文档库 最新最全的文档下载
当前位置:文档库 › 油液污染度等级

油液污染度等级

油液污染度等级
油液污染度等级

油液污染度等级

油液污染度是指单位体积油液中固体颗粒污染物的含量,及油液中固体颗粒污染度的浓度。对

于其他污染物,如水和空气,则用水含量和空气含量表述。油液污染度是评定油液污染程度的重要指标。

目前油液污染度主要采用以下两种表示方法:

质量污染度:单位体积油液中所含固体颗粒污染度的质量,一般用ml/L表示

颗粒污染度:单位体积油液中所含各种尺寸的颗粒数。颗粒尺寸范围可用区间表示,如5?15卩

m,15?25卩m等;也可用大于某一尺寸表示,如〉5卩m > 15卩m等。

此外油液污染度还可以用百万分率(ppm)来表示,质量ppm或体积ppm

质量污染度表示方法虽然比较简单,但不能反映颗粒污染物的尺寸及分布,而颗粒污染物对元件和系统的危害作用与其颗粒尺寸分布及数量密切相关,因而随着颗粒计数技术的发展,目前已普遍采用颗粒污染度的表示方法。

为了定量评定油液污染程度,世界各主要工业国都制定有各自的油液污染度等级,近年来已趋向于采用统一的国际标准。下面介绍美国NAS1638油液污染物等级和ISO 4406油液污染度等级国际标准。

A NAS 1638固体颗粒污染物等级

NAS1638是美国航天工业部门在1964年提出的,目前在美国和世界各国仍广泛采用。它以颗粒浓度为基础,按照油液中在5?15、15?25、25?50、50?100和〉100卩m5个尺寸区间内最大

允许颗粒数划分为14个污染物等级,见表一。

表一:

污染度等级表中的颗粒数

级,可用外推法确定其污染度等级。

测得的各尺寸范围的颗粒往往不属于同一等级,一般取其中最高一级作为油液污染度等级。但这种处理方法有时不尽合理。例如,5?15、15?25、25?50、50?100和〉100卩m各尺寸段的污

染度等级如果是7、7、6、10和8,若取最大者,则油液污染度应为10级。然而,从可能进入运动副间隙引起磨损的危害尺寸来考虑,污染度定位7级比较更符合实际。

B ISO 4406固体颗粒污染度国际标准

ISO 4406油液污染度国际标准采用两个数码表示油液的污染度等级,前面的数码代表1mL油液中尺寸大于5卩m的颗粒数的等级,后面的数码代表1mL油液中尺寸大于15卩m的颗粒数的等级,两个数码之间用一斜线分隔。例如污染度等级18/13表示油液中大于5卩m的颗粒数的等级为18,

每毫升颗粒数在130000?250000之间;大于大于15卩m的颗粒数的等级为13,每毫升颗粒数在4000?8000之间。

表二为ISO 4406污染度等级和相应的颗粒浓度。根据颗粒浓度的大小共分为26个等级。

表二:ISO 4406 1987 污染度等级

较小颗粒引起堵塞淤积和较大颗粒产生的磨损等危害作用。

目前ISO 4406污染度等级标准已被世界各国普遍采用。我国制定的国家标准GB/T 14039-93“液压系统工作介质固体颗粒污染度等级代号”等同采用ISO 4406。

ISO 4406和其他几种污染度等级之间的大致对应关系见表三。

表三:ISO 4406与其它污染度等级对照表

②空气滤清器细试验粉尘

目前采用NAS 1638和ISO 4406污染度等级标准的最小颗粒尺寸均为5卩m随着现代液压技

术的发展,对油液污染度控制发展的进一步提高,绝对精度1?3卩m的高精度滤油器已应用于清洁

度要求高的液压系统。因此,对IS0 4406已提出修改意见,建议增加一个反应大于2卩m颗粒污染度等级的数码,采用3个数码表示油液污染度。例如22/18/13,以上数码分别表示〉2卩m > 5卩m和〉15卩m的颗粒浓度。

最近对ISO 4402 “液体颗粒计数器的校准”进行了修改,新的校准方法ISO 11171已经制定。采用新的校准方法提高了颗粒分析的准确性,但同时带来了颗粒尺寸重新定义的问题。过去用ISO 4402校准方法测定的颗粒尺寸2卩m 5卩m和15卩m而用新的校准方法则为4.6卩m 6.4卩m和13.6卩为此,最近对ISO 4406进行了修改和完善,修改后的ISO 4406:1999规定:对于用自动

颗粒计数器计数的污染度等级采用〉4卩m> 6卩m和〉14卩m三个尺寸范围的颗粒浓度等级来表示。对于用显微镜计数法,仍用〉5卩m和〉15卩m的颗粒浓度等级表示。

(注:范文素材和资料部分来自网络,供参考。只是收取少量整理收集费用,请预览后才下载,期待你的好评与关注)

在线监测--油液分析的未来之路

在线监测—油液分析的未来之路 陈闽杰曾安李秋秋贺石中 (广州机械科学研究院设备状态检测研究所,广东广州,510701) 摘要:研究了油液分析未来的发展趋势与方向。通过对基于实验室检测的油液分析技术目前在各个行业领域的应用状况与国内外在线传感器发展情况的分析,说明在线监测将以其时效性与便于维护性而成为未来油液监测的主流。另一方面,分析了在线监测目前仍存在的不足,提出了一种监测系统的构建模型,讨论了在线油液监测未来的发展方向。 关键词:实时监测,油液分析,视情维护,专家系统 Online Monitoring - the road ahead of Oil Analysis CHEN Min-jie, ZENG An, LI Qiu-qiu, HE Shi-zhong (GMERI Equipment Condition Detect institute Guangzhou 510701, China) Abstract: The trend and direction of oil analysis is discussed based on the analysis on the application of lab based oil analysis technology in commercial and military area and the online sensor development to indicate that the online monitoring will be the mainstream by its real time and easy to service characteristics. On the other hand, analyze the deficiency of online monitoring, put forward a construction model of monitoring system and discuss the development of online oil monitoring in future. Key words: real time monitoring; oil analysis; condition based maintenance; expert system 1. 前言 油液状态监测的首要目的是对油品劣化、污染和机械磨损的早期发现与预警。首先,机械磨损的早期发现是设备视情维修的基础,可以在设备发生严重磨损与失效之前安排检修,减少设备损坏;其次,根据设备状态合理安排检修时间,减少故障停机与定期检修对生产的影响;再次,提高了设备的平均故障间隔时间,提高了生产率。此外,对油品的劣化与污染的早期发现与预警,是从根源上切断 作者简介:陈闽杰,(1983-),男,硕士学历,工程师,主要研究方向:设备润滑故障诊断与状态检测技术研究。

润滑油洁净度分级标准

油洁净度分级标准 我国电力工业使用的油洁净度(颗粒度或污染度)的指标一直还是引用国外标准,没有统一,以下是三种分级标准分别列出MOOG(SAE—6D)标准NAS1638标准、ISO4406标准,仅供参考。 1.美国飞机工业协会(ALA)、美国材料试验协会(ASTM)、美国汽车工程师协会(SAE)1961年联合提出的MOOG(SAE—6D)标准 等级 颗 粒 的 大 小(μm) 5~10 10~25 25~50 50~100 100~150 0 2700 670 93 16 1 1 4600 1340 210 28 3 2 9700 2680 380 56 5 3 24000 5360 780 110 11 4 32000 10700 1510 22 5 21 5 87000 21400 3130 430 41 6 128000 42000 6500 1000 92 注:表内数值为100ml中的个数 2. 美国航空航天工业联合会(AIA)1984年1月发布NAS1638标准 NAS1638:每100ml内的最大颗粒数 尺 寸 范 围(μm) 级 5~15 15~25 25~50 50~100 100以上 00 125 22 4 1 0 0 250 44 8 2 0 1 500 89 16 3 1* 2 1000 178 32 6 1* 3 2000 356 63 11 2* 4 4000 712 126 22 4* 5 8000 1425 253 45 8* 6 16000 2850 506 90 16* 7 32000 5700 1012 180 32 8 64000 11400 2025 360 64 9 128000 22800 4050 720 128 10 256000 45600 8100 1440 256 11 512000 91200 16200 2880 512 12 1024000 182400 32400 5760 1024 注:NAS1638是分段计数的,有5个尺寸段。由于实际油液各尺寸段的污染程度不可能相同,因此被测油样的污染度按其中的最高等级来定。这会引起一个问题。例如,测出的5~10μm的污染

油液污染度等级

油液污染度等级 油液污染度是指单位体积油液中固体颗粒污染物的含量,及油液中固体颗粒污染度的浓度。对于其他污染物,如水和空气,则用水含量和空气含量表述。油液污染度是评定油液污染程度的重要指标。 目前油液污染度主要采用以下两种表示方法: ●质量污染度:单位体积油液中所含固体颗粒污染度的质量,一般用ml/L表示 ●颗粒污染度:单位体积油液中所含各种尺寸的颗粒数。颗粒尺寸范围可用区间表示,如5~ 15μm,15~25μm等;也可用大于某一尺寸表示,如>5μm,>15μm等。 此外油液污染度还可以用百万分率(ppm)来表示,质量ppm或体积ppm。 质量污染度表示方法虽然比较简单,但不能反映颗粒污染物的尺寸及分布,而颗粒污染物对元件和系统的危害作用与其颗粒尺寸分布及数量密切相关,因而随着颗粒计数技术的发展,目前已普遍采用颗粒污染度的表示方法。 为了定量评定油液污染程度,世界各主要工业国都制定有各自的油液污染度等级,近年来已趋向于采用统一的国际标准。下面介绍美国NAS 1638油液污染物等级和ISO 4406油液污染度等级国际标准。 A NAS 1638固体颗粒污染物等级 NAS 1638是美国航天工业部门在1964年提出的,目前在美国和世界各国仍广泛采用。它以颗粒浓度为基础,按照油液中在5~15、15~25、25~50、50~100和>100μm 5个尺寸区间内最大允许颗粒数划分为14个污染物等级,见表一。 表一:NAS 1638污染度等级表(100ml中的颗粒数) 从表中可以看出,相邻两个等级的颗粒浓度比为2。因此当油液污染度浓度超过表中最大的12

级,可用外推法确定其污染度等级。 测得的各尺寸范围的颗粒往往不属于同一等级,一般取其中最高一级作为油液污染度等级。但这种处理方法有时不尽合理。例如,5~15、15~25、25~50、50~100和>100μm各尺寸段的污染度等级如果是7、7、6、10和8,若取最大者,则油液污染度应为10级。然而,从可能进入运动副间隙引起磨损的危害尺寸来考虑,污染度定位7级比较更符合实际。 B ISO 4406固体颗粒污染度国际标准 ISO 4406油液污染度国际标准采用两个数码表示油液的污染度等级,前面的数码代表1mL油液中尺寸大于5μm的颗粒数的等级,后面的数码代表1mL油液中尺寸大于15μm的颗粒数的等级,两个数码之间用一斜线分隔。例如污染度等级18/13表示油液中大于5μm的颗粒数的等级为18,每毫升颗粒数在130000~250000之间;大于大于15μm的颗粒数的等级为13,每毫升颗粒数在4000~8000之间。 表二为ISO 4406污染度等级和相应的颗粒浓度。根据颗粒浓度的大小共分为26个等级。 表二: ISO 4406 1987污染度等级 ISO 4406污染度等级标准选择两个具有特征性的尺寸:5μm和15μm 。他们基本反映油液中较小颗粒引起堵塞淤积和较大颗粒产生的磨损等危害作用。 目前ISO 4406污染度等级标准已被世界各国普遍采用。我国制定的国家标准GB/T 14039-93“液压系统工作介质固体颗粒污染度等级代号”等同采用ISO 4406。 ISO 4406和其他几种污染度等级之间的大致对应关系见表三。

液压油在液压系统工作介质污染度标准

液压油在液压系统工作介质污染度标准 液压油用于液压传动系统中作为工作介质,起能量的传递、转换和控制作用,同时还起着液压系统内各部件的润滑、防腐蚀、防锈和冷却等作用。而液压系统中的密封件起着防止流体从结合面间泄漏、保持压力、维持能量传递或转换作用。 目前国内外使用的密封材料大部分是高分子弹性体,一些特殊条件下也有使用塑料及各类金属。但不管属于哪一种材料,都应具有下列性能: 1、具有一定的机械物理性能:如抗张强度、拉伸强度、伸长率; 2、有一定的弹性、硬度合适,并且压缩永久变形小; 3、与工作介质相适应,不容易产生溶胀、分解、硬化; 4、耐磨,有一定的抗撕裂性能; 5、具有耐高温、低温老化的性能。 然而,没有任何密封材料包括上述全部性能,需要根据工作环境,如温度、压力、介质以及运动方式来选择适宜的密封材料,并通过制定材料的配合配方来满足一定的要求。或者采用两种以上材料复合或组合结构的形式发挥各自的特长,达到更加全面的效果。 密封效果的形成:动密封分为非接触密封和接触密封。非接触密封主要是各种机械密封,如:石墨填料环、浮环密封等;橡塑复合密封件和橡塑组合密封件均属于接触密封,依靠装填在密封腔体中的预压紧力,阻塞泄漏通道而获得密封效果。液压系统用的密封件多为静密封(端面密封)、往复动密封(活塞、活塞杆密封)及旋转密封。 影响密封效果的因素:密封结构的选择和油膜形成、压力、温度、材料的相容性,动密封所接触工作表面的材质、硬度、几何形状、表面光洁度等。 一、常用的耐介质性能优异的密封材料主要有:丁腈橡胶、硅橡胶、氟橡胶、三元乙丙橡胶、聚四氟乙烯、聚氨酯橡胶、丙稀酸酯橡胶等 二、密封材质与液压油的相容性 液压油的颗粒污染来源之一是密封件材料与液压油不相适应而产生的“碎屑"或“磨屑"。密封件因被液压油“溶涨"被损坏而产生的“碎屑"或被液压油“抽提"出来的未被高分子材料结合的无机物和填充补 强材料,使密封件损坏并失效,同时对油品形成污染造成液压油变质以致失效。 液压系统中广泛使用叶片泵,在其工作压力大于6.9MPa的状态下,磨损问题变得突出,因而在液压油中使用了抗磨剂;为了适应在高温热源和明火附近的液压系统,使用抗燃的磷酸酯、水-乙二醇液压液、水包油和油包水乳化液等。此外,应“用"而生的抗氧、防锈等各种类型复合添加剂配置的不同用途液压油(液)品种繁多,如:抗磨液压油复合剂类型中的无锌型(无灰型)抗磨液压油复合剂,是用烃类硫化物、磷酸酯、亚磷酸酯等复配而成,同时还添加了含有硫、磷和氮三种元素的S-P-N极压抗磨剂。在极压工业齿轮油中,也以P-S型极压剂为主。 而密封件产生“溶涨"或“抽提"的原因是液压油中添加剂所含有的各种化学元素依据“相似相溶"的原理,对不同的密封材质产生不同的影响,重点是密封材料的耐介质性能。例如:Shell Omala 320齿轮油和Shell Omala 460齿轮油中显示较强极性的磷(P)元素浓度在300ppm左右,所以丁腈橡胶因含有丙稀腈基团而具有极性,具有优良的耐油性能,却不适宜该类型油品的介质条件。 随着液压油品种的不断研发,为改善油液性能的各种抗磨、极压添加剂、金属减活剂、破乳化剂和抗泡添加剂等,对密封件的材料的影响需要通过实验来验证。 三、密封材料耐油液性能检测评定 橡胶材料的密封件耐油液性能,一般采用标准试验油,按试验标准规定的温度条件和试验时间下浸泡,通过对浸泡前后测试值对比(如材料的硬度变化、拉伸强度变化率、扯断伸长变化率、体积变化率、压缩永久变形等),评价其性能。

油液分析

油液分析技术 油夜分析技术又称为设备磨损工况监测技术,是一种新型的设备维护技术,它利用油液所携带的设备工况信息来对设备的当前工作状况以及未来工作状况作出判断,从而为设备的正确维护提供了有效的依据,达到预防性维修的目的。油液在设备中的各个运动部位循环流动时,设备的运行信息会在油液中留下痕迹,这些信息主要包括以下三个方面: 1、油液本身的物理和化学性质的变化 2、油液中设备磨损颗粒的分布 3、油液中外侵物质的构成以及分布 设备润滑与磨损状态监测(以下简称油液监测)是设备开展润滑管理、设备状态维修的重要基础工作,是提高设备可靠性、保证设备安全运行的重要手段。 油液监测技术就是通过对设备在用润滑油的理化性能指标、磨损金属和污染杂质颗粒的定期跟踪监测,及时了解掌握设备的润滑和磨损状态信息,诊断设备磨损故障的类型、部位和原因,为设备维修提供科学依据,指导企业进行设备的状态维修和润滑管理,从而预防设备重大事故发生的发生,降低设备维护费用。 油液分析技术,就是抽取在用油油样并测定其劣化变质程度及油液中磨损磨粒的特性,来分析判断机械零部件的磨损过程,部位,磨损机理,失效类型及磨损程度等,得到机械零部件运转的信息。磨损磨粒的特性主要指磨粒的含量,尺寸,成分,形态,表面形貌及粒度分布等。油样分析技术通常包括油液理化性能分析技术,铁谱分析技术,光谱分析技术,颗粒技术技术,磁塞技术等。 对设备故障所作的统计资料表明: 设备的失效80%是因为润滑故障导致异常磨损所引起; 柴油机中大约70%是因为油品污染引起,而其中50%是磨损造成的; 滚动轴承中大约40%的失效与损坏是由于润滑不当而导致; 齿轮中大约51%的故障与润滑不良和异常磨损有关; 液压系统中大约70%的故障来自于液压介质被污染,污染度等级过高所致; 摩擦消耗的能源占总能源消耗的1/3-2/3; 油液分析技术的步骤: 1.收集设备原始资料、考察设备现场 2.制定监测计划和取样规范 3.按规范取样 4.样品分析 5.数据处理

液压油液污染度等级标准

液压油液污染物等级标准 NAS 1638标准 NAS 是National Aerospace Standard (美国航空标准)的缩写,现行的版本为1992年修订版,用一个二位数以内的数字描述流体中颗粒物的含量。一个等级代码值下有不同尺寸范围相应的颗粒物数量(每100毫升流体中颗粒物的个数)。等级代码值越小表明流体越洁净,或者说流体污染程度越轻。参见下表: NAS等级代码数 例如NAS 8(差不多是很多常规全新油品的颗粒物含量等级)中有5-15微米的颗粒物64000个,15-25微米的颗粒物11400个,依此类推。这些数为某一等级代码数的上限。 反之如果在实验室做颗粒物含量检测时,判读标准原则上以超过上限就需要升级。该标准中将颗粒物尺寸范围分得太细而起点又太粗,给实际工作中的判读带来很大的麻烦,因为实际检测结果往往与标准中的上限发生交叉。实际中判读的准确程度依赖专业人员的经验和其他辅助信息的综合判断。同时不难看出NAS标准描述颗粒物的下限是5-15微米,对5-15微米以下颗粒物不做描述,有其相当的局限性,因为流体中5微米以下(含5微米)的颗粒物数量庞大,往往是5-15微米颗粒物的数倍。所以忽略5微米以下颗粒物是不够准确的。同时为便于提高判读效率和准确性于是有很多公司使用ISO标准。很多颗粒物自动检测读数仪器一般可同时输出NAS1638和ISO 4406(MTD)代码值。目前中国企业多数参照NAS标准,但新国标的实施会逐步改变这一现状。 ISO 4406标准 现行的ISO标准为ISO4406(1999年修订版)。该标准也称为ISO 4406:1999或ISO 4406 (MTD)。MTD 是Medium Test Dust 的缩写,用三组数据描述流体中颗粒物的含量。之前也有ISO4406 –ACFTD(Air Cleaner Fine Test Dust)标准,但由于其描述起点为2微米,在实际应用中很难正确判读,所以现在已经被ISO4406:1999版所正式取代。也有一些专业

液压油被污染的原因

液压系统中液压油污染的原因分析 液压油在液压系统中能够在较长时间循环使用,其作用主要是传递动力、润滑、密封和冷却。 据资料介绍,各类机械故障中,有40%以上的故障是因液压系统出现的,而在液压系统中有80%以上的故障是因液压油的污染造成的。油液污染直接影响液压系统的工作可靠性和元件的使用寿命。造成液压油污染的原因有很多,主要包括如下几个方面: 一、固体污染------主要是颗粒物。 1.因液压元件如泵、马达、阀等在经由铸件或毛坯件机械加工时,元件内会积有少量铸造砂、金属切屑或淬火盐等污染物。 2.液压系统的各个元件使用管道经过焊接加工装配起来,这就会产生焊瘤和焊渣。 3.新的液压油经过制造、储藏、输送和灌装等过程后,多少都会含有少量固态杂质。 4.由于液压系统中液压缸的往复运动,温度变化时对油的膨胀或损失造成油箱中的油面晃动,与空气产生交换,这样尘埃就会进入油箱和油液中。 5.液压系统中的元件在使用过程中会产生磨损,磨损将造成恶性循环,使得油液中的污染物越来越多。 6、一般企业液压系统中都有过滤精度在3-10微米的在线过滤装置,可以过滤一部分的杂质,但固体颗粒物杂质是以 1.5-2微米的颗粒物聚集成团状造成泵、阀等设备故障。 二、液体污染------主要是水污染。 1、油箱盖因冷热交替而使空气中的水分凝结成水珠落人油中。 2、冷却器或热交换器产生的冷凝水通过油箱的焊接部位漏人油中。 3、通过液压缸活塞杆密封不严密处进入系统的潮湿空气凝聚成水珠。 油液中混入一定量的水分后,会使液压油乳化。乳化油进入液压系统内部,使液压元件内部生锈,剥落的铁锈在液压系统管道和液压元件内流动,将导致整

机油污染控制办法

机油污染控制办法 目的 控制机油的存储及使用过程,降低机油对环境造成的污染。 2适用范围 本办法适用于机油的存储及使用过程的控制。 3定义 机油污染——机油进入环境,对水体、土壤等自然环境造成的不良影响。 4职责 4.1物资供应部门负责机油从采购、存储到发放过程的控制,并负责公司废机油的集中回收与处置。 4.2各使用部门负责机油从领取到使用过程的控制,并按物资供应部门的要求进行废机油的回收。 5管理内容 5.1采购 物资供应部门按产品采购的有关规定对机油实施采购,对机油入库需检查密封情况,如有泄露应采取防泄露措施或退货处理。 5.2存储 5.2.1物资供应部门将入库机油存放在指定区域。 5.2.2 仓库管理员定期对机油的仓储情况进行检查,如发现封口处有渗漏,及时采取措施,防止污染土壤。 5.2.3 发生机油泄漏时,相关部门应立即采取处理措施,把损失和污染控制在最小范围内。 5.2.3.1一般应根据环境的实际情况,首先堵住泄漏源,再用其它吸油材料将已泄漏的机油

处理干净;如果机油漏在土地上,应将被污染的浮土清理干净,浮土和吸油材料应合理分类存放,妥善处置。 5.2.3.2特殊情况执行QESP17《应急准备与响应控制程序》。 5.2.4 废机油应进行分类,以便合理利用。 5.3领用 使用机油的部门要严格按计划领用,在领用和运输过程中严防泄漏。 5.3.2使用一次性消耗机油,要采取防滴漏、渗漏措施,防止对环境的污染。 5.3.3对长期大量使用机油的环境应完善防渗漏设施,防止对土壤造成大面积污染。 5.4回收 润滑系统用过的机油必须采取有效措施回收,交物资供应部门妥善保管。经沉淀后的清油可再利用,渣油集中后由物资供应部门统一处置。 5.5 机油领用、回收时,物资供应部门要做好记录,以便控制。其中机油回收要填写《机油回收记录表》(EC08-1A)。 5.6检查考核 安全管理部门在日常的安全监察活动中应对机油污染情况进行监督和检查,发现不符合,执行QESP16《事故、事件、不符合控制程序》。 5.7机油废弃物的处理执行EC02《废弃物控制程序》。 6相关文件 QESP16《事故、事件、不符合控制程序》 QESP17《应急准备与响应控制程序》 EC02《废弃物控制程序》 7记录表格 EC08-1A《机油回收记录表》

油品洁净度分级标准NAS标准介绍

油品洁净度分级标准(N A S1638标准介绍) 点击次数:229 发布时间:2010-11-11 10:38:04 油洁净度分级标准 我国电力工业使用的油洁净度(颗粒度或污染度)的指标一直还是引用国外标准,没有统一,以下是三种分级标准分别列出MOOG(SAE—6D)标准、NAS1638标 准、ISO4406标准,仅供参考。 1.美国飞机工业协会(ALA)、美国材料试验协会(ASTM)、美国汽车工程师协会 (SAE)1961年联合提出的MOOG(SAE—6D)标准 等级 颗粒的大小(μm) 5~10 10~25 25~50 50~100 100~150 0 2700 670 93 16 1 1 4600 1340 210 28 3 2 9700 2680 380 56 5 3 24000 5360 780 110 11 4 32000 10700 1510 22 5 21 5 87000 21400 3130 430 41 6 128000 42000 6500 1000 92 ?注:表内数值为100ml中的个数 2.美国航空航天工业联合会(AIA)1984年1月发布NAS1638标准 ?NAS1638:每100ml内的最大颗粒数 尺寸范围(μm) 级5~15 15~25 25~50 50~100 100以上 00 125 22 4 1 0 0 250 44 8 2 0 1 500 89 16 3 1* 2 1000 178 32 6 1* 3 2000 356 63 11 2* 4 4000 712 126 22 4* 5 8000 1425 253 45 8* 6 16000 2850 506 90 16* 7 32000 5700 1012 180 32 8 64000 11400 2025 360 64 9 128000 22800 4050 720 128 10 256000 45600 8100 1440 256 11 512000 91200 16200 2880 512 12 1024000 182400 32400 5760 1024 注:NAS1638是分段计数的,有5个尺寸段。由于实际油液各尺寸段的污染程度不可能相同,因此被测油样的污染度按其中的最高等级来定。这会引起一个问题。

液压油的污染与控制

仅供参考[整理] 安全管理文书 液压油的污染与控制 日期:__________________ 单位:__________________ 第1 页共7 页

液压油的污染与控制 摘要:液压系统工作性能的好坏,直接影响工程机械的作业性能。本文分析了液压系统中液压油的污染原因以及对液压系统工作性能的 危害,提出了防止液压油污染的具体措施,。 关键词:液压系统油液的污染危害控制 近年来,液压传动入了一个新的发展阶段。机械工程中液压油的应用越来越广泛。液压油是液压机械的血液,具有传递动力、减少元件间的摩擦、隔离磨损表面、虚浮污染物、控制元件表面氧化、冷却液压元件等功能。液压油是否清洁,不仅影响液压系统的工作性能和液压元件的使用寿命,而且直接关系机械能否正常工作。液压机械的故障直接与液压的污染度有关,因而了解液压油污染和掌握控制液压油污染是液压系统正常工作的保障之一。 液压油液被污染的原因是复杂的,多方面的。不仅仅是内部的,还包括外部的。油液的污染源可概括为系统残留的,内部生成的,以及外界的侵入。 1.1潜在原因造成的污染 在液压设备设计之初,就没能将污染的客观渠道堵死。首先,没有合理选用滤油器。过滤是控制液压油污染最直接、最容易的手段。在泵的吸油口、重要元件的进油口、油箱的入口处均要设置不同精度的滤油器和合理的过滤精度。其次就是在制造、安装阶段、对元件和系统必须进行清洗。液压元件在加工制造过程中,每一个元件都需要采用净化措施。在液压元件的制造过程中,还可采用一些新的加工工艺,如采用“喷砂”工艺可去除阀块内孔的毛刺。为保证液压系统的可靠性和延长元件的使用寿命。元件组装时,必须保持环境的清洁,所有元件装配时,需 第 2 页共 7 页

废机油危害

如果您已选择自行更换您车辆里的机油,您亦须负起适当处置该等废弃物的责任。接触废机油不但会危害您的健康,亦会危害环境。 一次换油产生的废机油看起来像污水般无害,但事实并非如此。一公升废机油可以污染一百万公升清水,相当于供应14个人一年的饮用水。甚至少如一品脱机油即能产生足球场大小的油膜! 一旦您了解为什么一点点能造成广泛污染,即可明白您必须适当处置这些极端危害和很普遍的废弃物。将机油倒入下水道并非一项选择;下水道会引流至废水处理厂,而废水处理厂难以将油从要供给人们使用的清水中移除-这还尚未计及昂贵的处理费用。将机油倒在土地上,最后会发现它仍流至下水道格栅,并因而流至废水处理厂。雨水排水沟引流至我们社区的水流、河流和湖泊,可能会使鱼类和其它野生植物所使用的水产生毒性-这还尚未提到宠物和入浴者。 好消息是那些废油甚至机油滤清器能简单地回收。废油能循环再造成不同的燃料及润滑油,因而有效使用地球宝贵之石油原料,并同时保护环境。 废机油危害大仅1斤就可污染7人一年饮用水 2011年04月16日10:10荆楚网-楚天金报彭岚我要评论(0) 字号:T|T 有车一族对爱车的保养一定十分上心,但对保养时换下的废机油的去向和影响却少有了解。昨日,江岸区环保局召开机动车维修行业废矿物油环境监督管理工作会,将对此类危险废物流向及回收处理,进行严格监管。

1斤废机油可污染1000吨清水 废矿物油,是指机动车、工具、机械设备维修保养以及工矿企业等,在生产经营中产生的各种废机油、废柴油、废齿轮油、废液压油等。它是一种危险废物,难以自然分解,且对环境的污染相当大。 据环保部门透露,废矿物油一旦渗入泥土中,土壤几十年都无法修复。要铲除污染,必须深挖,将受污染的泥土全部清除才行。如果渗入地下水,后果则不堪设想;如果处理不当,1斤废机油可污染1000吨清水,这相当于7个人一年的饮用水量。 据江岸区环保局有关负责人透露,在环境执法中发现,一些不法商贩伙同维修企业,私自将废矿物油进行回收,有的经过简单过滤后,利用旧机油桶进行灌装以次充好,再回到市场销售——这样的假冒机油会对发动机等部件造成严重损坏;有的则找个偏僻的地方采用土法提炼生产柴油,加工过程中产生的废气、废水,污染空气、土壤和水体。 回收处理一吨废矿物油花费两千 废矿物油包含种类较多,昨日的会议主要针对机动车维修行业,现场共有江岸区74家机动车维修企业参会。按照环保部门要求,他们将对自己企业产生的包括废机油、废变速箱油、废刹车油等危险废物,进行集中收集存放,并与有资质的回收处置企业签订协议,由回收企业定期上门收取。据武汉佳丽兴环保公司人士透露,每回收处理一吨废矿物油,需要2000元左右的费用。 另外,按照国家有关规定,将危险废物提供或者委托给无经营许可证的单位从事经营活动的,将面临2万元以上20万元以下的罚款。除合法处置废矿物油

液压油污染环境的原因及控制方法

液压油污染环境的原因及控制方法 从事液压行业的人员都知道液压油就是利用液体压力能的液压系统使用的液压介质,在液压系统中起着能量传递、系统润滑、防腐、防锈、冷却等作用。但是液压油有很大的缺陷就是清洁度低,容易造成环境的污染。 一般认为新油一定是清洁的,但调查结果往往超过系统实际使用的要求,一般等级为10-14级,新油污染的原因是多方面的,包括炼制、分装,运输到储存等过程的污染。根据我国石油产品性能指标规定,固体颗粒污染含量在0.005%一下认为无机械杂质,而油液中机械杂质为0.005时,污染程度相当于NAS12级,这样,从炼油厂出厂的油液其污染度就可能超过系统油液容许的污染度。所以要求油品提供商提供合格证,单位还要进行油品化验。对清洁度不符合要求的新油,在使用前必须尽心过滤净化,新油的清洁度一般比液压系统要求的清洁度高1-2级。清洁度对元件可能造成的卡滞的说明。 由液压油造成的污染物主要分为四类:自身生产的污染物、外界侵入的污染物、生物污染物和逃脱性污染物。 自身生成的污染物主要有液压系统和液压元件两个方面产生。液压系统工作时,因压力损失而消耗的能量,使系统油温升高。当液压油处于高温时,一方面油中的高压空气与油分子直接接触,空气中的氧分子引起油液氧化,生成有机酸,对金属表面起腐蚀作用;另一方面,油液氧化析出粘滞物和浸漆物。液压元件工作时,运动件之间的金属与金属、金属与密封材料的磨损颗粒以及液流冲刷下的软管胶料、过滤材料脱落的颗粒和纤维、剥落的油漆皮等。它们会腐蚀机件,并使元件表面的污物分散到油液中去而难以清除,还降低过滤网附着污物的能力,常常使节流小孔堵塞,使液压元件失效造成事故故障。 外界侵入的污染物主要指周围环境中的污染物,例如空气、尘埃、水滴等通过一切可能的侵入点,如外露的往复运动活塞杆、油箱的通气孔和注油孔等侵入系统所造成的液压油液污染;还如维修过程中不注意清洁,将环境周围的污染物带入,以粗代细,甚至不用过滤器,过滤器常年不清洗、滤网不经常清洗、换油或补油时不注意油的过滤、脏的油桶未经过严格的清洗就拿来用,从而把污染物带入。 微生物也可能像其它微小颗粒一样侵入液压介质,如果不加以阻止,微生物将繁殖生长并表现为粘质物,污染介质。一般加杀菌剂或去除微生物繁殖的条件——水或营养物,以阻止生物污染的增长。 逃脱性污染物来自过滤器附近的潜在的液流通道(如不密封的溢流阀或旁通及滤材的裂口等),以及使被截留颗粒上的拖曳力大于过滤器纤维表面的吸附力的流量脉动。 若要控制油液的污染度,要根据系统和元件的不同要求,分别在吸油口、压力管路、伺服阀的进油口等处,按照要求的过滤精度设置滤油器,以控制油液中的颗粒污染物,使液压系统性能可靠、工作稳定。滤油器过滤精度一般按系统中对过滤精度敏感性最大的元件来选择。 在需要时,还可以增设外循环过滤系统,从而使系统的污染物控制等级得到提高;应定期检查过滤器的滤网有无破裂,若有破裂要及时更换,对变质油和清洁度超标油禁止使用,油箱内壁一般不要涂刷油漆,以免油中产生沉淀物质,为防止空气进入系统,回油管口应在油箱液面以下,液压泵和吸油管应严格密封。应根据需要,在系统的有关部位设置适当精度的过滤器,并且要定期检查、清洗或更换滤芯。

液压油清洁度检测

液压油清洁度检测 1、液压油固体污染物的危害 固体颗粒污染比空气、水和化学污染物等造成的危害都大。固体颗粒与液压元件表面相互作用时会产生磨损和表面疲劳,使内漏增加,降低液压泵、马达及阀等元件的工作可靠性和系统效率,更为严重的可靠造成泵或阀卡死、节流口或过滤器堵塞,使系统不能正常运行。 2、液压油清洁度检测方法及评定标准 单位体积液压油中固体颗粒污染物含量称为清洁度,可分别用质量或颗粒数表示,质量分析法是通过测量单位体积油液中所含固体颗粒污染物的质量表示油液的污染等级,而颗粒分析法是通过测量单位体积油液中各种尺寸颗粒污染物的颗粒数表示油液的污染等级。质量分析法只能反映油液中颗粒污染物的总质量而不反映颗粒的大小和尺寸分布,无法满足油液检测的更高要求。颗粒分析法主要有显微镜法、显微镜比较法和自动颗粒计数法等。自动颗粒计数法具有计数快、精度高和操作简便等特点,近年来在国内被广泛采用。 目前,我国工程机械行业对液压系统清洁度得评定主要采用以下两种标准: (1)我国制定的国家标准GB/TI4039-93《液压系统工作介质固体颗粒污染等级代号》,该标准与国际标准ISO4406-1987等效。固体颗粒污染等级级代号由斜线隔开的两 个标号组成,第一个标号表示1ML液压油中大于5um的颗粒数,第一个标号表 示1ML液压油中大于15um的颗粒数。 (2)美国国家宇航标准NAS1638油液清洁度等级,按100ML液压油中在给定的颗粒尺内的最大允许颗粒数划分为14个等级,第00级含的颗粒数量少,清洁度量高, 第12级含的颗粒数最多,清洁度最低。参照国际标准ISO4406-1987和美国国家 宇航标准NAS1638,规定如下: ①产品出厂时液压油颗粒污染等级不得超过19/16(相当于NAS1638的第11级)。 ②产品使用过程中液压油颗粒污染等级不得超过20/16(相当于NAS1638的第12级)。 ③加入整机油箱的液压油颗粒污染等级不得超过18/15(相当于NAS1638的第10级)。 ISD4406标准为:

正确认识润滑油的五大方法

正确认识润滑油的五大方法 大家都知道,润滑油除了能保护发动机、减少换油的次数外,还能节省汽油开销。汽车润滑油在维修保养时使用的频率也非常高。所以,今天就带大家来正确认识润滑油。 润滑油并不是越多越好,润滑油量应该控制在机油尺的上、下刻度线之间为好,如果过多就会从气缸与活塞的间隙中窜入燃烧室燃烧形成积炭。这些积炭会提高发动机压缩比,增加产生爆震的倾向;积炭在汽缸内呈红热状态还容易引起早燃,如落入汽缸会加剧汽缸和活塞的磨损,还会加速污染润滑油。其次,润滑油过多增加了曲轴连杆的搅拌阻力,使燃油消耗增大。 1、油量多少为妙 润滑油并不是越多越好,润滑油量应该控制在机油尺的上、下刻度线之间为好,如果过多就会从气缸与活塞的间隙中窜入燃烧室燃烧形成积炭。这些积炭会提高发动机压缩比,增加产生爆震的倾向;积炭在汽缸内呈红热状态还容易引起早燃,如落入汽缸会加剧汽缸和活塞的磨损,还会加速污染润滑油。其次,润滑油过多增加了曲轴连杆的搅拌阻力,使燃油消耗增大。 2、油变黑怎么办 有不少车友认为润滑油变黑了就变质了,必须更换,这种理解并不全面。其实润滑油长时间工作后容易氧化变黑,以致破坏润滑性能,但是稠化油加入了洁净分散剂使机件上的沉积物分散于油中容易使油变黑,但这时的油品并未完全变质。 3、润滑油不可混合使用 润滑油添加剂差别很大,不同性能的润滑油混合在一起可能发生化学反应,不但对发动机带来损害,对自身安全也造成威胁。 4、润滑油需要定期换 润滑油工作时间长了会失去润滑性能,有些车友只添不换,这种做法是错误的。只补充不更换只能弥补机油数量上的不足,但无法完全补偿润滑油性能的损失。润滑油在使用过程中,由于污染、氧化等原因质量会逐渐下降,同时还会有一些消耗,使数量减少。 5、润滑油不是越黏越好 润滑油不是黏度越高油的品质就越好,黏度太高会增加发动机运动阻力,导致发动机功率损耗,同时黏度过大会降低散热性。 注意事项 如何避免买到假润滑油,选择正确的润滑油?总结出四点:即望、闻、问、切。 望,观察产品包装。 闻,时刻提醒自己,便宜没好货。

威格士液压及润滑系统油液污染控制技术(1-5)

液压传动系统是否能正常工作,除系统设计、元件制造质量和维护工作外,油液的清洁度是一重要因素。而油液的污染将会影响系统的正常工作。实践中由于油液污染,使系统工作不稳定等出现故障占总故障率的60%~80%。为此,本文将威格士液压系统(中国)有限公司对油液污染的有关控制方法、油液清洁度、污染根源及其损害以及防治措施等问题,系统地介绍给读者,以普及和提高对油液污染控制技术的知识。 威格士液压及润滑系统油液污染控制技术(一) 液压传动是传动与运动控制的最为可靠和可重复的形式之一。所需要的是有现代化系统设计和现代的系统性污染控制。 Vickers〔威格士液压系统(中国)有限公司〕致力于开发、运行和维护可靠的、高质量的传动和运动控制系统,已有70年的历史。本文仅是Vickers为促使设计师和用户实现最有效的液压传动和运动控制而提供的成套技术的一部分。 对于一个液压机器或油液润滑的机器来说,油液清洁度等级的拟定和实现该油液清洁度等级的措施,正如泵、阀、执行器或轴承的选择一样,也是系统设计的一部分。遗憾的是,当某些系统设计师选择一个过滤器时,他们仅是参照过滤器制造商的样本,很少涉及具体系统的总体要求。在一个系统中若正确地选择和布置污染控制装置以实

现油液清洁度,能消除多达80%的液压系统失效(的根源)。此外,一种成本低、效能高的污染控制措施能延长元件和油液寿命,还能延长运行时间和减少修理。 为了强调元件设计、系统设计、过滤器性能与过滤器之间相互作用的关系,Vickers把过滤器与过滤措施命名为Vickers系统性污染控制。 一、污染控制的系统性途径 旨在与经济性一致的最有效地保护工作。我们必须首先确定在系统性污染控制中,即在该系统的预期寿命期间,污染不构成系统中任何元件失效(突发失效、间歇失效或退化失效)的因素。迈向此目标的第一步是设定一个目标清洁度等级,它考虑该系统的具体需要。一经设定,下一步就是选择和在系统中布置过滤器,这需要对过滤器性能、回路动态特性及过滤器布置的了解。尤为后两个问题——回路动态特性和过滤器布置至关重要。当今市场上供应的过滤器一般都能保持液压油或润滑油清洁的高效过滤。在大多数有污染问题的系统中,其原因是由于缺乏对液流动态的了解而考虑欠佳的过滤器布置,或是滤芯未能在其系统中的整个使用期内维持其性能水平。涉及过滤器布置和系统动态这两方面的工程导则在本文中给出。 在机器投入运行之后,要经常进行的步骤是保持确认地目标清洁度。这往往通过把油样送往颗粒计数实验室来进行,如果符合该目标,则该系统仅需要保养过滤器并定期重新检查油液;如果不能达到该清洁度目标,则需要采取纠正性措施。如改变维护做法,改换更精细的

如何妥善处理废机油

如何妥善处理废机油 机油,即发动机的润滑油,能对发动机起到润滑、清洁、冷却、密封、减磨、防锈、防蚀等作用。对于工程机械设备来讲,机油就相当于人体的血液,它跟整台设备的健康都息息相关,众所周知,人体的血液一旦发生变质,就会产生病变,进而引发各种疾病,甚至威胁到我们的生命,机油经过长时间使用会产生、沉淀物、油泥、漆膜,导致变质,这些物质沉积在摩擦部件的表面、润滑油流通的孔道和滤清器上,也会引起机器的各种故障。不同的是,人体的血液可以不断的再生,保持新鲜纯净。那么对于工程机械来讲,就必须勤换机油,才能保证设备的健康运转。废机油就是指从各类工程机械﹑车辆﹑船舶上更换下来的废润滑油。 随着我国工业的不断进步和快速发展,各种工程机械、车辆﹑船舶的保有量越来越高,机油的需求也越来越大,废机油更是因产出量巨大而著称,而每年为了处理掉它,不计后果的将其份倒掉或者进行焚烧处理。这样不仅仅是大面积的环境污染的问题,更重要的是它涉及我国不断激发的能源危机,因此废润滑油的处理是一个值得重视的重大课题。那么我们应该如何正确的处理废机呢? 废机油去了哪里? 据测算,目前我国各类工程机械设备、汽车、船舶和飞机火车等大型机械每年产生的废机油达2500万至3000万吨,其实,这些废润滑油经过适当工艺处理,除去变质成分及外来杂质污染物都可以成为再生润滑油,这种方法无论从技术、环境保护、资源合理利用以及经济角度看都是一种合适的处理方法。但是据相关部门统计,目前废机油的回收利用率只有20%,那么这些废机油究竟去了哪里呢? 一、丢弃 废机油更换下来以后因为经济价值异常低,导致其向来处于“废物”的地位。对于小量的废油人们往往不太重视,顺手把它们倒入河道、野外空地或垃圾箱中。这种办法会造成对环境的重大污染,而且浪费资源,研究表明一桶(容积200L)废油倒入水中能污染3.5平方公里的广大水面。更为严重的是润滑油中含有3,4—苯并花(PAH)及其他多环芳烃(主要存在于矿物基础油中),这些物质被证实有强烈的致癌作用;含氯的多环芳烃化合物如多氯联苯(PCB)等,也是对人有强烈毒害作用的物质;润滑油中含有的重金属盐添加剂以及含氯、含硫、含磷的极压抗磨剂等有机物,都是对人和生物有害的物质,这些物质混入水中最终可能通过各种渠道危害到人类的健康。 二、焚烧 目前把废机油当成燃料使用也是一种常用的处理方法。很多建筑工地会将废机油与其他需要焚化的建筑垃圾混合,对这些建筑进行焚烧销毁,这些废机油能产生很好的助燃效果,这种处理方式对环境的危害也非常大,虽然政府也一再制止,但是很多不法的建筑商为了图省事,还是偷偷的这么做。 三、回收利用 近年来,废机油再生技术开始流传到民间,市场上开始出现许多大大小小的炼油厂,他们会亲自跑到工地对这些废机油进行回收,然后运往炼油厂对这些废油进行在制造,质量不好的废机油经过蒸馏、冷却、漂白等“翻新”手段制造出燃料油,然后与正规的国标油按照三分之一甚至是二分之一的比例勾兑,这就是劣质柴油的来源了。质量较好的废机油,经过适当工艺处理,除去变质成分及外来杂质污染物成为再生润滑油,然后经过包装流向机油市场。这这办法虽然从各方面来讲都是一直合理的

液压油清洁度等级

第十四章清洁度等级 一、SAE 749D-1963《液压油污染度等级》 简介 SAE 749D是美国汽车工程师学会(SAE)和美国宇航工业学会(AIA)于1963年共同制订的,它以颗粒数的多少来确定清洁度标准。虽然ISO标准已经得得推荐,但还不能作为统一的标准,然而SAE 749D却一直是使用最广的。 二、NAS 1638《液压系统零件的清洁度要求》 简介 NAS 1638是美国国家宇航学会于1964年提出的一种清洁度规范,它现在仍然用于宇航界。这个标准是在SAE 749D的基础上扩充了SAE等级的范围。 与SAE 749D的区别是改变了部分颗粒尺寸范围,由5~10μm,10~25μm,改为5~15μm,15~25μm。在1级以下增加了0级和00级,在7级之上增加了8~12级。另外。增加了用粒子质量表示的污染等级。 NAS 1638 1. 适用范围 本标准规定了用于液压系统的零件、组件、管路和接头在储存和(或)装配之前,当液压油流经其内表面时所以允许的清洁度。 清洁度分成若干等级。 例 NAS 1638 5级(参看表14-1) NAS 1638 103级(参看表14-2) 2. 相关文件 2.1 出版物:补充规定,审查和征求意见时通过的下列文件除另有说明外,都成为本标准的一部分。 ARP 743《用计数法确定洁净室内空气所含颗粒污染的方法》 ARP 785《用质量法确定液压油中颗粒污染的方法》 ARP 598《用计数法确定液压油中颗粒污染的方法》 3. 要求 3.1 材料清洗与测定过程中所用的材料应符合本文所规定的适用规范。凡规范中没有列出的或本文未加专门说明的材料只能用于特定目的。 3.2 清洁度标准从零件、组件以及接头中取出的、具有代表性样液的清洁度不得超过表14-1、表14-2规定等级所允许的最大污染度。样液的评定只能按一个表的规定,或者表14-1或者表14-2。 3.2.1样液的体积应与装置中待检验的油液体积成比例(结果应换算成100mL,试样的体积在每次测定时都要标注出来)。 每个公司有权建立自己的计数方法,但是颗粒尺寸范围应与APR 598一致。 取样程序要给出对试样施加运动的方法。这种方法是要使油液内产生搅动,这样就可以

油液污染度等级

油液污染度等级 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

油液污染度等级 油液污染度是指单位体积油液中固体颗粒污染物的含量,及油液中固体颗粒污染度的浓度。对于其他污染物,如水和空气,则用水含量和空气含量表述。油液污染度是评定油液污染程度的重要指标。 目前油液污染度主要采用以下两种表示方法: 质量污染度:单位体积油液中所含固体颗粒污染度的质量,一般用ml/L表示 颗粒污染度:单位体积油液中所含各种尺寸的颗粒数。颗粒尺寸范围可用区间表 示,如5~15μm,15~25μm等;也可用大于某一尺寸表示,如>5μm,>15μm 等。 此外油液污染度还可以用百万分率(ppm)来表示,质量ppm或体积ppm。 质量污染度表示方法虽然比较简单,但不能反映颗粒污染物的尺寸及分布,而颗粒污染物对元件和系统的危害作用与其颗粒尺寸分布及数量密切相关,因而随着颗粒计数技术的发展,目前已普遍采用颗粒污染度的表示方法。 为了定量评定油液污染程度,世界各主要工业国都制定有各自的油液污染度等级,近年来已趋向于采用统一的国际标准。下面介绍美国NAS 1638油液污染物等级和ISO 4406油液污染度等级国际标准。 A NAS 1638固体颗粒污染物等级 NAS 1638是美国航天工业部门在1964年提出的,目前在美国和世界各国仍广泛采用。它以颗粒浓度为基础,按照油液中在5~15、15~25、25~50、50~100和>100μm 5个尺寸区间内最大允许颗粒数划分为14个污染物等级,见表一。 表一:NAS 1638污染度等级表(100ml中的颗粒数)

相关文档
相关文档 最新文档