管理中心参加单位:采购部、科技中心 一是生产管理中心进一步完善生石灰圆盘取样制度,并做到例外供应商输送的生石灰与配料室圆盘一一对应,以便于取样;二是生产管理中心和采购部一起进一步加强生石灰供应商合格供方的管理,做到优胜劣汰;三是科技中心牵头在合适的时候对生石灰质量标准进行从头修定。 3、分级入炉攻关。负责人:杨礼平李竺青 根据测定结果,目前高炉日返矿量约(小于6.3mm含量)3400吨,经检测返矿中大于4mm含量约占20%左右,每天近700吨,这部分粒级的烧结矿强度和还原性能都比较好,若能充分利用,对降低炼铁配矿成本会起到严重的作用。 目前国内同行有宝钢、南京钢厂等进行了烧结返矿小粒级分级入炉改造。

莱烧结烟气脱硫脱硝工艺的比较(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 莱烧结烟气脱硫脱硝工艺的比较 (标准版)

莱烧结烟气脱硫脱硝工艺的比较(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:烧结机头是钢铁行业SO2和NOx主要排放源。随着环境保护的压力不断加大,烧结烟气脱硫脱硝工艺的选择就显得尤为重要。本文主要介绍了目前国内外主流的烧结烟气脱硫脱硝工艺,并对各种工艺的优缺点进行比较分析。 钢铁生产在国民经济中具有重要作用,同时污染也较为严重。为了降低钢铁行业的污染物排放水平,生态环境部等五部门于2019年4月联合发布了《关于推进实施钢铁行业超低排放的意见》(环大气[2019]35号),在全国范围内推动钢铁行业超低排放改造。钢铁行业是SO2和NOx的排放大户,而烧结机头烟气是SO2和NOx的主要排放源。钢铁行业的超低排放要求烧结烟气SO2和NOx的排放质量浓度小时均值不高于35mg/m3和50mg/m3。因此,钢铁企业烧结烟气为满足达标排放的要求,必须采取脱硫脱硝措施。 1我国烧结烟气脱硫脱硝现状 目前,我国烧结烟气采取脱硫措施较为普遍,大部分烧结机均采

烧结脱硫烟气流量量程的修正算法

烧结脱硫烟气流量量程的修正算法 摘要:烧结脱硫烟气流量计的量程是基于一定温度、压力条件下的标况量程,对于监 控的工况流量,需要根据实际工况重新计算差压和对应的量程,详细介绍了量程修正计算 的方法和过程。 关键词:流量计,标况,工况,量程 The Conversion Method for the Flowmeter Span of the Sintering Waste Gas Desulfuration Han Jun (Bao Steel, Shanghai, 201900) Abstract: The flowmeter span of the sintering waste gas desulfuration is the standard conditions span based on the given temperature and pressure. For the working conditions flow, it is necessary to calculate the differential pressure and span based on the real conditions. The arithmetic and process for Conversion span have been discussed detailedly. Key words: flowmeter, standard conditions, working conditions, span 1、概述 宝钢三烧结机头脱硫装置根据工艺和环保要求,共装有4套巍缔巴均速管流量计分别对 原烟气入口风量、除雾器出口风量、旁路烟道A风量和旁路烟道B风量进行测量,4个测点 均不满足直管段要求,为提高测量精度全部选用满管插入的探头。其中原烟气入口和除雾器 出口风量测量更采用2支巍缔巴均速管水平垂直交叉安装,并将2支流量计正压侧出口并联、负压侧出口

烧结矿成本

烧结矿成本占生铁成本的48.6%~66%,而生铁成本又占各工序生产能力相对均衡企业最终产品钢材成本的60%左右,即烧结矿成本占钢材成本的30%~40%,比重大。加之,烧结矿成本中原燃料占90~95%,其中,主要是外购原燃料。所以,优化烧结矿成本必然成为钢铁联合企业成本工作的重要部分。 1.烧结矿成本计算依据 在烧结矿成本计算中,产量的统计方法不一,有净矿和毛矿之分。净矿是以炼铁工序实际消耗的烧结矿和库存烧结矿的变动量为计算 依据,毛矿则是以烧结工序的产出为凭,两者差别在返矿,而体现在烧结矿成本上的则为返矿损失(烧结矿成本与返矿价格之差)。计算工序成本时归属不同,毛矿法返矿损失计算在炼铁工序,净矿法则体现在烧结工序。公司烧结矿是以毛矿量为成本计算依据的,返矿损失体现在炼铁工序,比值为烧结矿成本的8%左右。由于成本计算依据的不同,这就给通过指标对比挖掘潜力工作增加了难度。 2.烧结矿成本分析方法 作为探讨降低成本途径的有效方法,就是对成本的分析。优化烧结矿成本的有效方法是对烧结矿成本的分析,其分析的任务是寻求资源的优化配置,进一步优化烧结矿成本。从公司烧结矿成本的构成来看,含铁料占80%以上(加上熔剂占85.55%),燃料动力占7.91%,辅料、工资、制造费用仅占烧结成本的6.54%。因此,分析的重点应是含铁料的分析。含铁料有进口铁矿粉和国产铁矿粉两大类。进口铁矿主要由澳大利亚、巴西、南非等国进口,每一进口国的铁矿粉又是

由多个矿山组成。化学成分不一,烧结性能有别。熔剂、燃料同铁矿粉一样,由多种成分组成为其共性,这一共性导致传统的量价差分析法已不适于由不同等级的原料组成的原燃料消耗的分析,因为它不能定性地分析性质相同、等级有别、组成成分复杂的成本的相互比较,消耗数量的增加或减少不能成为节约和超支(因为可以相互替代)的判断标准,也就不能通过对含铁料、熔剂和燃料的分析,找出优化成本的途径。应当采用的成本分析方法是配比分析法。配比分析是按照生产工艺的要求,将不同品种、等级和规格的材料,按技术规定的比例投入到生产制造产品中。具体体现在烧结矿这一产品上,它的多种含铁料,均含有益元素铁,但各种铁矿粉的烧结基础特征,如:同化性、液态流动性等,含铁多少、有益元素、有害元素的多寡等不尽相同,结晶水也有区别,粒度组成也不同,因此,造成各铁矿粉的采购成本有很大差别。合理配置铁矿粉是生产工艺的要求,优化配比则为优化烧结矿成本,提高经济效益所必需。 3.配比分析方法的优点 (1)配比分析能克服传统分析方法的不足。烧结矿成本的传统分析方法,是对各种具有共性的原燃、熔剂料的逐一分析,其报告期与基期的消耗量差异和价格差异,为成本变动的原因。如基期单价低于其料种的平均单价的原料消耗量降低,应当是成本升高的因素,但在传统分析方法中,只要消耗量降低就是成本的降低,这与实际结果不相符,只有改为配比分析才能准确分析成本的升降因素,才能找到降低成本的途径。

FeO对烧结矿的影响

FeO对烧结矿的影响 烧结矿中FeO对烧结矿质量的影响 摘要本文针对国丰钢铁公司的原料条件,从原料成分、烧结燃料配加量、碱度、Mg(=)含量和料层高度等工艺参数的角度出发,系统分析了不同工艺参数对烧结矿Fe()含量和烧结矿质量的影响 关键词烧结矿 FeO 质量 1 前言 烧结矿FeO含量是炼铁和烧结十分重视的质量指标之一,炼铁工作者也把烧结矿中FeO含量作为评价烧结矿质量,特别是烧结矿强度和还原性能好坏的重要标志,在一定条件下(如碱度相同,SiO2相近),烧结矿中FeO含量与其强度密切相关,烧结矿中FeO含量对高炉上、中部间接还原也有很大影响。几年来,我们一直遵循在保证烧结矿强度的前提下,降低烧结矿FeO含量的方针组织生产。 烧结过程的配碳量与烧结矿FeO含量呈正相关关系,控制FeO可以达到降低烧结能耗的目的,更重要的是有利于高炉冶炼焦比的降低,根据经验,烧结矿FeO含量每降低1%,高炉焦比可降低1.5%左右。 为了能为高炉冶炼提供容易还原、FeO含量适宜的高强度烧结矿,本文就国丰钢铁公司烧结生产的实际情况,对影响烧结矿FeO含量的因素、生产中如何控制FeO含量及控制水平等技术措施进行分析如下。 2 影响烧结矿中FeO含量的因素 烧结矿中FeO,一是从原料中带人,二是烧结过程中的气氛。因此,烧结矿中FeO含量的高低,主要与所用铁料、烧结过程中的氧化气氛强弱及温度水平高低有关。 2.1含铁原料与FeO的关系 一般认为,烧结生产使用以磁铁精矿为主的铁料时,烧结矿中FeO要比赤铁矿生产时高(因为磁铁矿FeO含量高达20—25%,赤铁矿FeO含量只有0.5—4.5 %),实际生产并非如此。几年来,我厂使用了不同比例的赤铁矿粉、磁铁矿粉、特别是使用了FeO含量高的氧化铁皮(FeO含量60%)、美国粗粉(FeO 含量44%)及热压铁粉(FeO含量95%),使用了高FeO含量的矿粉,燃料消耗明显降低,烧结矿FeO含量无上升,烧结矿强度也没有影响(见表1、表2)。 由表2可以看出,使用FeO含量高的磁铁矿粉、热压铁粉,与FeO含量低的赤铁矿粉,在R2相近的情况下,生产出的烧结矿FeO与强度并无明显变化,FeO 含量高的含铁料燃料消耗反而低,原因如下: 磁铁精粉细:—200目占60%左右,比表面积大,矿物单体分离较完全,在燃料配比低,氧化气氛强的条件下,容易与通过料层的氧发生反应:2Fe3O4+1/2O2=3Fe2O3 采用不同FeO含量的铁矿物烧结,最后FeO含量基本接近,原因是烧结熔融带中大量的Fe2O3转变成FeO,原始赤铁矿中FeO含量只有0.4—4.5%,经过熔融带,FeO升高,在冷凝与冷却过程中,与吸入的氧气进行再氧化,放出部分热量,所以,烧结矿中FeO含量很接近。 氧化铁皮FeO含量60%左右,在烧结过程中被氧化放热,根据经验,烧结生产每用lKg铁皮,可节省燃料0.1Kg,我们所用的高FeO的热压铁粉,燃料消耗低,道理也是如此。

相关文档