文档库 最新最全的文档下载
当前位置:文档库 › 应用基本不等式的八种变形技巧

应用基本不等式的八种变形技巧

应用基本不等式的八种变形技巧
应用基本不等式的八种变形技巧

应用基本不等式的八种变形技巧

基本不等式的一个主要功能就是求两个正变量和与积的最值,即所谓“和定积最大,积定和最小”.但有的题目需要利用基本不等式的变形式求最值,有的需要对待求式作适当变形后才可求最值.常见的变形技巧有以下几种:

加上一个数或减去一个数使和或积为定值

函数f (x )=4

x -3+x (x <3)的最大值是( )

A .-4 B.1 C .5

D .-1

【解析】 因为x <3,所以3-x >0,所以f (x )=-???

?4

3-x +(3-x )+3≤-

2

43-x ·(3-x )+3=-1.当且仅当43-x

=3-x ,即x =1时等号成立,所以f (x )的最大值是-1.

【答案】

D

平方后再使用基本不等式

一般地,含有根式的最值问题,首先考虑平方后求最值.

若x >0,y >0,且2x 2

+y 2

3

=8,求x 6+2y 2的最大值.

[点拨] 由于已知条件式中有关x ,y 的式子均为平方式,而所求式中x 是一次的,且根号下y 是二次的,因此考虑平方后求其最值.

【解】 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2????1+y 2

3≤3·? ??

??2x 2+1+y 2

322=3×????922.当且仅当2x 2

=1+y 23,即x =32,y =422时,等号成立.故x 6+2y 2的最大值为9

2

3.

展开后求最值

对于求多项式积的形式的最值,可以考虑展开后求其最值.

已知a >0,b >0且a +b =2,求????1a +1????1b +1的最小值.

[点拨] 由于待求式是一个积的形式,因此需将多项式展开后将积的最小值转化为和的最小值.

【解】 由题得????1a +1????1b +1=1ab +1a +1b +1=1ab +a +b ab +1=3

ab

+1, 因为a >0,b >0,a +b =2,所以2≥2ab ,所以ab ≤1,所以1

ab ≥1.所以????1a +1????1+1b ≥4(当且仅当a =b =1时取等号),所以????1a +1????1b +1的最小值是4.

变形后使用基本不等式

设a >1,b >1,且ab -(a +b )=1,那么( ) A .a +b 有最小值2(2+1) B .a +b 有最大值(2+1)2 C .ab 有最大值2+1 D .ab 有最小值2(2+1)

【解析】 因为ab -(a +b )=1,ab ≤(a +b 2

)2

所以????a +b 22

-(a +b )≥1,它是关于a +b 的一元二次不等式, 解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去), 所以a +b 有最小值2(2+1). 又因为ab -(a +b )=1,a +b ≥2ab ,

所以ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1或ab ≤1-2(舍去), 所以ab ≥3+22,即ab 有最小值3+22. 【答案】 A

形如f (x )

g (x )

型函数变形后使用基本不等式

若y =f (x )g (x )

中f (x )的次数小于g (x )的次数,可取倒数后求其最值.

求函数y =(x +5)(x +2)

x +1

(x ≠-1)的值域.

[点拨] 将(x +5)(x +2)用(x +1)来表示再变形为f (x )=Ax +B

x +C 的形式,然后运用基本

不等式求解.

【解】 因为y =(x +5)(x +2)x +1=x 2+7x +10

x +1

=(x +1)2+5(x +1)+4x +1=x +1+4

x +1+5,

当x +1>0时,即x >-1时,y ≥2(x +1)·4

x +1+5=9(当且仅当x =1时取等号);

当x +1<0,即x <-1时,y ≤5-2

(x +1)·4

x +1

=1(当且仅当x =-3时取等号).

所以函数的值域为(-∞,1]∪[9,+∞).

用“1”的代换法求最值

已知1x +2

y

=1,且x >0,y >0,求x +y 的最小值.

【解】 法一:因为x >0,y >0,所以x +y =(x +y )·1=(x +y )·????1x +2y =3+y x +2x y

≥3+2

y x ·2x

y

=3+22. 当且仅当y x =2x y ,且1x +2

y =1,即x =2+1,y =2+2时,上式等号成立.故x +y 的最

小值是3+22.

法二:因为1x +2y =1,所以x =y

y -2.

因为x >0,y >0,所以y -2>0.

所以x +y =y

y -2+y =y 2-y y -2=(y -2)2+3(y -2)+2y -2=

y -2+2

y -2

+3≥3+22??当y -2=2y -2,即y =2+2

)时取等号,此时x =

2+1.

求以形如或可化为a x +b

y =1型为条件的cx +dy (a ,b ,c ,d 都不为0)的最值可利用“1”

的代换求乘法.本题中的条件1x +2

y

=1也可化为2x +y -xy =0.

若a ,b 为常数,且0

1-x

的最小值.

[点拨] 根据待求式的特征及00,1-x >0.又1=x +(1-x ),因此可考虑利用“1”的代换法.

【解】 因为00.

所以a 2x +b 21-x =a 2x ·1+b 21-x ·1=a 2x ·[x +(1-x )]+b 2

1-x ·[x +(1-x )]

=a 2

+a 2(1-x )x +b 2x 1-x

+b 2≥a 2+b 2+2ab =(a +b )2.

上式当且仅当a 2(1-x )x =b 2x

1-x 时,等号成立.

所以a 2x +b 2

1-x ≥(a +b )2.

故函数f (x )的最小值为(a +b )2.

若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)·(b +2)的最小值是__________. [点拨] 由于所给条件式中含两个变量a ,b ,因此可以用一个变量表示另一个变量,将待求式转化为含一个变量的式子后求其最值.

【解析】 因为ab -4a -b +1=0,所以b =4a -1a -1=4+3

a -1.

又因为a >1,所以b >0.所以(a +1)(b +2)=ab +2a +b +2=6a +6a -1+9=6(a -1)+6a -1

+15.

因为a -1>0,

所以6(a -1)+6

a -1

+15≥2

6(a -1)×6

a -1

+15=27.

当且仅当6(a -1)=6

a -1(a >1),

即a =2时取等号. 【答案】 27

已知条件含形如ax +bxy +cy +d =0(abc ≠0)型的关系式,求关于x 、y 一次式的和或积的最值问题.常将关系式中ax +bxy +cy +d =0变形,用一个变量x (或y )表示另一个变量y (或x )后求解.

代换减元求最值

设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z

xy

取得最小值时,x +2y -z 的

最大值为__________.

【解析】 x 2-3xy +4y 2-z =0?z =x 2-3xy +4y 2,①

所以z xy =x 2-3xy +4y 2

xy =x y +4y x

-3≥2

x y ·4y

x

-3=1. 等号成立条件为x =2y ,

代入到①可得z =(2y )2-3·2y ·y +4y 2=2y 2, 所以x =2y ,z =2y 2, 所以x +2y -z =2y +2y -2y 2 =-2(y 2-2y )=-2(y -1)2+2≤2. 【答案】 2

在含有两个以上变元的最值问题中,通过代换的方法减少变元,把问题化为两个变元的问题使用基本不等式,或者把问题化为一个变元的问题使用函数方法求解.

建立求解目标不等式求最值

已知x ,y 均为正实数,且xy =x +y +3,则xy 的最小值为__________. 【解析】 因为x ,y 均为正实数,

所以x +y ≥2xy ,xy =x +y +3可化为xy ≥2xy +3,

即(xy-3)(xy+1)≥0,

所以xy≥3,xy≥9,

当且仅当x=y时,xy取得最小值9.

【答案】9

利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值.

均值不等式的4种变形及应用yqh

均值不等式的四种变形及其应用 定理:如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如 一 第一种变式为2 2 2 2()()a b a b +≥+ 它是怎样用定理“如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号),”推导 出来的呢?只要在么222a b ab +≥的两边同时加上22 a b +可推出为2 2 2 2()() a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。 例1设0,0a b >>,1a b +=≤ 证明:2 2(2121)22(1)8a b a b ≤+++=?++= ≤ 例2设x,y 均为正数,10=- y x 且,求证:x-2y 200 ≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2 2 2 b a b a +≤+ y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=- 移项得x-2y 200≤. 例3 若a,b,c + ∈R 且a+b+c=1,求证:21141414≤++++ +c b a . 证明:用三元均值不等式的变形公式)(3)(2 2 2 2 c b a c b a ++≤++ .21)141414(3)141414(2=+++++≤+++++c b a c b a 两边开方得出21141414≤++++ +c b a 例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++ +d c b a 证明: 用四个变量均值不等式的变形公式)(4)(2 2 2 2 2 d c b a d c b a +++≤+++ 32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a . 两边开方得出所要证的结果.

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

(全)基本不等式应用_利用基本不等式求最值的技巧_题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

柯西不等式的应用技巧修订稿

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中 作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代 换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中 每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因 此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到 时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子 的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

柯西不等式的应用技巧

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设1212,,,R n n a a a b b b ∈L L ,则 当且仅当1212n n a a a b b b ===L 或120n b b b ====L 时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构造两组数:1212,,n n a a a b b b L L 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设,,R x y z ∈ ,求证:≤≤ 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++ 例7 设,1 21+>>>>n n a a a a K 求证:

练习题 1. (2009年浙江省高考自选模块数学试题)已知实数z y x ,,满足,12=++z y x 设.2222z y x t ++= (1) 求t 的最小值; (2) 当21 =t 时,求z 的取值范围 2 (2010年浙江省第二次五校联考)已知,,a b c R +∈,1a b c ++=。 (1) 求()222149a b c +++的最小值; (2) 2≥ 3 (2010年杭二中高三年级第三次月考)已知正数,,a b c 满足:1=++ca bc ab ,求 的最大值. 4 (浙江省镇海中学高考模拟试题) 已知,,x y z 是正数,且12 1,x y += 求221 2 2x x y y +++的最小值; 5 (金华十校2009年高考模拟考试)若+∈R c b a ,, , 求证:1222≥+++++b a c a c b c b a 6 (2010年宁波市高三模拟测试卷)已知,,a b c 为正实数,且3a b c ++=. 证明:222 2()()()4 ()3a c b a c b a c a b c ---++≥-,并求等号成立时,,a b c 的值. 7 (浙江省镇海中学高考模拟试题) 若0,,1,x y z <<且1xy yz zx ++= ≥ 8(2010年金华十校高考模拟考试) 设正数x ,y ,z 满足1543=++z y x 求x z z y y x +++++1 1 1 值.

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

《基本不等式及其变形》导学案

第9课时基本不等式及其变形 1.熟悉基本不等式的变形;并会用基本不等式及其变形来解题. 2了解基本不等式的推广,并会应用. 上一课时我们共同学习了基本不等式的基本概念以及利用基本不等式求最值,并了解了一正二定三相等四最值这些过程.基本不等式是一种重要的数学工具,是集合、函数、不等式、三角函数、数列等知识的综合交汇点,地位重要,这一讲我们将共同探究基本不等式及其变形的应用. 问题1:常见的基本不等式的变形 (1)x+≥2(x>0),x+≤-2(x<0); (2)+≥2(a,b同号),+≤-2(a,b异号); (3)a+b≥2,()2ab; (4)ab≤,()2≤,当且仅当a=b时取等号. 问题2:基本不等式的推广 已知a,b是正数,则有 (调和平均数)≤(几何平均数)≤(算术平均数)≤(平方平均数),当且仅当a=b时取等号. 问题3:基本不等式的推广的推导 ∵a,b是正数,∴≤=, 而≤,又a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2,∴≤. 故≤≤≤.

问题4:若a,b,c∈R+,则≥,当且仅当a=b=c时等号成立,则关于n个正数a1,a2,a3,…,a n的基本不等式为:≥,当且仅当a1=a2=a3=…=a n时等号成立,其中叫作这n个数的,叫作这n个数的. 1.四个不相等的正数a,b,c,d成等差数列,则(). A.> B.< C.= D.≤ 2.已知a>1,b>1,且lg a+lg b=6,则lg a·lg b的最大值为(). A.6 B.9 C.12 D.18 3.已知a,b为正实数,如果ab=36,那么a+b的最小值为;如果a+b=18,那么ab的最大值为. 4.已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca. 利用基本不等式判断不等关系 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3;⑤+≥2. 基本不等式在证明题中的应用 已知a,b,c都是正数,求证:++≥a+b+c.

相关文档
相关文档 最新文档