文档库 最新最全的文档下载
当前位置:文档库 › “基本不等式”的内容教学分析及教学简案 基本不等式的变形公式

“基本不等式”的内容教学分析及教学简案 基本不等式的变形公式

“基本不等式”的内容教学分析及教学简案 基本不等式的变形公式
“基本不等式”的内容教学分析及教学简案 基本不等式的变形公式

“基本不等式”的内容教学分析及教学简案基本不等式的

变形公式

摘要:基本不等式≤是不等式中的第一个基本定理,是用于求函数的最值的一个最基本最有效方法,也是证明不等式的一个最基本方法;同时它还是“形”与“数”的又一次完美而有机的结合. 通过创设情景,从具体的实例出发,展开数学知识的发生、发展过程,使学生能从中发现问题、提出问题,经历数学的发现和创造过程,了解知识__.

关键字:新课标;基本不等式≤;领悟意图;体会用意;教学建议;教学简案

《普通高中新课程标准教科书A数学⑤》(以下简称新课标)必修系列第三章的第4节“基本不等式≤”,它相对于原来《全日制普通高级中学数学教学大纲》是变化较大的一个内容. 原来的课程这部分是偏重于“应用这个基本不等式来证明其他的不等式”,对应用基本不等式来求最值只不过是一个例题而一笔带过,不很重视;而今新课标反过来了,几乎都是怎么应用基本不等式来求最值,这既符合不等式知识的认识规律,也对实际的应用有重要价值;因此教师在实施教学的过程中首先要学好新课标,其次对课程的内容、教学目标的要

求、教学内容的处理等方面,要有一个清晰的认识. 本文主要根据本校(省首批一级重点中学,有60个教学班)的情况对“基本不等式≤”这部分内容谈一些个人的认识与理解、设想与建议,以供大家参考.

关注新课标的要求,领悟新教材编写者的意图

1.?摇新课标对“基本不等式”内容的定位

基本不等式≤是不等式中的第一个基本定理,是用于求函数的

最值的一个最基本最有效的方法,也是证明不等式的一个最基本方法;同时它还是“形”与“数”又一次完美而有机的结合.

通过对基本不等式的学习,使学生掌握不等式的基本定理,认识一个数学基本定理的发生发展过程,以及它的基本应用;从多个例题

与习题中体会从实际问题中抽象出数学问题的过程,培养学生探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识

和实践能力.

2. 新课标对“基本不等式”的要求

(1)通过第24届国际数学家大会的会标认识自然引入本课的知识点;对我国数学史上人物介绍,树立与增强爱国主义的情感;也通过本案引入使学生知道数学是自然的.

(2)通过对基本不等式定理的产生过程的学习及几何的探究使学生理解数学是严密的,几何与代数是完整有机的统一,同时有利于学生对基本不等式本质的认识和掌握.

(3)通过两个例题说明或解释使学生从理解到掌握与应用的转化,增加了他们的数学应用意识及培养了他们的数学应用能力,也明确了这个基本不等式的最广泛的应用就是用来求函数的最值,从而使学生养成在生活中会思考一些问题的最值化,把他们培养成为具有优良数学修养,生活勤俭的好学生.

上面是新课标对一般的普通高中学生的基本要求,当然对省一级重点高中还可以有更高的要求.

(4)在两个例题中使学生初步感知二元变量的函数的概念,以及增加了变量的约束条件会使变量从二元向一元转化.

(5)从例题和作业中我们可以继续深化和挖掘发现函数y=x+的图象与性质;以后要把这个函数当作基本函数来看待. 条件与基础更好一点学校可以进一步熟悉函数y=ax+(a>0,b>0)的图象与性质.

3. 体会新教材编写者的用意

笔者经常研究资料以及新课标与新课标下的课程,受益良多.

教材是编写者们智慧的结晶,也是他们教学与研究多年的积累经验的升华,更是集百家之长,精雕细琢的精品.

(1)编写者把“基本不等式”的应用重心已经做了转移,从老教材的用于“不等式的证明”到新课标的教材用于求“函数的最值”. 这既符合知识特点又符合“数学是有用的”新课标的要求,更符合近年来各地高考试卷命题需求与方向.

(2)编写过程中突出了“基本不等式”实际应用背景与应用价值. 同时对基础好的学校又设计了可深挖掘的知识,对应用可以更进一步放宽到数学理论上来,如求函数y=ax+(a>0,b>0)的图象与性质等.

(3)内容或教学过程的组织主要形式.

由此可以看出编者的意图是通过创设情景,从具体的实例出发,展开数学知识的发生、发展过程,使学生能从中发现问题、提出问题,经历数学的发现和创造过程,了解知识 __;同时还要鼓励学生自主探索,并在独立思考、探索和交流的过程中,获得对数学较为全面的体验和理解.

4. 教学建议

我们在教学时候务必注意以下几个问题;

(1)要尊重书本编排,以适当的问题带动学生的学习,使他们在解决问题的过程中自主构建知识.

(2)强调学生的动手操作和主动参与,让他们在观察、操作、探究等活动中归纳和发现知识与结论,使学生学习方式的改进落在实处.

(3)重视数学知识与实际问题的联系,关注数学的背景,关注数学的应用,让学生体会数学是自然的并且是有用的.

(4)可以采用多种教学方法,如问题教学法,自学辅导法…本节可以分为两课时来学习. 下面是一节根据我校实际(学生基础较好),用“问题教学法”进行教学的教学简案,供大家参考.

一节新课标下“问题教学”法教学简案(包括对教案的评价)

“基本不等式”的应用(第二节)

(上一节已经完成了基本不等式内容的教学以及例1的讲解)

教学用书xx年度审定的国家高中新课标实验教科书《数学》⑤第110页.

教学目的(1)巩固基本不等式的概念;

(2)会初步运用基本不等式求最值;

(3)让学生自主发现函数y=x+的图象与性质.

点评在教学目的中就已经体现了新课标的理念――培养让学生自主地提出、分析和解决问题的能力.

教学过程

1. 首先回忆上一节我们学习了什么基础知识?

(上一节是学习了不等式,若a>0,b>0,则不等式≥成立)

2. 上一节结束时,我留给了你们两个问题.

(问题1. 第110页例1:①菜园的长与宽的积一定,为何长与宽

相等时,周长最短?②菜园的周长一定,为何长与宽相等时,面积最大?

问题2. 第114页练习1:当x>0时,x+何时取最小值?与基本不

等式有什么关系?)

点评问题教学法的问题的提出可以在教学任何时候,包括一节

课结束时候可以留下问题;问题的解决也可以在任何时候,包括在上

课开始时对上一节课遗留的问题进行解决从而引入新课,便于课程连

续和上一节课知识的深化.

新课开始

1. 由上面问题1,今天你们还能提出与上面相似的实际问题吗?

柯西不等式的变形公式的妙用

柯西不等式的变形公式的妙用 柯西不等式晌丝形公式的她用 湖北省襄阳市第一中学王勇龚俊峰441000 柯西不等式具有对称和谐的结构,应用的关键在 于抓住问题的结构特征,找准解题的正确方向,合理 地变形,巧妙地构造.作为新课程的选修内容,柯西不 等式(简记为"方和积不小于积和方")在数学的多个 领域都有着广泛的应用.课堂教学中,笔者与学生共 同探究了柯西不等式的一个变形公式的应用,方便快 捷,妙不可言,达到了化难为易,化繁为简,化陌生为 熟悉的目的. 柯西不等式的变形公式:设a,n,…,a为实 数,b,bz,…,为正数,则等+薏十…+筹≥ b1+62+…+ 等号. , 当且仅当一薏一?一时取 址明:田tⅡJ四个寺瓦,侍 ((22十~t2+…+等)(64.b24.…+) ()+(老)+..?+(老).][c,z +()4-…+()!] ≥(.+老'+...+老.) 一(口l十以2+…+甜). . . .bl,b2,…~b为正数,...bl4"b24-…+>O, .

? . 鲁+譬+…+譬≥. 当且仅当一-...一卿一… 时取等号. 下面分类例析,旨在探索题型规律,揭示解题方法. 1在代数中的妙用 例1设n,b,C均为正数,且不全相等,求证: ++>. 证明:由柯西不等式的变形公式,得 ++一:一 04.b6+f.f+n2(a+6).2(bq-一c) l2 .2(c+a) ,(2+2+2)0 2(n+6)+2(64-c)+2(f+0) 4(a+6+f) 一 —— a4"b4"c' 当且仅当一一,即6 —6+f:f+n,亦即a~b=c时,上述不等式取等号. 因题设a,b,c不全相等,于是9l_+赢9+?) >? ._..I◆ 点评:将十+变形为+

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

(汇总)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =u r ,(,)n c d =r ,则22||m a b =+u r 22||n c d +r . ∵ m n ac bd ?=+u r r ,且||||cos ,m n m n m n =<>u r r u r r u r r g g g ,则||||||m n m n ≤u r r u r r g g . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 2222||a b c d ac bd +++g 或 2222||||a b c d ac bd +++g 2222a b c d ac bd ++≥+g . ④ 提出定理2:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r g . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(βu r 是零向量,或者,αβu r u r 共线) ⑤ 练习:已知a 、b 、c 、d 222222()()a b c d a c b d ++≥-+- 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈22222211221212()()x y x y x x y y ++≥-+-分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+22222211221212()()x y x y x x y y ++≥-+- 3. 如何利用二维柯西不等式求函数12y x x =--? 要点:利用变式2222||ac bd a b c d +++g . 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数31102y x x =-- 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:31102y x x =-- → 推广:,(,,,,,)y bx c e fx a b c d e f R +=+-∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()[()()][()]22x y x y x y x y x y +=++=++≥…

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

柯西不等式常见题型解法例说

上海中学数学2014年第3期 柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明 柯西不等式≥:d;≥:研≥f≥]ni.6。1‘是基本 百鬲、百7 而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。6,+口:6:+a。63)2揭示了任意两组数组即(n。,n。,n。)、(6,,6。,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。,以。)、(6。,6:,6。),这也是运用柯西不等式解题的基本策略. 1一次与二次 例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2, 可知n。+462+9c。≥婺一12,即最小值为12. 例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——. 解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而. 例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得 [4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2 号25×1≥b+y+z一2)2≥5≥l L r+y+z一2 ≥一5≤z+y+z一2≤5. .‘.一3≤T+y+z≤7. 故T+y+z之最大值为7,最小值为一3. 评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效. 2整式与分式 2.1两组数组对应的数分别为倒数型 例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1]. (1)求m的值; (2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9. 解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m, 由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1), 又,(z+2)≥o的解集为[一1,1],故m一1. (2)由(1)知丢+去+去一1,又&,6,c∈R, 由柯西不等式得 Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐 评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。)与分式类型(署,昙,去)(其中夕,q,,一为常数),其实属于对勾函数的范畴,运用均值不等式也能完成,但不如柯西不等式简洁、方便.2.2分式中分子的次数高于分母型 例5(2009浙江高考)已知正数T,y,2,z+y 忙1.掘彘+毫+彘≥专. V十Z Z z十Z.r.r十二V0证法1:利用柯西不等式 (惫+矗+南)№他川z+ 2.十r)+(z+2v)]≥(.r+v+z)2.

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

《基本不等式及其变形》导学案

第9课时基本不等式及其变形 1.熟悉基本不等式的变形;并会用基本不等式及其变形来解题. 2了解基本不等式的推广,并会应用. 上一课时我们共同学习了基本不等式的基本概念以及利用基本不等式求最值,并了解了一正二定三相等四最值这些过程.基本不等式是一种重要的数学工具,是集合、函数、不等式、三角函数、数列等知识的综合交汇点,地位重要,这一讲我们将共同探究基本不等式及其变形的应用. 问题1:常见的基本不等式的变形 (1)x+≥2(x>0),x+≤-2(x<0); (2)+≥2(a,b同号),+≤-2(a,b异号); (3)a+b≥2,()2ab; (4)ab≤,()2≤,当且仅当a=b时取等号. 问题2:基本不等式的推广 已知a,b是正数,则有 (调和平均数)≤(几何平均数)≤(算术平均数)≤(平方平均数),当且仅当a=b时取等号. 问题3:基本不等式的推广的推导 ∵a,b是正数,∴≤=, 而≤,又a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2,∴≤. 故≤≤≤.

问题4:若a,b,c∈R+,则≥,当且仅当a=b=c时等号成立,则关于n个正数a1,a2,a3,…,a n的基本不等式为:≥,当且仅当a1=a2=a3=…=a n时等号成立,其中叫作这n个数的,叫作这n个数的. 1.四个不相等的正数a,b,c,d成等差数列,则(). A.> B.< C.= D.≤ 2.已知a>1,b>1,且lg a+lg b=6,则lg a·lg b的最大值为(). A.6 B.9 C.12 D.18 3.已知a,b为正实数,如果ab=36,那么a+b的最小值为;如果a+b=18,那么ab的最大值为. 4.已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca. 利用基本不等式判断不等关系 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3;⑤+≥2. 基本不等式在证明题中的应用 已知a,b,c都是正数,求证:++≥a+b+c.

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

2021版新高考地区高考数学(人教版)大一轮复习阅读与欣赏(一) 应用基本不等式的八种变形技巧

应用基本不等式的八种变形技巧 基本不等式的一个主要功能就是求两个正变量和与积的最值,即所谓“和定积最大,积定和最小”.但有的题目需要利用基本不等式的变形式求最值,有的需要对待求式作适当变形后才可求最值.常见的变形技巧有以下几种: 技巧一 加上一个数或减去一个数使和或积为定值 函数f (x )=4 x -3 +x (x <3)的最大值是( ) A .-4 B .1 C .5 D .-1 【解析】 因为x <3,所以3-x >0,所以f (x )=-??? ?4 3-x +(3-x )+3≤- 2 43-x ·(3-x )+3=-1.当且仅当43-x =3-x ,即x =1时等号成立,所以f (x )的最大值是-1. 【答案】 D 技巧二 平方后再使用基本不等式 一般地,含有根式的最值问题,首先考虑平方后求最值. 若x >0,y >0,且 2x 2+ y 2 3 =8,求x 6+2y 2的最大值. [思路点拨] 由于已知条件式中有关x ,y 的式子均为平方式,而所求式中x 是一次的,且根号下y 是二次的,因此考虑平方后求其最值. 【解】 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2????1+y 2 3≤3·? ?? ??2x 2+1+y 2 322=3×????922.当且仅当 2x 2=1+ y 23,即x =32,y =422时,等号成立.故x 6+2y 2的最大值为9 2 3. 技巧三 展开后求最值 对于求多项式积的形式的最值,可以考虑展开后求其最值. 已知a >0,b >0且a +b =2,求????1a +1????1b +1的最小值. [思路点拨] 由于待求式是一个积的形式,因此需将多项式展开后将积的最小值转化为和的最小值. 【解】 由题得????1a +1????1b +1=1ab +1a +1b +1=1ab +a +b ab +1=3 ab +1, 因为a >0,b >0,a +b =2,所以2≥2ab ,所以ab ≤1,所以1 ab ≥1.所以????1a +1????1+1b ≥4(当

基本不等式的变形及应用

基本不等式a 2 b 2 2ab 的变式及应用 不等式a 2 b 2 2ab 是课本中的一个定理,它是重要的基本不等式之一,对于它及它 各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种 常见的变式及应用 1十种变式 2、应用 由于三个不等式中的等号不能同时成立,故 ■ a 1 .b 1 . c 1 4 a 2 b 2 评论:本解法应用“ ab ”观察其左右两端可以发现,对于某一字母左边是 2 一次式,而右边是二次式,显然,这个变式具有升幕与降幕功能,本解法应用的是升幕功 ①ab a 2 b 2 _ a b 2 ② ab ( ); 2 a b 、2 2 a b 2 ③( ) ; 2 2 ⑤若b 0, 2 则a 2a b ; b 1 ⑦若a,b R ,( 1)2 4 a b ab 上述不等式中 等号成立的允要条件均为 ⑥a,b R ,则 1 1 4 a b a b ⑧若ab 0 ,则 1 2 a 1 b 2 a b b 2 (a b) (当且仅当an m n ⑩(a b c)2 3(a 2 b 2 c 2 (当且仅当a b c 时等号成立) 例 1、若 a,b,c R c 2,求证:.a 1 . b 1 c 1 4 证法一:由变式①得 即..a 1 HI 二 理 同b- 2 V C- 2 a- 2 4 C- 2 b- 2 2 ④ a b . 2(a 2 b 2) a 2 ⑨若 m, n R ,a,b R ,则 bm 时等号成立) 1 匕 止 因

证法二:由变式④得a 1 b 1 2(a 1 b 1) 同理:..c 1 1 . 2(c_1一1) .a 1 .b 1 、c 1 1 2(a b 2) . 2(c 2) .. 2(a b c 4) .12 5 故结论成立 评论:本解法应用“ a b J2(a2b2) ”这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 ( a 1 . b 1 、c 1)23(a 1 b 1 c 1) 15 故.a 1 .. b 1 ... c 1 4 即得结论 评论:由基本不等式a b 2ab易产生2a 2b 2c 2ab 2bc 2ca,两边 同时加上a2 b2 c2即得3(a2 b2 c2) (a b c)2,于是便有了变式⑩,本变式的功能可以将平方进行“分拆”与“合并”。本解法是将平方进行分拆,即由整体平方转化为个 整平方,从而有效的去掉了根号。 例2、设a,b,c R ,求证: a b .b . c Ja Vb Jc a 证明:由变式⑤得〒 v'b 2 . a , b,b =2勺b J c,厂2\i c Q a c a 三式相加即得:— Vb b c c a a、b 、、c 评论: 本解法来至于“若b a 2 0,则 b 2a b”这个变式将基本不等式转化成更为 灵活的形式,当分式的分子与分母出现平方与一次的关系时,立即可以使用,方便快捷。 2 2 例3、实数a,b满足(a 4) (b 3) 2,求a b的最大值与最小值

基本不等式知识点归纳

基本不等式知识点总结 向量不等式: 【注意】:ab 同向或有0 〔a b| |a| |b| > \\i\ ibii 〔a b ; ab 反向或有 0 \a b\ \a\ \b\> \\a\ \b\\ \a b\; lb 不共线 \\a\ \b\\ \a b\ \a\ \^\.(这些和实数集中类似) 代数不等式: a,b 同号或有 0 \a b\ \a\ \b\> |\a\ \b\ \a b\ ; a,b 异号或有 0 \a b\ \a\ \b\> |\a\ \b\ \a b\. 绝对值不等式: 同a 2 a^ w |aj |a 2| |a 3| 双向不等式:|a | b l w |a b w |a | |b (左边当ab w 0(> 0)时取得等号,右边当ab > 0(w 0)时取得等号.) 放缩不等式: ① a b 0, 1111 2 n n 1 n b 函数 f (x) ax 一(a 、b x 【说 明】: b 0,m 糖水的浓度问题) 【拓展】: 0, m 0, n 0,则 ② a,b,c b a d c ana b n b n 1 2Un ,n ⑤ In x w 1 x (x 0), e x > x 1 (x R). 1 y \ / (一 2 肩 \a H /I ■ 2 码 a ,n 1 , 0)图象及性质

⑴函数f (x) ax a、b 0图象如图: ⑵函数f (x) ax - a. b 0性质: x ①值域: ,2 ,ab] [2.ab,); ②单调递增区间:(:],[ ,[ );单调递减区间:(0,,0). 重要不等式 基本不等式知识点总结 1、和积不等式:a,b a2b2> 2ab (当且仅当a b时取到“ ”). 【变形】:①ab w『2&宀a2b2 2 (当a = b时,(芋) 2 , 2 a b 、ab) 2 【注意】: Jab w -------- (a,b R ) , ab w ( 2 a b 2 2) (a,b R) 2、均值不等式: 两个正数a、b的调和平均数、几何平均数、算术平均数、均方根之间的关系, 即“平方平均*.若x 0,则x 》算术平均》几何平均》调和平均" 1 2(当且仅当x1时取 “=”; 0,则x 当且仅当x1时取“=”0,则 若ab o,则a 2 (当且仅当a -2 (当且仅当a b时取“=” b时取 “二”) b -2 (当且仅当a b时取“=” a

高中数学公式柯西不等式

高中数学公式柯西不等 式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第一课时二维形式的柯西不等式(一) 2.练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ①提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+.(要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+. ∵m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤.∴….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+222||||c d ac bd +≥+222c d ac bd +≥+. ④提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出) →讨论:上面时候等号成立( β是零向量,或者,αβ共线) ⑤练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方→应用柯西不等式→讨论:其几何意义( 构造三角形) 2.教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义→如何利用柯西不等式证明 →变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3.小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3.如何利用二维柯西不等式求函数y =? 要点:利用变式222||ac bd c d ++. 二、讲授新课: 1.教学最大(小)值: ①出示例1:求函数y = 分析:如何变形?→构造柯西不等式的形式→板演 →变式:y ,,,,,)y a b c d e f R +=∈ ②练习:已知321x y +=,求22x y +的最小值.

不等式的变形(一)

解一元一次不等式——不等式的变形(一) 一、教学目标:使学生通过自主探究,理解和掌握不等式的基本性质1、2、3,并会用不等式基本性质 将不等式变形 二、重点:运用不等式基本性质对不等式进行变形。 难点:不等式基本性质的应用。 三、预习内容:课本第58~60页,以及目标手册第62~64页的“当堂课内练习”。完成下列填空: 1、 不等式性质1:如果a >b ,那么____________,____________。即不等式的两边都加上(或减去)_________或__________,不等号的方向______。 2、 完成课本第59页的“试一试”,并填空: 不等式性质2:如果a >b ,并且c>0,那么ac____bc. 即:不等式两边都乘以(或除以)同一个_______,不等号方向______。 不等式性质3:如果a >b ,并且c<0,那么ac____bc. 即:不等式两边都乘以(或除以)同一个_______,不等号方向_______。 3、 解不等式的过程,就是将不等式变形成__________或_______的形式.并与解方程相比较: 4、 仿照课本第59页例1,第60页例2,完成第60页练习。 5、 完成目标手册第64页的“当堂课内练习”。 四、尝试练习一: 1、 方程2x=8的解有___个,不等式2x<8的解有___个. 2、 有理数a 、b 、c 在数轴上的位置如图,试用“>”、“=”、“<”填空。 (1) 3a____3b , 3b___3c. (2) a+b____a+c , a-b____c-b. a-b____a-c. (3) b a _____b c 3、 当a>0,b_____0时, ab>0 ; 当a<0 ,b___0时,ab<0 。 4、 在数-4,-3,-2,-1,0,1,2,3,4中选出适合下列不等式的数填空: (1)-54 (5) 4x-15>3x-2 (6) 5+6x ≥5x

专题:基本不等式常见题型归纳

专题函数常见题型归纳 三个不等式关系: (1)a ,b ∈R ,a 2 +b 2 ≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R , a 2+ b 2 2 ≤( a +b 2 )2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2 +b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤( a +b 2 )2 ),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号. 【题型一】利用拼凑法构造不等关系 【典例1】(扬州市2015—2016学年度第一学期期末·11)已知1>>b a 且 7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 【解析】∵1>>b a 且7log 3log 2=+a b b a ∴32log 7log a a b b + =,解得1 log 2 a b =或 log 3a b =,∵1>>b a ∴1log 2a b = ,即2a b =.211 1111 a a b a +=-++-- 13≥=. 练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数满足,且,则的最小值为 . 解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么==(x -y )+≥2=4,当且仅当(x -y )=,即x=+1,y=-1时等号成立,故的最小值为4. 2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数,x y 满足 1 33(0)2 xy x x +=<<,则313x y + -的最小值为 . 3.(无锡市2017届高三上学期期末)已知0,0,2a b c >>>,且2a b +=,则

相关文档
相关文档 最新文档