文档库 最新最全的文档下载
当前位置:文档库 › 植物病毒的免疫检测

植物病毒的免疫检测

植物病毒的免疫检测
植物病毒的免疫检测

植物病毒的免疫检测

(重庆文理学院生命科学与技术学院,重庆永川 402160)

摘要:免疫学检测技术广泛应用于植物病毒测定,是当今主要的病毒检测方法之一。

该文针对免疫学方面讲述了现代主要应用的植物病毒免疫检测的方法。

关键词:植物病毒;免疫;免疫检测

Immune Detection of Plant virus

Xing Yang-wu

(School College of Life Science and Technology,Chongqing University of Arts and

Sciences,Yongchuan,Chongqing 402160,China)

Abstract: Immunological detection technology is widely used in plant virus measured,

and Is one of the major virus detection today.This paper describes for the immunological

aspects of the main applications of modern plant virus immune detection.

Key words:plant virus; immune; immune detection

植物病毒危害日益严重,不仅对植物造成伤害,还给种植业带来重大的损失。因此植物病毒防治越来越受到广泛关注,其病毒检测方法不断提高。随着检验检疫有害生物范围的扩大,检测精确性、灵敏度、检验时间及简化操作程序要求的日益提高,传统的形态学、细胞学等方法已经远远不能满足检测的需要[1]。植物病毒的免疫学检测是最普遍广泛应用的检测方法之一,这方面的研究也在不断的深入。下文讲述近年来主要应用的植物病毒免疫检测方法。

1 酶联免疫吸附测定

酶联免疫吸附测定(ELISA)是在植物病毒病诊断上最广泛使用的一种免疫学方法。它不仅具有免疫荧光法和放射免疫法的反应灵敏、特异性强的优点,而且克服了常规血清学方法受病毒浓度、粒体形态和抗血清用量等限制的缺点[2]。其原理是把抗原抗体的免疫反应与酶的高效催化作用相结合,通过化学方法将酶与抗体结合,形成酶标抗体。在遇到相应底物时,酶催化无色底物产生化学反应,生成有色化合物,其强度与病毒浓度成正比,用此方法也可测定出病毒的浓度,既保持了酶催化反应的敏感性,又保持了抗原抗体反应的特异性,因而极大的提高了灵敏度[3]。

ELISA反应有多种方法,如间接法、双抗体法、竞争法、双夹心法和酶一抗酶抗体法等等,但实验的基本过程都相似。E.LISA反应有很高的灵敏度,用它检测菜豆黄斑花叶病毒(BYMV) ,所使用提纯的病毒抗原浓度仅需5ng/mL。但其灵敏度与核酸杂交技术相比还稍差[4] .ELISA反应快速便利,很适合于大规模田间样本的常规病毒检测,也广泛用于脱毒

植物、无性繁殖的苗木以及种子上的病毒检测[5]。

2免疫荧光技术[6]

免疫荧光技术(Immunofluorescene简称IF)是以抗体为基础的在病害检疫中具有重要应用价值的检测手段,现已成功应用于植物组织、种子及土壤中细菌及真菌的检测[7]。免疫荧光技术具有间接和直接免疫荧光法,其中间接免疫荧光法在实践中用途较广,一抗与结合有荧光色素的二抗结合,所发出的荧光可由免疫荧光显微进行检测,如利用免疫光技术可在显微镜下检测出结合有荧光色素抗体的细菌阳性细胞,免疫荧光技术检测的灵敏度一般约为103~105cfu/mL,不仅对每个荧光细胞可以记数,而且可以观察有关细胞的形态特征[8]。虽然免疫荧光技术灵敏度高,但在实际使用中存在一定的缺陷,如需要昂贵的仪器,操作费时,并且有时受植物和土壤的自身荧光干扰,特别是在抗原量低时,自发荧光强于特异性荧光,致使观察困难,干扰了这项技术的广泛应用[9]。

3斑点免疫法

斑点免疫法(Dot Immunobinding Assay简称DIA),它是通过酶标记抗体与吸收附于硝酸纤维素膜(简称NC)、尼龙膜或其他支持物上的抗原发生特异性结合,经加底物溶液后在NC 膜上形成有色斑点的免疫学方法[10]。目前已被应用于植物病毒、MLO的检测之中[7]。斑点免疫法在对马铃薯卷叶病毒、马铃薯X病毒、烟草花叶病毒、烟草环斑病毒、烟草脉斑驳病毒、番茄花叶病毒、番茄环斑病毒、柑桔速衰病毒、花生条纹病毒、水稻草状矮化等植物组织、种子中的病毒以及花生丛枝病、葡萄黄化病等众多MLO病害的检测中也取得了较好的效果[11]。DIA可以分为多种,较常用的有直接法、间接法、双抗体夹心法。斑点免疫法操作简便、快速、能够长期保存,在灵敏度方面也高于DASM-ELISA。斑点免疫技术是一项十分有用的血清学技术,它的一个重要用途是组织免疫印迹,通常可以将组织材料(如切割开的种子)直接与硝酸纤维素膜接触,抗原从组织中释放,并结合于膜上,通过直接法检验或使用辣根过氧化物酶(或碱性磷酸酶)标记间接检测结合于膜上的抗原。由于斑点免疫检测技术具有与电镜观察法同样高的灵敏度,且操作容易、简便,试验本身血清用量少,且可重复利用,一次性检测的样品量大,因此是一种适合检疫需要的快速诊断检测方法[12]。

4免疫电镜技术

免疫电镜技术具有与ELISA相同的灵敏度,但比ELISA更为直观、准确、快速,对于某些难于鉴定的木本植物病毒也可检测。免疫电镜技术的电镜制片方法有多种,常用的有3种:诱捕法、修饰法和诱捕修饰法。以后又对免疫电镜技术进行了改进,灵敏度进一步提高,出现了A-蛋白免疫电镜法、羊捕兔诱捕双修饰法以及胶体金免疫电镜。胶体金免疫电镜与一般免疫电镜相比,由于胶体金具有高电子密度和其表面能结合大分子的特性,能增加免疫负染,从而提高了分辨率,而且胶体金的存在起定位作用,尤其应用在病组织的超薄切片上,其在电镜下很容易观察到病毒粒体在组织中的存在形式,是病毒细胞化学研究中的一种有效手段[11]。

免疫电镜技术可直接检测感染病毒的组织抽提液(包括显症、未显症、脱毒苗),这已应

用于TMV、PVY、PVX、Potatomop-top virus、Tobacco ring-spot virus、花椰菜花叶病毒、悬钩子花叶病毒、水稻黑条矮缩病毒、大麦黄矮病毒、柑桔速衰病毒、李豆病毒以及番茄环斑等病毒的检测之中,并取得了良好的效果。除了病毒定性外,免疫电镜技术还可以用在植物粗汁液中病毒粒体的定量分析[13]。此外,免疫电镜技术克服了以往检测MLO只能用超薄切片进行电镜观察的缺点,现已能用诱捕法诱捕MLO。

5免疫染色标记技术

胶体金染色技术是利用金离子还原后的胶体金与抗体(或A-蛋白)结合形成稳定的抗体(或蛋白)——胶体金复合物,通过抗原的特异性结合,金颗粒附于同源病毒粒体的周围,从而得到检测病毒的一种免疫技术[14]。以后,又对胶体金技术进行了改进,产生了金/银免疫法染色法、斑点免疫金染色以及斑点金/银染色法,并在植物病毒、细菌等的检测上得到了广泛的应用[15]。如利用A蛋白—胶体金复合物标记齿兰斑病毒(ORV)、大豆花叶病毒(SMA)、黄瓜花叶病(CMV)、TMV,用免疫金/银染色法检测烟草环斑病毒(TrSV),均取得了很好的效果。免疫胶体金技术不仅可检测和鉴定出植物病毒,还可以确定植物病毒在感染细胞中的复制部位以及病毒基因产物在细胞中的合成部分,现已成功地用胶体金标记了马铃薯黄矮病毒(Potato yellow dwarf virus,PY-DV)的结构蛋白以及一些复制酸组分、转移蛋白等非结构蛋白。免疫金/银染色技术是在免疫胶体金染色的基础上在金颗粒周围再吸附上许多银离子,通过物理显影方法将银离子还原成重金属银而呈黑褐色,从而使可见度大增强。该技术克服免疫胶体金技术不能以光学显微镜下观察的缺点,成功地应用于细菌的检测和组织免疫定位。免疫金染色技术和免疫金/银染色技术具有省时、灵敏、稳定、价廉的优点。缺点是胶体金标记不易与小分子物质形成稳定复合物,并对盐类极其敏感,此外,胶体金标记的组织切片,微细结构对比度不是太好,细胞膜也不能清晰可辨,对于球型病毒,如果分散在细胞中就不易辨认。不过,随着单克隆抗体、cDNA探针与免疫胶体金等染色技术的结合使用,免疫染色标记技术的灵敏度将会进一步提高,相信不远的将来它将成为检测方面的一种非常有用的工具。

6 快速免疫滤纸测定(RIPA)

此方法原理是用特异性抗体球蛋白IgG孵育红白两种乳胶颗粒制备成致敏乳胶,同时用封闭剂封闭致敏乳胶上未被占据的位点,将上述乳胶粒子以红下白上的相对部位分别固定在同一滤纸条上,测定时,当滤纸条侵入待测样品液中时,如果样品中含有待测病毒粒子,由于毛细管作用,它将与一部分红色致敏乳胶结合,结合产物会同其他尚未结合的红色致敏乳胶及病毒粒子一起向上迁移,当迁移到固定有白色致敏乳胶部位时它们就会被吸附起来,该部位显示红色。反之,如果没有待测病毒粒子,则不会产生吸附现象,该部位不显现红色[16]。在兰花病毒检测中,采用致敏抗体(A蛋白)代替常规抗血清所形成的微量凝集法,其灵敏度有很大的提高[17]

7 免疫PCR

新近发展起来的免疫PCR是将抗原抗体反应的高特异性与PCR的高录敏度有机结合的

检测技术与酶标检测技术相比,免疫PCR是用DNA片段取代酶来标记抗体,然后用PCR 扩增DNA片段从而放大抗原抗体反应,大大提高了检测灵敏度[18]。Sharman[19]建立一种复合免疫PCR,可同时检测香蕉和车前草粗提取汁液中的香蕉苞叶花叶病毒,黄瓜花叶病毒和香蕉束顶病毒。

8 电印迹免疫分析(EBLA)

电印迹免疫分析方法首先用SDS-PAGE分离病毒CP,把蛋白带转移到膜上,再进行抗原杭体反应,根据CP分子量和吸附特异性抗血清的特殊带来判断该病毒的存在与否。

EBLA和ELISA、DIBA相比具有明显的优点,通过电泳将植物病毒的CP和植物组织中的其它蛋白分离开来,排除了杂蛋白的干扰,可检测低浓度的植物病毒。此方法不适于大量样品的检测。

9伏安酶联免疫分析法

伏安酶联免疫分析是将酶催化、免疫技术和伏安法检测相结合的一种免疫分析方法。焦奎等[20]已研究10个伏安酶联免疫分析新体系,灵敏度均高于ELISA。伏安酶联免疫分析法具备了伏安法的高灵敏度和高准确性,又具备免疫反应的特异性,仪器设备简单,操作方便。但此方法不适宜于大量样品的分析。

10 免疫毛细管区带电泳(I-CZE)

毛细管区带电泳是在装有一种电解液的空毛细管两端加一个外加电压。在外加电压作用下,通过电泳迁移和电渗流的作用,样品中的不同组分由于迁移率的不同而分开。I-CZE将血清学反应专化性和毛细管区带电泳灵敏、快速、可自动检测的特点结合起来,实时检测抗原-抗体复合体Eun[21]等应用I-CZE检测到10fg建兰花叶病毒和齿兰环班病毒的提纯病毒。I-CZE灵敏度高,且可快速分析多个样品,因而在无病毒苗木检测、抗病品种选育、植物检疫、种质筛选等方面可发挥巨大作用,有广阔的应用前景。

展望

随着生物技术的发展和应用,免疫学检测也不断得到提高和应用,从而对植物保护和疾病的防治起到重要作用。目前植物病毒的免疫检测还有诸多不完善不成熟的方面,许多技术仍需要改善,但是,我们相信这些技术一定更加广泛的服务于人类。

参考文献:

[1] 李春喜,王新,侯秋石,等.几种新方法在植物检疫中的应用[J].山东林业科技,2006,4:62.

[2] 朱延书,康宁.生物技术在植物检疫检测中的应用[J].江苏林业科技,2003,30(3):42-44.

[3] 金羽,文景芝.植物病毒检测方法研究进展[J].龙江农业科学,2005,(3):37-40.

[4] Herrbach E,Lemaire O, Ziegler V et al. Ann Appl Biol. 1991,118:126-130.

[5] 施曼玲,周雪平.植物病毒病的诊断技术[J].微生物学通报,2000,27 (2):149-151.

[6] 邵碧英.植物病毒分子检测方法概述[J].植物免疫,2002,16(6):377-378.

[7] 田国忠.植物类病原体的检测和鉴定研究新动态[J].植物检疫,1992,6(增刊):70-72.

[8] 窦坦德,沈崇尧.植物病原真菌监测技术研究进展[J].植物检疫,2000,14(1):31-33.

[9] 冯家望,莫晓风.免疫金银染色技术及其在植物病原细菌研究中的应用[J].植物检

疫,1996,10(4):204-205

[10] 赵友福,陈红燕,张乐,等.菜豆萎焉病菌的血清检测鉴定技术研究[J].植物检

疫,1997,11(4):193-198.

[11] 强秀红,周雪平.斑点免疫测定法在植物病毒研究中的应用及技术要点[J].植物检

疫,1994,4(4):39-41.

[12] 陶庭典,张健如.应用斑点免疫法检测香石竹斑驳病毒[J].植物检疫,1992,6(6):422-424.

[13] 胡伟贞,由雪娟.免疫电镜技术在植物病毒研究中的应用和进展[J].植物检

疫,1990,4(5):356-359.

[14] 徐平东.免疫胶体金技术及其在植物病毒研究中的应用[J].植物检疫,1993,7(4):327-329.

[15] 魏梅生.斑点免疫金和免疫金/银染色法检测烟草环斑病毒[J].植物检疫,2000,14(1):1-2..

[16] 张建军,莫晓凤.一种快速简便的植物病毒检测方法[J].植物检疫,1998,12(4):222-223.

[17] Abdul Samad N,Ari Z.The use of antibody-sensitized latex to detect Cymbidium mosaic virus

in orchids[J].Pertemika Journal of Tropical Agriculture Science ,1993,16(2):157-160.

[18] Jones A T,Koening R,Lesemann D E et al.J Phytopathol,1990, 129:339-344.

[19] Sharman M,Thomas J E,Dietzgen R G.Development of amultiplex immunocapture PCR with

colourimetric detection for viruses of banana.J Virol Methods,2000,89(1-2):75-88.

[20] 焦奎,张书圣.伏安酶联免疫分析法及其在植物血清学检测技术中的应用[J],化学通

报,2000,(10):50-55.

[21] Eun A J, Wong S. Detection of CymbidiumMosaic Potexvirusand Odontoglossum Ringspot

Tobamovirus using immunocapillary zone electrophoresis. Phytopathology, 1999,89:522-528

植物病毒病的有效防治方法

植物病毒病的有效防治方法 现在病毒病的危害有日益严重的趋势,发病病毒种类越来越多,常见到的有厥叶病毒,花叶病毒,条斑病毒,银叶病毒,黄化病毒,等几十种,而且混发的现象日趋严重。当前如何解决植物病毒病,是目前农业生产中非常紧迫的问题。植物病毒病的解决也是农民增产增收的保证。 一、病毒病的发病原因 (1)传染源 (2)传媒 (3)高温 (4)干旱 (5)光照过强 (6)品种本身的原因 二、预防措施 (1)切断传染源,措施:种子消毒,接种抗毒免疫剂。选择无毒种苗。利用茎尖脱毒克隆方法繁育种苗。 (2)消灭传媒,做好蚜虫,白粉虱等害虫的防治工作。 (3)尽量控制好温度,最高温度应控制在32度以下,如温度过高,就要采取措施,地面要经常浇小水,叶面多喷喷抗毒免疫剂或灌根。 (4)避免干旱,小水勤浇。要控制合适的湿度。 (5)夏天光照强时要进行适当遮光。 (6)增喷抗毒免疫剂,中药及生物的为最好。 (7)选育抗病毒品种 (8)改进栽培措施,选择先进的有机栽培模式。增强本身抗病毒能力。 三、治疗措施

(1)种子用脱毒剂进行处理,磷酸三钠10倍浸泡10分钟,或高猛酸钾100倍浸泡,或抗毒免疫剂100倍浸种10分钟,冲洗干净后播种或催芽。 (2)用无毒无菌无虫卵基质育苗。 (3)要尽量用有机栽培模式,利于根系发育,提高本身抗病毒能力 (4)出苗后接种抗病毒疫苗三次以上。 (5)移栽后定期喷洒抗病毒疫苗或制剂。 (6)冲施肥要以天然有机肥为主,用生物发酵好的肥料,厌氧菌或放线菌类有益防腐微生物为最好,养根壮根,提高产量的同时提高其抗病毒能力。 关于植物病毒病 植物病毒对寄主的危害,素有“植物癌症”之称,防治上十分困难。病毒在侵染寄主后,不仅与寄主争夺生长所必需的营养成分,而且破坏植物的养分输导,改变寄主植物的某些代谢平衡,使植物的光合作用受到抑制,致使植物生长困难,产生畸形、黄化等症状,严重的造成寄主植物死亡。为了有效地控制植物病毒病,人们采用了各种措施,包括轮作、种子脱毒、病毒间的弱毒株系交叉保护、抗病品种的选用、传毒介体的控制及化学农药的使用等,近年来转基因植物抗病研究也有了新的进展。但这些措施还不能有效克服病毒的危害,且化学农药的使用对环境造成了很大危害,在当前大力提倡绿色食品和环境保护的前提下,加强植物病害的综合防治和减少化学农药的使用已成为植保工作者工作的重点内容之一。为了能开发出有效控制病毒且不会造成环境污染的抗病毒药剂,研究人员不断寻找和筛选天然的生物源抗病毒物质。目前,国内外已报道的天然抗病毒活性物质种类很多,有的已形成产品,在农业生产中发挥着重要作用。 一、改变耕作制度,加强栽培管理,预防植物病毒病的发生和流行 1.轮作套种采用不同作物和品种的轮作和套种,可以减少病原积累,防止病害严重发生。 2.选择适宜播种期播种期的选择对病毒病的发生也有很大影响。 3.加强苗期管理苗床和苗期的管理对预防和控制病毒病的发生十分重要,因为苗床上的病株,可能成为大田发病的重要毒源。因此,要尽力保证幼苗不生病或少生病,加强田间栽培管理,提高植物抗病毒病的能力,铲除田间地头杂草,拔除病株以除掉毒源,及时治虫防病,也能减轻病害。 二、种植抗、耐病品种 采用抗病和耐病品种可以经济有效地防治和减轻病毒病的发生。多数抗病品种可以抵抗病毒复制和扩散,有些蔬菜可以抗传毒介体。

植物病毒检测技术研究进展汇总

植物病毒检测技术研究进展 刘茂炎 摘要:随着现代技术的发展特别是分子技术的发展,鉴定和检测病毒的方法越来越多,也越来越精确快速。以PCR为基础的基因工程技术已经广泛应用于病毒核酸分子的鉴定,其高灵敏度和高特异性是与PCR扩增反应的特异性引物相关联的;于此同时传统的鉴定检测技术依然有其发展优势。不论怎样的方法技术,都是以病毒的理化性质以及侵染性为基础的。在此基础上,甚至出现了某些边缘技术在病毒鉴定检测方面的应用。本文主要综述的是对植物病毒鉴定检测技术的研究进展。 关键词:植物病毒;检测技术;PCR 病毒在生物学上特征(如病毒的理化性质,包括病毒粒子的形态、大小、对理化因子的耐受性等)以及在寄主上的反应(如寄主范围、症状表现、传播方式等)是对病毒最直观的认识。常规的对植物病毒的鉴定检测方法有:生物学测定方法、血清学技术、电子显微镜技术、分子生物学技术等。生物学测定依据病毒的侵染性,观察寄主植株或其它生物的症状表现;血清学技术以病毒外壳蛋白(CP)为基础;电子显微镜技术依据病毒的形状大小的不同;分子生物学鉴定则以病毒核酸为基础。 1.生物学鉴定 最直接的方法是目测法,直接观察病毒对植物的病害症状。如烟草花叶病毒(tobacco mosaic virus,TMV),病害症状为叶上出现花叶症状,生长陷于不良状态,叶常呈畸形;玉米鼠耳病的诊断主要依据田间症状表现[1]。目测法因观察的主观性和症状的不确定性的影响而不精准。1929年美国病毒学家霍姆斯(Holmes)用感病的植物叶片粗提液接种指示植物,2~3天后接种叶片出现圆形枯斑,枯斑数与侵染性病毒的浓度成正比,能测出病毒的相对侵染力,对病毒的定性有着重要的意义,这种人工接种鉴定的方法就是枯斑和指示植物检测法。国内报道的水稻黑条矮缩病毒(Rice black-streaked dwarf fijivirus,RBSDV)可侵染28属57种禾本科植物,该病毒的主要传毒介体是灰飞虱(Laodelphax striatella),

植物病毒田间接种、传染方式教材

实验六植物病毒病及其传染方式 一、实验目的 认识植物病毒形态和病毒病主要症状类型,通过植物组织汁液的摩擦接种和蚜虫传播试验了解病毒病的主要传染方式。 二、讲解要点 1.病毒颗粒很小,必须用电子显微镜才能观察到。植物病毒颗粒可以分为圆球状(或等边多面体)、炮弹状、长杆状和线条状4种。这些在课堂和本次实验课上只能通过观看电镜照片或幻灯片来了解。 2.植物病毒病的主要症状类型有花叶、变色、条纹、枯斑或环斑坏死、畸形。应该注意:一方面这些症状类型的分辨在病毒病鉴定上具有比起它病害更重要的意义,另一方面在实际观察中,也会发现同一种病毒病在发病过程中或在不同环境条件下会有不同的表现(不同病状甚至隐症)。 3.病毒病多为系统性侵染,没有病征,易与非侵染性病害相混淆,往往需要通过一定方式的传染试验证实其传染性。植物病毒病的传染方式有:机械(摩擦)接触传染、嫁接传染、介体(包括昆虫、线虫、真菌、螨类和菟丝子)传染、花粉及种子传染等。由于病毒是专性寄生物,它的侵染来源都与活体(活的动、植物体或介体)有关,传染要使病毒接触活体。例如汁液摩擦接种,要用新鲜的病毒汁液,摩擦的目的是造成寄主植物体表面的微伤,使病毒有可能进入活的细胞,过重的损伤造成组织坏死并不利于病毒的传染。蚜虫、飞虱等刺吸式口器昆虫取食植物汁液的方式更容易满足植物病毒传播的两方面要求。 4.大白菜病毒病的症状为幼苗受侵后首先心叶出现明脉即沿叶脉失绿,继呈花叶及皱缩。成株被害,出现不同程度的叶片皱缩、变硬而脆,后期出现褐色斑点或褐色坏死条纹;植株矮化。我国十字花科蔬菜病毒病主要由芜菁花叶病毒(简称TuMV)、黄瓜花叶病毒(简称CMV)和烟草花叶病毒(简称TMV)所致,前两种病毒能由蚜虫和汁液传染,第三种只能以汁液传染。 马铃薯病毒病主要是皱缩花叶病和卷叶病两种。前者的症状为叶片皱缩、变小;叶尖向下弯曲,全株矮化,叶片色泽深浅不均,以后出现黑褐色坏死斑,质地变脆,严重时全株发生坏死性叶斑,自下而上枯死。马铃薯皱缩花叶病是由马铃薯X病毒(简称PVX)和马铃薯Y 病毒(简称PVY)两种病毒复合侵染引起的。PVX只能由汁液传染,昆虫不传染。PVY的传染方式有汁液与蚜虫传染。马铃薯卷叶病的症状为叶缘向上卷曲,病重时呈圆筒状。叶片色泽较浅,有时叶背面呈红色或紫色。叶片变厚变脆,病叶不出现萎蔫下垂的现象,矮化亦

植物病毒分子检测方法概述

植物病毒分子检测方法概述 邵碧英 (福建出入境检验检疫局 福州 350001) 植物病毒粒体主要由核酸和蛋白外壳构成,蛋白外壳由许多外壳蛋白(CP)组成。 CP和核酸因病毒的不同而异,是检测、鉴定植物病毒的主要依据。广义的植物病毒分子检测方法包括蛋白质检测(或血清学试验)和核酸检测方法,本文分别介绍。 1 以病毒外壳蛋白为基础的检测方法 植物病毒的CP具有抗原性,很多病毒可以被提纯并制备成高效价的抗血清,根据特异性的抗原抗体反应可检测植物病毒的存在。血清学方法有很多,应用较广泛的是酶联免疫吸附反应,在此基础上加以改进也发展了一些新的检测方法。 111 酶联免疫吸附反应(EL ISA) EL ISA是一种采用固相(主要为聚苯乙烯酶联板)吸附,将免疫反应和酶的高效催化反应有机结合的方法。酶标抗体(或抗抗体)与相应抗原反应时形成酶标记的免疫复合物,酶遇到相应的底物时产生颜色反应,颜色深浅与抗原量正相关。该方法已被用于各种植物病毒检测。 后来发展的用酶标A蛋白取代酶标抗抗体的EL ISA被称为A蛋白酶联吸附法(SPA-EL ISA)。几种植物病毒的SPA-EL ISA诊断试剂盒已被研制成功[1]。 EL ISA方法简单,灵敏度高,特异性强,适于大量样品的检测。 112 斑点免疫吸附法 20世纪80年代发展的以硝酸纤维素膜(NCM)为固相载体的酶联免疫吸附试验—斑点免疫吸附法,检测原理类似于EL ISA,但酶与底物反应产生不溶性产物,在NCM 上形成有色斑点,斑点颜色深浅与抗原的量成正比。也已用于各种病毒检测。 斑点法简便,反应时间短,反应结果可长期保存,不需任何特殊设备,也适合于大量样品的测定。 113 直接组织斑免疫测定法(IDD TB)与EL ISA相比,斑点法更为简便,但仍然需要提取病毒的粗提液或提纯制剂,试验过程较繁琐。改进后的直接组织斑免疫测定是直接把植物组织切块固定于膜上,然后利用抗原抗体特异反应来检测植物病毒。 鞠振林等[2]以IDD TB检测病组织中的马铃薯X病毒Potato virus X等多种病毒获得较好结果。徐明全等[3]采用IDD TB法从兰花叶片中检测到建兰花叶病毒Cymbidium mosaic virus。把石斛兰叶片从叶尖至叶尾每0.5cm切割1次并压印在膜上,检测结果可直接显示出感染病毒的具体部位。 组织印迹法明显比EL ISA和DIBA的试验程序简单、快速。但病毒在植物的不同部位分布不均匀,同一样品要重复多次,以提高检测的准确性。 114 电印迹免疫分析(EBLA) 电印迹免疫分析方法首先用SDS2PA GE 分离病毒CP,把蛋白带转移到膜上,再进行抗原杭体反应,根据CP分子量和吸附特异性抗血清的特殊带来判断该病毒的存在与否。 EBLA和EL ISA、DIBA相比具有明显的优点,通过电泳将植物病毒的CP和植物组织中的其它蛋白分离开来,排除了杂蛋白的干扰,可检测低浓度的植物病毒。此方法 — 7 7 3 —

基因芯片及其在植物病原物检测中的应用

基因芯片及其在植物病原物检测中的应用 摘要:基因芯片是近年来发展起来的一项新兴技术,是把大量DNA探针或基因片段按特定的排列方式固定在硅片、玻璃、塑料或尼龙膜等载体上,形成致密、有序的DNA分子点阵,在基因定位、DNA测序、突变检测、基因筛选、基因诊断和发现新基因等方面起着重要的作用。基因芯片技术已广泛应用于病原物检测,在植物病害预测和防治中起着重要的作用。 关键词:基因芯片; 病原物检测 1996年,美国Affvmetrix生物公司制造出世界上第一块商业化的基因芯片(Gene chips),由此掀起了基因芯片研究热潮。基因芯片被迅速而广泛地应用于生命科学与医学的各领域,被誉为继大规模集成电路后又一次意义深远的科技革命[1]。随着基因芯片技术的不断发展,其在生命科学和医学中的研究领域中的应用几乎是全方位的,包括基因定位、DNA测序、突变检测、基因筛选、基因诊断和发现新基因等[2]。本文仅叙述基因芯片原理已经基因芯片在植物病原物检测中的作用。 基因芯片的基本原理 基因芯片,又称DNA芯片(DNA chips),属于生物芯片(bio-chip)中的一种,是综合微电子学、物理学、化学及生物学等高新技术,把大量DNA探针或基因片段按特定的排列方式固定在硅片、玻璃、塑料或尼龙膜等载体上,形成的致密、有序的DNA分子点阵,因固相载体常用硅玻片或硅芯片,故称之为基因芯片[3]。基因芯片技术的基本原理是分子生物学中的核酸分子原位杂交技术:将短链核酸分子固定在固相载体上作为探针,待分析样品经过标记后与固定在芯片上的探针杂交。其技术流程主要包括芯片的制备、待测样本的制备和标记、杂交反应、结果检测和数据处理分析等。与传统的核酸印迹杂交技术相比,基因芯片具有可信度高、信息量大、操作简单、重复性强以及可以反复利用等诸多优点[4]。

植物病毒病检测方法

植物病毒病检测方法 植物病毒病是农业生产上一种重要病害,严重影响农作物的产量和质量, 目前还没有1种治疗效果较理想的药剂,对发病植株做到早期诊断及提前检测就显得尤为重要。植物病毒学历经近百年的发展,植物病毒的检测方法与手段也在不断发展与改进。常用的方法有侵染力测定法、血清学方法、电子显微镜计数和分子生物学法等。 1.4.1侵染力测定法 侵染力测定法是将病毒样本接种在植物上,根据侵染力的大小定量。它的灵敏度在所有定量法中是比较高的,而且是其他定量法的基础。设计一种新的定量法,如果不经过侵染力的验证,将无法判断测定的是病毒或者是具有侵染力的病毒。侵染力测定法包括局部枯斑法、淀粉-碘斑法、系统感染率的测定法等。侵染力测定多用粗汁液来接种,为了避免抑制物质的作用和使半叶枯斑数目控制在一定范围,须用缓冲液稀释接种物。 局部枯斑法1929年F.O.Holmes发现TMV在心叶烟(Nicotiana glutinosa)接种叶片上引起局部坏死斑点,在一定的病毒浓度范围内,所产生的斑点数目与病毒浓度成正比例。这一发现成为病毒侵染性定量测定的基础(田波,1987)。所有机械传染的病毒都有可能应用局部斑点法,但实际上只有少数病毒具有可用于定量测定的局部斑寄主。一个待测样品所形成的斑点数目除取决于接种物中病毒浓度外,还受试验植物种类、环境条件和接种物中是否含有病毒抑制物质的影响。 淀粉-碘斑法当所研究的病毒没有过敏性枯斑寄主时,采用此法。Holmes(1931)发现TMV接种的烟叶上有时形成明显的黄化斑块,但不能用于计数。将这种接种叶用95%乙醇加热到80℃固定,然后用I2和KI混合液(10克I2,30克KI,1500毫升H2O)染色时,则侵染点处出现淀粉-碘的蓝色反应。当下午采摘叶片,褪色过夜,然后用碘液染色,则侵染点较周围组织着色浅;当采摘叶片前,植株先在黑暗中放几个小时,再用碘液染色,则侵染点组织着色深。这是由于病毒侵染既降低光合组织中碳水化合物的形成,也降低碳水化合物从光合组织中的运出。淀粉-碘染色的强弱受环境条件的影响较大,不如局部枯斑法可靠,但在标准化条件下仍可用于侵染性的定量测定。 侵染性滴度法当上述方法都不适用时,可采用侵染性滴度法。即把欲测定样品用缓冲液稀释,可用十倍稀释、成倍稀释、半倍稀释或更低稀释。这种方法的缺点是需用大量实验

病毒分子生物学鉴定常用技术

实验二十三病毒核酸检测常用技术 (Techniques of Detecting Nucleic Acid of Viruses in Common Use ) 近年来随着分子生物学的发展,基因检测技术在微生物学实验室诊断中也取得了长足的进展。由于部分病原微生物的基因组已成功地被克隆并进行了核苷酸序列测定,因此根据病原微生物的基因特点,应用分子生物学技术检测样品中有无相应病原微生物的核酸,从而可以特异、灵敏地判定标本中是否含有相应的病原微生物。在微生物学的研究及感染性疾病的诊断中,最常使用的微生物核酸检测技术有PCR、RT-PCR、核酸杂交等技术,现对病毒核酸(DNA、RNA)的分离、PCR、RT-PCR、核酸杂交等技术的基本原理、操作方法、应用及影响因素等进行概述。 实验 1 PCR 检测传染性喉气管炎病毒核酸 【目的要求】 通过本实验使学生初步了解和熟悉病毒核酸(DNA)的分离与PCR技术的基本原理、操作方法、影响因素和应用。 【基本原理】 鸡传染性喉气管炎(Infectious laryngotracheitis, ILT)是由疱疹病毒科、α-疱疹病毒亚科的喉气管炎病毒(Infectious laryngotracheitis Virus, ILTV)引起的一种急性上呼吸道传染病, 常表现呼吸困难、产蛋鸡产蛋下降和死亡, 是危害养鸡业发展的重要疫病之一。但在临诊上极易与其它一些呼吸道疾病相混淆, 如禽流感、新城疫、传染性支气管炎、支原体感染等。常规检测IL TV 的方法有病原分离鉴定和血清学试验, 这些方法虽经典,但费时且敏感性差, 不能检测亚临床感染, 而传染性喉气管炎潜伏感染是疾病的一种重要表现形式。聚合酶链式反应(Polymerase Chain Reaction,PCR)是目前比较快速、敏感、特异的检测手段,已被广泛应用在病毒核酸检测方面。本实验以PCR方法检测鸡传染性喉气管炎病毒核酸为例,对PCR方法进行介绍。 PCR是体外酶促合成特异DNA片段的一种方法,典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93~94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。如此反复进行,每一次循环所产生的DNA 均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍(图23-1)。

实验 15 植物病毒病害抗性鉴定

实验15 植物病毒病害抗性鉴定 植物病毒是导致粮、菜、果、花卉产量下降、品质变劣的重要原因之一。自1892年俄国Iwanowsky发现烟草花叶病毒以来,己被正式命名的植物的病毒789种,并明确病毒只含有一种类型的核酸,即核糖核酸(RNA)或脱氧核糖核酸(DNA), 70年代后发现了只含有小分子量 RNA、不含蛋白质、侵染活性很高的类病毒25种,80年代后发现了含有线状病毒基因组RNA和与类病毒相似的环状RNA的拟病毒40种。 植物病毒种类多,繁殖速率快,传播途径广,并且缺少有效防治药剂和措施。因此,植物病毒病一旦流行,危害之重,己超过真菌、细菌病害。因此,加强植物病毒研究,减轻植物病毒危害,对国民经济的发展具有重要意义。 本实验重点学习目前普遍采用的几种植物病毒病害检测及抗性鉴定的方法及步骤。 一、试材及用具 1.试材发病的植物组织及家兔等。 2.仪器及试剂高速冰冻离心机,离心管以及分子量为6000的聚乙二醇(PEG6000)、氯仿等。 二、方法步骤 (一)病毒检测 可用于植物病毒检测的方法主要有生物学测定、血清学检测、电镜检测、免疫电镜以及酶联免疫吸附反应(ELISA)、免疫PCR等分子生物学方法,其中血清学检测是快速、准确、 图5-1 病毒抗原的分离与纯化

灵敏度高、成本低的病毒检测方法,可用于实际检验检测工作中去。本实验重点介绍,其它方法可查阅有关文献资料。 利用血清学技术进行病毒检测,主要依据血清学反应(免疫学反应),即抗原与抗体之间发生的各种作用。抗原指的是能诱导产生抗体的一类物质,它可以是病毒、细菌、真菌、植物菌原体等微生物,也可以是酶类、DNA、RNA、类脂、多糖等有机化合物,甚至还可以是叶片、枝条等各类组织。抗体是指由抗原注射到动物体内诱导产生的、并能与抗原在体外进行特异性反应的一类物质,庄要是一些免疫球蛋白。含有抗体的血清通常称为抗血清。抗原能与由其诱导产生的抗体发生凝集、沉淀等反应,利用病原物中特异性强的抗原与相应的抗体反应,就能实现对病原物(病毒)的检测、鉴定。目前国际上己制备出 200余种重要植物病毒抗血清。我国农业部植检所为满足植物病毒检疫的研究和需要,先后制备出 30余种植物病毒抗血清。因此,利用血清学技术检测病毒,主要包括如下三个环节:1.病毒抗原的分离与纯化利用高速冰冻离心机等设备以及聚乙二醇(PEG)、氯仿等化学药品,从冰冻的病组织中分离、纯化病毒抗原。其操作步骤如图5-1所示。 2.病毒抗血清的制备病毒抗血清的制备主要包括试验动物选择、抗原注射、血样采集以及抗血清的收集与保存等过程,可用图5-2表示: 图5-2 病毒抗血清的制备与保存 3.血清学反应将抗血清及抗原进行一系列稀释后,采用试管沉淀、小试管环状沉淀、玻片凝集、免疫双扩散、免疫电泳及荧光抗体等反应方法进行血清学反应,从而实现对病毒的检测与鉴定。 (二)病毒病抗性鉴定 病毒检测的对象是病原物(病毒),是对病毒定性(病毒的有无及其种类)与定量的分析鉴定,而抗性鉴定的对象是寄主,即植物品种或种质对特定病毒的抵抗能力。目前植物病毒病抗性鉴定所采用的方法,大都为大田病圃法。例如,刘琴等(2002)对110个小麦引进品种在自然病圃区进行了对小麦黄花叶病的抗性鉴定。主要做法是,每个品种分别播种,设置对照与重复,于病害发生期调查发病率。所采用的病情分级标准是: 1级 抗(R):发病率0%~9.9%;

植物的病毒检测技术

植物的病毒检测技术 植物病毒病害是一类重要病害,几乎在各类作物上都有发生,严重影响农作物的产量和质量,用一般的方法难以防治,是生产上的一大难题。种植无病毒种子、苗木是一种非常有效的防治措施。因而如何对种子、苗木等无性繁殖材料以及在发病早期对植株进行快速准确地检测诊断就显得尤为重要。最初植物病毒检测主要依靠生物学性状,但生物学方法费时费力,检测周期长,而且易受环境条件的影响,反应不稳定、重复性差。目前植物病毒检测主要是血清学检测(以病毒外壳蛋白为基础)和核酸检测,前者主要包括ELISA、快速免疫滤纸测定、免疫胶体金技术、免疫毛细管区带电泳、免疫PCR 等;后者主要有PCR、分子信标、实时RT-PCR和核酸杂交等。 1 血清学检测方法 1.1 酶联免疫吸附测定(ELISA) 酶联免疫吸附测定是一种采用固相(主要为聚苯乙烯酶联板) 吸附,将免疫反应和酶的高效催化反应有机结合的方法,其基本原理是以酶催化的颜色反应指示抗原抗体的结合。该方法首先将同源特异抗体吸附在反应器皿底部,加入欲测试的含病毒的样品,病毒与抗体结合,病毒颗粒被固定,再加入标记的特异抗体和酶的底物,酶与底物反应后会出现有颜色的溶液其强度与病毒浓度成正比,用此方法可测定出病毒的浓度。ELISA方法简单,灵敏度高,特异性强,适于大量样品的检测,目前该方法已被广泛用于植物病毒检测。在此基础上加以改进又发展了一些新的检测方法,如A 蛋白酶联吸附(SPA-ELISA)、斑点免疫吸附(DIBA)、直接组织斑免疫测定( IDDTB) 、伏安酶联免疫分析[1]、快速ELISA 等。 1.2 快速免疫滤纸测定法(Rapid immuno-filter paper assay , RIPA) 快速免疫滤纸测定类似乳胶凝集反应,其原理是把待测病毒的抗体吸附在乳胶颗粒上,通过大颗粒乳胶间接反应小颗粒病毒的存在。所不同的是RIPA使用了一种红色乳胶,从而使检测更加简单和直观。RIPA[2]目测检测提纯TMV 的灵敏度分别可达 5ng/ml~50ng/ml 。 1.3 免疫胶体金技术( Immunogold2label as2say) 免疫胶体金技术最早起源于电镜方面的研究,由于金在生物学上是惰性的,且有良好的电荷分布,可以和蛋白质(如抗体、A 蛋白等)紧密结合,因此广泛应用于生物学和微生物学的各个领域。其原理是用柠蒙酸钠将氯金酸金离子还原为胶体金。胶体金颗粒在适当的条件下,以静电、非共价键方式吸附抗体IgG(或A蛋白)分子,从而形成稳定的IgG(或A蛋白) - 胶体金复合物。通过抗原抗体特异性结合,抗体(或A蛋白)胶体金复合物就可以结合在抗原上。金颗粒吸附在病毒粒体周围,从而得到明显的鉴别性和可见度[3] 。 随着技术的发展,1971年Taylor 等报道了免疫金染色技术( Immunogold staining) ,1981年Danscher又创建了免疫金- 银染色技术( Immunogold-silver staining) 。自1983年首次成功使用胶体金标记的抗体检测植物病毒以来,该技术逐渐被应用于植物病毒的检测。20 世纪80年代发展起来的斑点免疫金渗滤试验(Dot immunogold fitration assay) 是一种快速免疫胶体金诊断技术,该技术以硝酸纤维素膜为载体,利用微孔滤膜的渗滤浓缩和毛细管作用,使抗体抗原反应和洗涤在一特殊的渗滤装置中迅速完成,从而大大缩短了检测时间。在此基础上,又建立了更为简

浅谈计算机病毒的检测技术

浅谈计算机病毒的检测技术 摘要:在互联网高速发展的今天,计算机病传染性越来越强,危害性也越来越大。计算机病毒的检测方法主要有长度检测法、病毒签名检测法、特征代码检测法、检验和法、行为监测法、感染实验法、病毒智能检测法等。本文对其特点以及优缺点逐一进行了叙述。 关键词:计算机病毒检测技术 一、引言 Internet改变了人们的生活方式和工作方式,改变了全球的经济结构、社会结构。它越来越成为人类物质社会的最重要组成部分。但在互联网高速发展的同时,计算机病毒的危害性也越来越大。在与计算机病毒的对抗中,早发现、早处置可以把损失降为最少。因此,本文对计算机病毒的主要检测技术逐一进行了讨论。计算机病毒的检测方法主要有长度检测法、病毒签名检测法、特征代码检测法、检验和法、行为监测法、感染实验法、病毒智能检测法等。这些方法依据原理不同,检测范围不同,各有其优缺点。 二、计算机病毒的检测方法 (1)长度检测法 病毒最基本特征是感染性,感染后的最明显症状是引起宿主程序增长,一般增长几百字节。在现今的计算机中,文件长度莫名其妙地增长是病毒感染的常见症状。长度检测法,就是记录文件的长度,运行中定期监视文件长度,从文件长度的非法增长现象中发现病毒。知道不同病毒使文件增长长度的准确数字后,由染毒文件长度增加大致可断定该程序已受感染,从文件增长的字节数可以大致断定文件感染了何种病毒。但是长度检测法不能区别程序的正常变化和病毒攻击引起的变化,不能识别保持宿主程序长度不变的病毒。 (2)病毒签名检测法 病毒签名(病毒感染标记)是宿主程序己被感染的标记。不同病毒感染宿主程序时,在宿主程序的不同位置放入特殊的感染标记。这些标记是一些数字串或字符串。不同病毒的病毒签名内容不同、位置不同。经过剖析病毒样本,掌握了病毒签名的内容和位置之后,可以在可疑程序的特定位置搜索病毒签名。如果找到了病毒签名,那么可以断定可疑程序中有病毒,是何种病毒。这种方法称为病毒签名检测方法。但是该方法必须预先知道病毒签名的内容和位置,要把握各种病毒的签名,必须解剖病毒。剖析一个病毒样本要花费很多时间,是一笔很大的开销。 (3)特征代码检测法

植物病原病毒

植物病原病毒 一、概述 1. 病毒定义:病毒是一组(一种或一种以上)DNA或RNA核酸分子,包围在蛋白或脂蛋白外壳内,在合适的寄主细胞借助于寄主蛋白合成体系、物质和能量完成复制,伴随核酸突变发生变异的分子寄生物。简单讲,病毒是一类由核酸和蛋白质组成的非细胞状态的分子生物。 主要特征:①结构简单的(核酸+蛋白或脂蛋白衣壳);②严格专性寄生的(依赖寄主的核酸和蛋白质合成系统);③非细胞生物(分子寄生物)。 2. 类群:根据病毒的寄主类型,习惯上将病毒划归为下列几大类群 寄生植物的称为植物病毒 寄生动物的称为动物病毒 医学病毒(人类病毒) 真菌病毒 寄生细菌的称为噬菌体(细菌病毒) 二、病毒与人类的关系 有害方面:引起人类疾病(天花、爱滋病、非典型肺炎、肝炎、流感、小儿麻痺等)。 引起畜禽疾病(狂犬病、口蹄疫、猪瘟、牛瘟、鸡瘟、鸭瘟)。 引起植物病害。 有益方面:用作基因工程的载体或元件。 有害生物控制(害虫、真菌及杂草生防)。 环境保护(利用藻类病毒消除水面藻类污染)。 花卉增色(金心黄杨、金边瑞香、杂色郁金香)。目前已研究和命名的植物病毒达1000多种,其中许多为重要的农作物病原,其所造成的损失仅次于真菌病害。 植物病毒也有利用的价值,如 TMV导致分子生物学的产生; 病毒在开发基因工程的载体、转 基因植物研究等方面,也发挥了 很大作用。 三、病毒在生物中的地位 生物:细胞生物、分子生物 细胞生物:原核生物(原核生物 界)、真核生物(动物界、植物 界、菌物界、原生生物界) 分子生物:病毒界?:真病毒、 亚病毒(类病毒、拟病毒、朊病 毒) 四、植物病毒的一般性状 (一)、植物病毒的形态 病毒粒体:病毒的基本存在形 式(形态)。 病毒粒体的形态微小,只有在放 大数万倍的电镜下才能观察到, 其度量单位通常采用纳米(nm, 1nm=10-9m)。 植物病毒粒体形态主要有:球 状、线状、杆状、弹状、双联体 状、丝线状、柔软不定形等。形 态多样性。 ◆许多植物病毒由不只一种粒 体构成。 一些球状病毒也有多种粒体组 分,但这些粒体形态相同,只是 其中所包含的核酸含量不同而 重量存在差异。 这些病毒被称为多分体病毒,必 需有多种病毒粒体组分同时侵 染寄主细胞,才能增殖并完成其 生物学功能。 (二)植物病毒的结构 植物病毒粒体主要含有核酸和 蛋白两大部分。中间为核酸芯 (RNA或DNA),外部有外壳蛋 白(CP)包被形成衣壳,少数病 毒在蛋白衣壳外面还包被一层 那囊膜,称为包膜病毒,如植物弹 状病毒。 1. 杆状或线状病毒:蛋白质亚基 螺旋状排列,中间是一个由核酸 构成的空心管子,核酸也呈螺旋 状排列,嵌入到螺旋状排列的蛋 白质亚基内端。如,TMV杆状 粒体。 TMV:2130个蛋白质亚基;130 圈;16 1/3亚基/圈,3 圈一个周期,49个亚基 /3圈;2.3nm亚基间隔/ 圈。 2. 球状病毒:蛋白质亚基镶嵌在 粒体表面,构成多面体形,内心 是病毒的核酸;球状病毒并非光 滑的球体,而是多面体(多为二 十面体),多个正三角形组合而 成。 (三)植物病毒组分及其生物学 功能 植物病毒的主要成份是核酸和 蛋白质,有些还含有少量的金属 离子、多胺和水等。 1. 核酸 核酸是病毒遗传信息的载体,植 物病毒粒体中的核酸主要是其 基因组,有些含mRNA。一套基 因组含有病毒侵染、复制、运转、 传播等生命活动所需的全部基 因,决定病毒的增殖、生物学特 性及致病性等。 植物病毒基因组所包含的基因 数目从一个(卫星病毒)至十二 个(植物呼肠孤病毒),一般为 4~7个基因,分子量从0.4×106d 到15.5×106d,通常具有外壳蛋 白基因、复制酶基因及运动蛋白 基因等。大部分植物病毒基因组 能编码4~7种蛋白质。 (1)植物病毒的核酸类型 植物病毒的基因组多数为核糖 核酸(RNA),少数为脱氧核糖 核酸(DNA)。 根据核酸性质及功能,可将植物 病毒基因组分为下列5种类型:

LAMP技术在病毒检测中的应用

LAMP技术在病毒检测中的应用 发表时间:2013-01-31T16:04:31.107Z 来源:《医药前沿》2012年第31期供稿作者:吴昊1 孙立新2 叶松1 陆军1 杨庆贵2 [导读] LAMP(Loop-mediated Isothermal Amplification)环介导等温扩增技术,是近年来新兴的分子生物学检测技术 吴昊1 孙立新2 叶松1 陆军1 杨庆贵2 (1安徽理工大学医学院病原生物教研室安徽淮南 232001) (2江苏出入境检验检疫局医学媒介生物监测实验室江苏南京 210001) 【摘要】LAMP(Loop-mediated Isothermal Amplification)环介导等温扩增技术,是近年来新兴的分子生物学检测技术。因其特异性强、等温扩增,反应灵敏、操作简单、产物易检测,此项技术已被用于多种病原微生物的检测。本文综述了LAMP技术的原理以及其在几种常见病毒检测项目中的应用。 【关键词】 LAMP 技术原理病毒检测 【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2012)31-0064-02 病原微生物带来的卫生问题时常出现,各种检测手段也不断更新。但由于非特异性扩增、反应操作程序复杂、及仪器昂贵等问题,很多方法在疾病爆发时筛查现场和监测站点的应用受到限制。 LAMP技术是由日本学者Notomi等[1]在2000年开发的一种新型快速的扩增技术,它能在一定温度范围内,通过一个步骤在短时间内对目的片段进行大量有效扩增。其具有高特异性、高效性、快速、低成本、易检测、结果易观察等特点,被广泛用于各种病原体检测和研究中并取得了一定的成就。 1 LAMP技术原理 1.1 扩增机制 LAMP技术利用能够特异性识别靶序列上的6个独立区域的两对内、外引物,及具有链置换活性的BstDNA聚合酶启动循环链置换反应来进行靶序列的扩增[1]。反应中,先由外部引物将内部引物扩增所需要的模板扩增出来,然后由内部引物对靶基因片段进行引导合成。由于内部引物所扩增出的片段含有与该引物5’端DNA片段的反相互补序列,因此这些反相互补序列之间形成茎-环结构,同时,另外一条内部引物与也可形成茎-环结构,片段的两端形成哑铃状结构,如此循环往复的过程最后形成花椰菜形状的茎-环结构,可在15min-60min之内实现109-1010倍的括增[2]。 1.2 结果观察 扩增后可以通过琼脂糖电泳后染色进行观察,更可通过扩增衍生物焦磷酸镁进行观察:阳性的样本会出现白色浑浊沉淀,而阴性则无此现象。同时也可以应用SYBR Green I染色,呈现绿色的为阳性,橙色的为阴性[2]。 2 病毒检测 2.1 日本脑炎病毒 日本脑炎又称乙脑,是由日本脑炎病毒(Japanese encephalitis virus)引起的一种常见的蚊媒传染病。JEV的检测方式很多,如血清学,病毒分离等,但耗时繁琐、敏感性特异性都较低。TORINIWA等[3]利用LAMP技术原理建立了快速Real-time RT-LAMP方法,该方法通过扩增JEV病毒的包膜(E)蛋白基因来定量检测JEV病毒,可将检测用时缩短至1h,检测下限为1PFU并与常规RT-PCR具有相似的敏感性。且不需特殊设备、操作方便,有利于推广其在基层的应用。 2.2 西尼罗河病毒 西尼罗河病毒(West Nile Virus,WNV)是引起西尼罗河热的病原体,近年来在世界部分地区的流行并造成了重大的损失。PARIDA 等[4]创立了一种一步法来检测WNV,通过凝胶电泳或者浊度仪来对扩增结果进行判定。结果显示其敏感性比常规RT-PCR高10倍。 2.3 甲型流感病毒 甲型流感病毒(AIV)具有高度传染性,致病性,以及致死率。对甲流病毒的检测方法主要为病毒分离,抗原和抗体检测以及PCR方法,但是过程费时繁琐。POON等[5]设计了特异性引物,利用LAMP技术成功的检测了H1-H3型的AIV,与PCR方法比较阳性符合率为100%,敏感度可达传统方法的100倍。LAMP技术由于其检测的简便快速且高度敏感,可更多的用于现场检测。 2.4 禽流感病毒的检测 禽流感是由禽类A型流感病毒引起的一种急性、高接触性的传染病,可带来重大损失。禽流感检测方法有各类血清学试验以及免疫学实验等。这些方法都存在着如试验周期较长,操作繁琐,检测材料受限制等不足。国内李启明等[8]对H5N1亚型禽流感病毒进行了RT-LAMP检测,验证和分析后证明其特异性与常规方法一致,并且其灵敏度可达到10个拷贝。侯佳蕾等[6]根据H5亚型禽流感病毒血凝素基因序列设计了引物,并建立了一种针对性的检测诊断方法。结果表明,该方法的灵敏度高于一步RT-PCR法。 2.5 口蹄疫病毒的检测 口蹄疫是由口蹄疫病毒(FMDV)引起的一种急性,热性,高度接触性传染病,主要侵害偶蹄兽并给经济带来极大威胁。血清学检测不足以确定整群动物是否带毒而PCR方法由于需要专门的仪器。吴绍强等[7]以灭活的亚洲I型口蹄疫细胞培养病毒为材料,设计引物并建立了口蹄疫病毒RT-LAMP检测法,为口蹄疫现场快速检测提供了有效的方法。 2.6 丙型肝炎病毒(HCV)的检测 HCV是一种常见的病毒,传播途径为母婴传播和血液传播。目前最常用的方法是ELLSA法检测抗原抗体或PCR法。但是由病毒的抗原量极少,所以常规免疫学方法常无法检测出病毒。PCR方法操作复杂繁琐,特异性较低。李启明等[8]利用LAMP技术的原理,利用特殊引物进行了LAMP扩增,成功的检测HCV基因,实验结果阳性符合率高达98%。这一成果证实了LAMP技术的优势。 2.7 严重急性呼吸窘迫综合征冠状病毒(SARS-CoV)的检测 SARS带来的阴影提醒人们对此类病毒检测的重要性。目前临床上对其检测的方法主要有2种。一是检测SARS-CoV抗体,虽然此法灵敏度较高,但在发病初期不能检出。二是Real-time PCR,这种方法可在发病早期检测出SARS-CoV,但是其需要熟练操作技术以及高成本仪器,不适于常规筛查。POON等[9]利用改良LAMP法对人群的鼻咽分泌物样本进行了检测。结果显示SARS病人中的SARS-CoV检出率为

浅析马铃薯病毒检测技术

马铃薯是我国重要的粮食作物和经济作物,马铃薯在定西市种植也有200多年的历史,在保障全市粮食有效供给和繁荣城乡经济中发挥了十分重要的作用,已由过去的“救命粮”变成了现在的“致富薯”,是定西最具生产潜力、市场优势和开发前景的特色农产品,也是农业增效、农民增收的第一大优势产业。近年来,定西市委、市政府对马铃薯产业高度重视,作为全市农业和农村经济发展的战略性主导产业来扶持,制定了“全市马铃薯产业发展规划”,省上也制定下发了“关于进一步加快发展马铃薯产业的意见”,提出了工作思路和具体目标,促进了本市马铃薯产业的快速发展。2013年全市种植面积达到319.84万亩,总产量506万t,是全国三大马铃薯集中产区之一。但是由于定西经济条件落后,全市的马铃薯种薯的病毒检测并未随着种植面积的扩大而提高和普及,以至于马铃薯各种病每年在生长期发生,严重影响了全市马铃薯的产量和质量。马铃薯病毒已成为马铃薯生产中的重要制约因素,急需大力提高马铃薯种薯的病毒检测,为马铃薯产业的持续快速发展把好第一增长关。 马铃薯病毒检测包括:基础试管苗、马铃薯原原种、大田种薯的检测。严格的检测大大提高了种薯合格率,而种植合格的种薯,每亩可以提高产量500kg 以上。马铃薯的病毒有6种,分别是马铃薯X病毒(PVX)、马铃薯Y病毒(PVY)、马铃薯S病毒(PVS)、马铃薯A病毒(PVA)、马铃薯M病毒(PVM)、马铃薯卷叶病毒(PLRV)。目前最常用的马铃薯病毒检测是用双抗体夹心酶免疫吸附测定法(DAS-ELISA)检测,是用于快速、灵敏、准确的血清学技术,是国际通用的检测方法之一。下面就本市引进的“马铃薯病毒DAS-ELISA检测”全套生产技术进行浅述。 1马铃薯病毒的概况 1.1马铃薯X病毒(PVX) 也称普通花叶病毒,是一种长520~550nm的线状病毒,有时在电镜下能看到病毒颗粒的中心孔。在病毒外壳由亚基形成时,可看到它的横纹,这一点是与马铃薯重花叶病毒在形态结构上的主要区别。一般减产5%~10%,症状是叶片从轻型花叶到叶片有较轻的皱缩。马铃薯X病毒靠汁液传播,也是传播最广泛的一种病毒。 1.2马铃薯Y病毒(PVY) 也称重花叶病毒,是马铃薯第二个重要病毒性病害,是一种长680~900nm的线状病毒,在电镜下找不到它的中心孔和外壳蛋白亚基的横纹,它比PVX更细一些、更长一些。通过感染的块茎长期存在并由蚜虫非持续性地传播,产量损失可达80%。症状随着病毒株系、马铃薯品种及环境条件变化很大。1.3马铃薯A病毒(PVA) 又称轻花叶病毒,在许多方面类似于马铃薯Y病毒。在某些品种中出现时,一般比马铃薯Y病毒轻,产量损失可达40%。马铃薯A病毒引起花叶(有时很严重),同时也发生脉缩和卷曲,叶片可能出现闪光。 1.4马铃薯S病毒(PVS) 也称潜隐性花叶病毒,感病块茎变小,一般减产 浅析马铃薯病毒检测技术 景彩艳 (甘肃省定西市农产品质量安全监督管理站定西743000) 摘要:随着科学技术的不断发展,马铃薯病毒检测技术在日益的完善,DAS-ELISA法已经成为马 铃薯病毒检测的常规方法。容易侵染马铃薯的病毒类型主要有6种,分别是马铃薯的PVX、PVY、PLRV、PVS、PVM、PVA病毒。马铃薯在生长的过程中,因受到各种不同病害的侵染,容易造成减产 和退化。血清学技术是马铃薯病毒检测的主要手段。 关键词:马铃薯病毒;血清学技术;双抗体夹心酶联免疫吸附法 215 --

作物病毒病

作物病毒病 定义:由植物病毒寄生引起的病害。植物病毒必须在寄主细胞内营寄生生活,专一性强,某一种病毒只能侵染某一种或某些植物。但也有少数为害广泛;如烟草花叶病毒和黄瓜花叶病毒。一般植物病毒只有在寄主活体内才具有活性;仅少数植物病毒可在病株残体中保持活性几天、几个月、甚至几年,也有少数植物病毒可在昆虫活体内存活或增殖。植物病毒在寄主细胞中进行核酸(RNA或DNA)和蛋白质外壳的复制,组成新的病毒粒体。植物病毒粒体或病毒核酸在植物细胞间转移速度很慢,而在维管束中则可随植物的营养流动方向而迅速转移症状识别。 田间常因多种病毒复合侵染而使症状表现复杂。可分为以下4种类型: 1、花叶型:典型症状是病叶、病果出现不规则退绿、浓绿与淡绿相间的斑驳,植株生长无明显异常,但严重时病部除斑驳外,病叶和病果畸形皱缩,叶明脉,植株生长缓慢或矮化,结小果,果难以转红或只局部转红,僵化。 2、黄化型:病叶变黄,严重时植株上部叶片全变黄色,形成上黄下绿,植株矮化并伴有明显的落叶。

3、坏死型:包括顶枯、斑驳环死和条纹状坏死。顶枯指植株枝杈顶端幼嫩部分变褐坏死,而其余部分症状不明显;斑驳坏死可在叶片和果实上发生,病斑红褐色或深褐色,不规则型,有时穿孔或发展成黄褐色大斑,病斑周围有一深绿色的环,叶片迅速黄化脱落;条纹状坏死主要表现在枝条上,病斑红褐色,沿枝条上下扩展,得病部分落叶、落花、落果,严重时整株枯干。 4、畸形型:表现为病叶增厚、变小或呈蕨叶状,叶面皱缩.植株节间缩短,矮化,枝叶丝生呈丛簇状。病果呈现深绿与浅绿相间的花斑,或黄绿相间的花斑,病果畸形,果面凸凹不平。病果易脱落。。 发病特点 蚜虫是植物病毒的主要传播者。有的种类只传播一种病毒,也有的可传播多种病毒;还有某一种病毒由多种蚜虫传播的。高温、干旱、蚜虫为害重,植株长势弱,重茬等,易引起该病的发生,可通过摩擦、打杈、邦架等作业时接蛹传播,也可通过蚜虫,机械传播。 防治方法 1 农业防治:①选用抗病品种。②加强栽培管理,合理轮作,收获后清除病残株,注意田间操作中手和工具的消毒。③种子消毒,用清水浸种4小时后捞出放入10%的磷酸三钠液中浸20分钟后洗净催芽播种。 2 也可用新型的病毒病诱抗剂葡聚烯糖或氨基寡糖素来防治。 病毒病应以防为主,综合防治。市场上防治病毒病的药剂有植病灵、32%核苷·溴·吗啉胍(全新配方)、抗病威(病毒K)、病毒立克、病

病毒鉴定的方法有哪些

病毒鉴定的方法有哪些? 从培养的细胞中分离病毒,然后采用免疫荧光和分子生物学技术进行病毒核酸检测已被成功地用于病毒的鉴定。目前最常用的病毒定量检测方法有以下三大类:用于病毒感染力检测的技术,如病毒空斑形成试验,半数组织培养感染剂量TCID50测定和免疫荧光等;病毒核酸和病毒蛋白检测技术,如实时定量多聚酶链反应(qPCR),免疫印迹,免疫沉淀,酶联免疫吸附测定(ELISA)和血凝试验等;还有就是那些直接对病毒颗粒进行计数的方法,如流式细胞分析或透射电镜技术。 病毒检测方法的局限性 病毒鉴定方法 1.培养细胞的显微学观察 材料和仪器 细胞生长培养基:含10% FBS(胎牛血清), 4-6 mM Glutamine(谷氨酰胺)的高葡萄糖DMEM,若有需要可加入青霉素,链霉素,庆大霉素,两性霉素等 维持培养基:上述新鲜的细胞培养基,但血清FBS浓度减少至为2% 宿主细胞:铺满单层细胞的8孔培养腔室玻片(chamber slides) PBS磷酸缓冲液 Bouin's固定液 吉姆萨(Giemsa)缓冲液 吉姆萨(Giemsa)染色液 丙酮,丙酮:二甲苯(2:1),丙酮:二甲苯(1:2),二甲苯 中性树胶 移液枪头(10 到100 微升) 移液管 生物安全柜(超净台) 二氧化碳培养箱 倒置显微镜

实验方案 接种宿主细胞至Chamber Slides:选择合适的细胞接种密度(比如8-孔Chamber Slides,接种30,000细胞/孔),培养基为细胞生长培养基(10%FBS-DMEM)。轻轻地前后左右摇晃chamber slides使细胞分布均匀。将细胞置培养箱培养过夜,第二天,显微镜下观察细胞确认细胞是否分布均匀并达到80%以上的融合度。 制备不同稀释度的病毒液:标记6支无菌离心管,第1管加入990 μl细胞生长培养基,剩下5管加入900μl细胞生长培养基。按以下方法进行梯度稀释:在第1管中加入10 μl 病毒原液(稀释度1:100)充分混匀,然后从第1管吸100 μl至第2管中混匀,依次类推,进行10倍梯度稀释。管1至管6的稀释度分别为10-3 到10-7。 感染细胞:吸去培养孔中的培养液,每孔加入0.5 mL维持培养液(2%FBS-DMEM),再加入100 μl不同稀释度(10-2 至10-7稀释)的病毒液至其中一孔,留一孔不加作为空白对照。将细胞置二氧化碳培养箱37oC 或34oC 培养1-4周,追踪观察致细胞病变效应(CPE)发生情况。 吉姆萨染色:一旦观察到细胞病变效应,轻轻地用PBS将细胞洗3次,每次5min,然后加入Bouin's固定液固定10 min。用吉姆萨缓冲液洗3次,然和加入Giemsa染液染色1 h,再用吉姆萨缓冲液清洗后依次用丙酮处理15s,2:1的丙酮-二甲苯处理30s,1:2的丙酮-二甲苯处理30s,最后用二甲苯处理10 min紧接着用中性树胶封片。显微镜下观察CPE,包涵体,细胞融合及病毒空泡形成情况。病毒感染细胞后形成的CPE图片范例可以在很多图谱,网站和博客上找到,例如ASM Microbe Library 2.免疫荧光(IF)检测方法 材料和仪器 细胞生长培养基:含10%FBS(胎牛血清), 4-6mM Glutamine(谷氨酰胺)的高葡萄糖DMEM,若有需要可加入青霉素,链霉素,庆大霉素,两性霉素等 宿主细胞:铺满单层细胞的8孔培养腔室玻片(chamber slides) PBS磷酸缓冲液 一抗 FITC标记的二抗 细胞核染料DAPI 5-4 %多聚甲醛(PFA,pH7.4),或者甲醇 移液枪头(10 到100 微升) 离心管 生物安全柜(超净台) 二氧化碳培养箱 荧光显微镜 实验方案 接种宿主细胞至Chamber Slides:选择合适的细胞接种密度(比如8-孔Chamber Slides,接种30,000细胞/孔),培养基为细胞生长培养基(10%FBS-DMEM)。轻轻地前后左右摇晃chamber slides使细胞分布均匀。将细胞置培养箱培养过夜,第二天,显微镜下观察细胞确认细胞是否分布均匀并达到80%以上的融合度。 病毒感染:每孔细胞加0.1 mL病毒储存液,留一孔不加作为阴性对照。将细胞放回CO2 培养箱,37°C 或34°C 培养48h。

相关文档