文档库 最新最全的文档下载
当前位置:文档库 › 将军饮马最短路径问题教学设计

将军饮马最短路径问题教学设计

将军饮马最短路径问题教学设计
将军饮马最短路径问题教学设计

13.4 将军饮马——最短路径问题教学设计

一、教学内容解析

为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题.

初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究.

本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题——“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与能力转化上起到桥梁作用。

基于以上分析,本节课的教学重点确定为:

[教学重点]

利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.

二、教学目标解析

新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下:

[教学目标]

能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.

[目标解析]

达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对

称、平移的作用,体会感悟转化的数学思想.

三、学生学情诊断

八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上.

最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.

解答:“当点A、B在直线的同侧时,如何在上找点C,使AC与CB的和最小”,需要将其转化为“直线异侧的两点,与上的点的线段和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解和操作方面的困难.

在证明“最短”时,需要在直线上任取一点,证明所连线段和大于或等于所求作的线段和.这种思路和方法,一些学生还想不到.

在解答“使处在直线两侧的两线段和最小”的问题,需要把它们平移拼接在一起,一些学生想不到.

教学时,教师可以让学生首先思考“直线的异侧的两点,与上的点的线段和最小”,给予学生启发,在证明“最短”时,点拨学生要另选一个量,通过与求证的那个量进行比较来证明,同时让学生体会“任意”的作用,因此确定本节课的教学难点为:

[教学难点]

如何利用轴对称将最短路径问题转化为线段和最小问题.

四、教学策略分析

建构主义理论的核心是“知识不是被动接受的而是认知主体积极建构的.”

根据本节课的教学目标、教材内容以及学生的认知特点和实际水平,教学上采用“引导——探究——发现——证明——归纳总结”的教学模式,鼓励引导学生、开动脑筋、大胆尝试,在探究活动中培养学生创新思维与想象能力.

教师的教法:突出解题方法的引导与启发,注重思维习惯的培养,为学生搭建参与和交流的平台.通过对“将军饮马问题”而改编与设计,增强数学课堂趣味性,相同背景,不同问题,由浅入深、层层递进,有利于学生分析与解决问题,同时利用现代的信息技术,直观地展示图形的变化过程,提高学生学习兴趣与激情.

学生的学法:突出探究与发现,思考与归纳提升,在动手探究、自主思考、互动交流中,获取知识与能力.

五、教学基本流程

探索新知——运用新知——拓展新知——提炼新知——课外思考

六、教学过程设计

(一)探索新知

1、建立模型

问题1 唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的指挥部A地出发,到一条笔直的河边饮马,然后到军营B地,到河边什么地方饮马可使他所走的路线全程最短?

追问1,这是一个实际问题,你打算首先做什么呢?

师生活动:将A、B两地抽象为两个点,将河抽象为一条直线

追问2,你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?

师生活动:学生交流讨论,回答并相互补充,最后达成共识:

(1)行走的路线:从A地出发,到河边饮马,然后到B地;

(2)路线全程最短转化为两条线段和最短;

(3)现在的问题是怎样找出使两条线段长度之和为最短的直线上的点.设C为直线l 上的一个动点,上面的问题转化为:当点C在的什么位置时,AC与CB的和最小

[设计意图]从数学史上久负盛名的“将军饮马问题”引入,增加学生们的数学底蕴,提高其人文思想.同时引导学生分析题意,画出图形.将实际问题转化为数学问题更有利于分析问题、解决问题.

2、解决问题

问题2如图点A、B在直线的同侧,点C位直线上的一个动点,当点C在的什么位置时,AC与CB的和最小?

师生活动:让学生独立思考、画图分析,并展示

如果学生有困难,教师作如下提示:

(1)如图,如果军营B地在河对岸,点C在的什么位置时,AC与CB的和最小?由此受到什么启发呢?

(2)如图,如何将点B“移”到的另一侧B′处,且满足直线上的任意一点C,都

保持CB与CB′的长度相等?

学生在老师的启发引导下,完成作图.

[设计意图]先通过学生对本题的思考尝试,并展示,师生共同纠错,提高认识与辩证思想,再通过老师的引导启发明白解决这个问题应该运用轴对称的性质,将两点在直线同侧的问题,转化为两点在直线异测的问题,提高学生的空间想象能力与逻辑思维能力,让学生在思考和解决问题的过程中,提高甄别是非的能力,感悟转化的数学思想.

3、证明“最短”

问题3,为什么这种作法是正确的呢?你能用所学的知识证明AC+CB最短吗?

师生活动:分组讨论,教师引导点拨,结合多媒体的演示,师生共同完成证明过程.

证明:如图,在直线上任取一点Cˊ.连接AC′、BC′、B′C′.

由轴对称的性质可知:

BC=B′C BC′.=B′C′

∴AC+BC=AC+B′C=AB′

AC′+BC′=AC′+B′C′

当C′与C不重合时

A B′<AC′+C′B′

∴AC+BC<AC′+C′B

当C′与C重合时

AC+BC=AC′+C′B

总之,AC+B C≤AC′+C′B

即AC+BC最短

[设计意图]利用现代信息技术,通过移动点C′的位置,可发现:当C′与C不重合时,AC+BC<AC′+C′B,当C′与C重合时,AC+BC=AC′+C′B.让学生很容易知道AC+BC最短,消除了学生的疑虑,发挥了多媒体的作用,让学生进一步体会作法的正确性,提高了逻辑思维能力.

4、小结新知

回顾前面的探究过程,我们是通过怎样的过程,借助什么解决问题的?体现了什么数学思想?

师生活动:学生回答,并相互补充.

[设计意图]让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,明确解题的方法与策略,为后面进一步的学习探究做准备.

(二)运用新知

如图,如果将军从指挥部A地出发,先到河边a某一处饮马,再到草地边b某一处牧马,然后来到军营B地,请画出最短路径.

师生活动:分组讨论,教师点拨,点学生上台操作演示,画出最短路径.

[设计意图]对前面所学的解题方法与思路得以巩固,让学生形成技能,进一步体会感悟数学中的转化思想,点学生上台操作演示,提高他们的学生兴趣与实践能力,体会成功的喜悦,激发他们进一步探究问题的欲望.

(三)拓展新知

有一天,将军突发奇想:如果从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行走一定的路程,再来到军营B地,到河边什么地方饮马可使所走的路线全程最短?

师生活动:

1、老师首先解释行走一定的路程的含义,引导学生将实际问题抽象为数学问题,再提出如下问题:

(1)要使所走的路线全程最短,实际上是使几条线段之和最短?

(2)怎样将问题转化为“两点之间,线段最短”的问题.

2、分组讨论,师生共同分析.

3、完成作图,体会作图的步骤与分析问题的思路的联系与区别.

[设计意图]本题在“将军饮马问题”的背景下进行改编,有造桥选址问题的影子,既增强了课堂教学的趣味性,又完成了教学任务,可谓一举两得..教学由问题引领,老师引导,学生小组合作讨论交流的方式,充分发挥现代信息技术的作用完成分析与解答的过程,让学生学得轻松与愉悦,培养了学生的应用意识、创新意识、综合与分析能力,在解决问题的过程中,体会作图题的解题方法与策略.让学生的能力得到进一步锻炼与提高.

(四)提炼新知

师生一起回顾本节课所学的主要内容,并请学生回答以下问题:

1、本节课研究问题的过程是什么?

2、解决上述问题运用了什么知识?

3、在解决问题的过程运用了什么方法?

4、运用上述方法的目的是什么?体现了什么样的数学思想?

[设计意图]引导学生把握研究问题的策略、思路、方法的同时,并从运用的知识、方法、思想方面进行归纳总结,让学生对本节课有一个更清晰、更系统的认识,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.

(五)课外思考

将军又提出一个问题:

如图,如果将军从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行

走一定的路程,再来到草地边b某一处牧马,最后来到军营B地,到河边什么地方饮马、草地边何处牧马可使所走的路线全程最短呢?

[设计意图]通过一系列的“将军饮马问题”的变式设计,由浅入深,环环相扣,不但学习将军这种喜欢动脑,敢于提问,勇于探索的求学精神,同时培养学生的问题意识,通过最后这一问题的设计,让学有余力的学生解答,它不仅能巩固知识,形成技能,同时激发了学生的求知欲望与勇于探究的精神.同时,也是由课内向课外的一种延伸,预示着问题并没有终结,培养学生具有终身学习的意识与创新精神!

最值问题之将军饮马

最值问题之将军饮马学生姓名:年级: 科目: . 任课教师:日期: 时段: .

将军饮马问题 模型1两定一动 例:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点 则DN+MN的最小值为() A:6 B:8 C:2 D:10 解析:第一步—找:找定点、动点、动点所在的直线 第二步—作:作定点关于动点所在直线的对称点(从对称性入手) 第三步—连:连接对称点与另一个点 第四步—求:求解(一般勾股定理求解) 模型2一定两动 例:如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为() A.10 B.8 C.5 D.6 解析:第一步—找:找定点、动点、动点所在的直线 第二步—作:作定点关于动点所在直线的对称点(从对称性入手) 第三步—连:连接对称点与另一个点 第四步—造:构造垂直 第五步—求:求解(一般等积法或相似求解)

模型3求四边形的周长最小值 例:如图,当四边形PABN的周长最小时,a= . 解析:本题要求四边形周长最小值。因为AB、PN是定长,问题转化为求PA+NB的最小值,跟模型1类似,所以我们需要平移确定交点,转换成模型1去讲解 模型4 一定点、两定直线 例:点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小? 解析:第一步:分别画点P关于直线OM、ON的对称点P1、P2 第二步:联结P1P2,交OM、ON于点A、点B 跟踪练习 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN的周长的最小值为.

2020中考数学专题8——最值问题之将军饮马 -含答案

【模型解析】 2020 中考专题 8——最值问题之将军饮马 班级姓名 . 总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。 特点:①动点在直线上;②起点,终点固定; 方法:作定点关于动点所在直线的对称点。 【例题分析】 例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为( 1 ,0),点 2 P 为斜边OB 上的一动点,则PA+PC 的最小值为. 例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N. (1)当△AMN 的周长最小时,∠AMN+∠ANM=; (2)求△AMN 的周长最小值. 例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动. (1)求四边形BMNE 周长最小值; (2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.

例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标. 例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为. 【巩固训练】 1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为. 图1 图2 图3 图4 2.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是. 3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为. 4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为. 5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点, =6,则BD+DE的最小值为 (1)若AC=4,S △ABC (2)若∠BAC=30°,AB=8,则BD+DE 的最小值为. (3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.

轴对称与将军饮马问题(基础篇)专题练习(解析版)

轴对称与将军饮马问题(基础篇)专题练习 一、两定点一动点 1、答案:D 分析: 解答:∵点B和B’关于直线l对称,且点C在l上, ∴CB=CB’, 又∵AB’交l于C,且两条直线相交只有一个交点, ∴CB’+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 2、答案:B 分析: 解答:MN是正方形ABCD的一条对称轴, ∴PD=AP, 当PC+PD最小时,即点P位于AC与MN的交线上, 此时∠PCD=45°. 3、答案:C 分析: 解答:当PC+PE最小时,P在BE与AD的交点位置, 如图, ∵△ABC是等边三角形, ∴∠ACB=60°, ∵D、E分别是边BC,AC的中点, ∴P为等边△ABC的重心, ∴BE⊥AC, ∴∠PCE=1 2 ∠ACB= 1 2 ×60°=30°, ∴∠CPE=90°-∠PCE=90°-30°=60°,

选C. 4、答案:作图见解答. 分析: 解答:如图所示: 5、答案:作图见解答. 分析: 解答:所作图形如图所示: 6、答案:(1)画图见解答.(2)画图见解答. (3)P(0,4). 分析: 解答:(1)

(2) (3)过点A作AM⊥x轴于M, ∵A(2,6), ∴M(2,0),AM=6, 又∵B(4,0), ∴点B关于y轴的对称点B’(-4,0), ∴B’M=6=AM, ∴△AB’M为等腰直角三角形, ∴∠P’BO=45°, ∴△P’BO也为等腰直角三角形, ∴B’O=PO=4, ∴P(0,4). 7、答案:(1)画图见解答. (2)画图见解答. 分析: 解答:(1)关于y轴对称,纵坐标不变,横坐标相反. (2)作C关于y轴的对称点C1,连接C1B,交y轴于点P.连接PB,PC,此时△PBC周

最短距离问题将军饮马

第一讲 转化思想 一、线段和、差 “牧童放牛”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”,在最近几年的中招试题及竞赛中,该问题经过不同的转化及演变,一 一浮现在我们的眼前,使我们目不暇接,顾此失彼。因此,我们有必要作一下总结,找出其中的规律,以做到屡战屡胜的效果。 原题:如图,一位小牧童,从A 地出发,赶着牛群到河边饮水,然后再到B 地,问怎样选择饮水的地点,才能使牛群所走的路程最短? 延伸一:某供电部门准备在输电主干线L 上连接一个分支线路,分支点为M ,同时向新落成的A 、B 两个居民小区送电。已知两个居民小区A 、B 分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。 (1)如果居民小区A 、B 位于主干线L 的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米? (2)如果居民小区A 、B 位于主干线L 的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M 与A1的距离是多少千米? ?A ?B ? A ? B ? B ? A ? A ’ ? B ’ ? A ’ ? B ’ L L

延伸二:如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值是多少? 延伸三:如图,A 是半圆上一个三等分点,B 是弧AN 的中点,P 是直径MN 上一动点, ⊙O 的半径为1,求AP+BP 的最小值。 延伸四:如图所示,在边长为6的菱形ABCD 中,∠DAB=600,E 为AB 的中点,F 是AC 上一动点,则EF+BF 的最小值是多少? 延伸五:在直角坐标系XOY 中x 轴上的动点M (x,0)到定点P (5,5),Q (2,1)的距离分别为MP 和MQ ,那么当MP+MQ 取最小值时,点M 的横坐标x=? A B M N O P x A B C D M N A B C D E F ? ?

将军饮马系列---最值问题教案资料

将军饮马系列---最 值问题

1.两点之间,线段最短. 2.点到直线的距离,垂线段最短. 3.三角形两边之和大于第三边,两边之差小鱼第三边. 4.A B 、分别为同一圆心O 半径不等的两个圆上的一点,R r AB R r -≤≤+ 当且仅当A B O 、、三点共线时能取等号. 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题. 下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若A B 、 在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解. “将军饮马”系列最值问题 知识回顾 知识讲解

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如等腰ABC ?是轴对称图形. 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图,ABC ?关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C ?与''' A B C 是对称点.

13.4 将军饮马——最短路径问题教学设计

13.4 将军饮马——最短路径问题教学设计 一、教学内容解析 为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题. 初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究. 本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题——“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与能力转化上起到桥梁作用。 基于以上分析,本节课的教学重点确定为: [教学重点] 利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题. 二、教学目标解析 新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下:[教学目标] 能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感. [目标解析] 达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对称、平移的作用,体会感悟转化的数学思想. 三、学生学情诊断 八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上. 最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.

八上专题复习将军饮马

八(上)数学专题复习______将军饮马问题 傅苏球 2013年12 月25日 一、任务一-------------阅读理解 1、问题提出 1111、一 一, 早在古罗 马时代, 传说亚历 山大城有 一位精通 数学和物理的学者,名叫海伦.一天,一位罗马 将军专程去拜访他,向他请教一个百思不得其解 的问题:将军每天从军营B出发,先到河边饮马,然后再去河岸同侧的A地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马”的问题广泛流传.这个问题的解决并不难,据说海伦略加思索就解决了它. 2、解决办法

如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线上, 取A关于河岸的对称点A',连结A'B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A出发,沿直线走到C,饮马之后,再由C沿直线走到B, 所走的路程就是最短的.如果将军在河边的另外任一点 C'饮马,所走的路程就是AC'+C'B,但是, AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.可见,在C点外任何 一点C'饮马,所走的路程都要远一些. 这有几点需要说明的:(1)由作法可知,河流l相当于线段 AA'的中垂线,所以AD=A'D,AC=A'C。(2)由上一条知:将军 走的路程就是AC+BC,就等于A'C+BC,而两点确定一线,所 以C点为最优。 思考:解题思路是 _______________________________________________ 3、将军饮马问题的应用 如图,有A、B两个村庄,他们想在河流l的边上建立一个水泵站, 已知每米的管道费用是100元,A到河流的距离AD是1km,B到河流 的距离BE是3km,DE长3km。请问这个水泵站应该建立在哪里使得 费用最少,为多少? 解:如图所作,C点为水泵站的位置。 依题意,得:所铺设的水管长度就是AC+BC,即:A'C+BC=A'B的长度。 因为EF=A'D=AD=1km, 所以BF=BE+EF=4km 又A'F=DE=3km 在Rt△A'BF中,A'B2=A'F2+BF2 所以:解得:A'B=5km 所以总费用为:5×1000×100=500000(元) 二、任务二-----------将军饮马问题在几何中的应用 1、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.

将军饮马系列---最值问题

实用标准 “将军饮马”系列最值问题 1. 两点之间,线段最短. 2. 点到直线的距离,垂线段最短. 3. 三角形两边之和大于第三边,两边之差小鱼第三边. - 知识讲解 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题: 饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索, 作了完善的回答.这个问题后来被人们称作“将军饮马”问题. F 面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若A 、B 在河流的异侧,直接连接 AB , AB 与I 的交点即为所求. 若A 、B 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解. 4. A B 分别为同一圆心0半径不等的两个圆上的一点, 如图,将军从A 出发到河边

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠, 如果直线两旁的部分能够互相重合, 那么这个图形就叫做轴对称图 形.这条直线就是它的对称轴. 这时我们就说这个图形关于这条直线 (或轴)对称.如等腰 ABC 是轴对 称图形. 把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合, 那么就是说这两个图形关于这条 直线对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图, ABC 与 A'B'C'关于直线I 对称,I 叫做对称轴.A 和A , B 和B' , C 和C'是对称点. 轴对称的两个图形有如下性质: ① 关于某条直线对称的两个图形是全等形; ② 对称轴是任何一对对应点所连线的垂直平分线; ③ 两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上. 线段垂直平分线: 垂直平分线上点到线段两个端点的距离相等; 到线段两个端点距离相等的点在线段的垂直平分线上. AP-aP^A B

将军饮马问题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马—最短路径最小值问题 教案

将军饮马—最短路径最值问题教学设计 一、教学内容解析 为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题. 初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究. 本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题——“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与能力转化上起到桥梁作用。 基于以上分析,本节课的教学重点确定为: [教学重点] 利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题. 二、教学目标解析 新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下:[教学目标] 能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感. [目标解析] 达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对

(完整版)将军饮马问题

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小。

4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形PAQB 的周长最小。 5.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。 6. 如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小。

二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB=6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE=2,求EM+EC 的最小值。 2.如图,在锐角△ABC 中,AB=42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 ____。 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值。

Part2、正方形 1.如图,正方形ABCD的边长为8,M在DC上,丐DM=2,N是AC上的一动点,DN+MN的最小值为_________。即在直线AC上求一点N,使DN+MN最小。 2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23 B.26 C.3 D.6 3.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值)。

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等) 一、基本图形 最值问题在几何图形中分两大类: ①[定点到定点]:两点之间,线段最短; ②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边; ④[定线到定线]:平行线之间,垂线段最短; ⑤[定点到定圆]:点圆之间,点心线截距最短(长); ⑥[定线到定圆]:线圆之间,心垂线截距最短; ⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。 简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

将军饮马问题讲

4. 如图,点 边的距离之和最小 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚 M 出发,先赶到河 OA 上的某一位置 P ,再马上赶到河 OB 上 的某一位置 Q ,然后立即返回校场 N .请为将军重新设计一条路线 (即选择点 P 和 Q ), 使得总路程 MP + PQ +QN 最短. 3、将军要检阅一队士兵,要求 (如图所示 ) :队伍长为 a ,沿河 OB 排开(从点 P 到点 Q );将 军从马棚 M 出发到达队头 P ,从 P 至 Q 检阅队伍后再赶到校场 N .请问:在什么位置列队 (即 选择点 P 和 Q ),可以使得将军走的总路程 MP +PQ + QN 最短? 将军饮马问题 变式】如图所示,将军希望从马棚 OB 上的某一位置 Q .请为将军设计一条路线 MP +PQ 最短. ,再马上赶到河 P 到

5 已知∠ MON内有一点 P,P 关于 OM,ON的对称点分别是和,分别交 OM, ON于点 A、B,已知= 15,则△ PAB 的周长为( ) A. 15 B 7.5 C. 10 D. 24 6. 已知∠ AOB,试在∠ AOB内确定一点 P,如图,使 P 到 OA、OB的距离相等,并且到 M、N 两点的距离也相等 . 7、已知∠ MON= 40 , P为∠ MON内一定点, OM上有一点 A,ON上有一点 B,当△ PAB的周 边上一动点,则 DP长的最小值为 练习 1、已知点A在直线l 外,点P为直线l 上的一个动点,探究是否存在一个定点B,当点P在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,长取最小值时,求∠APB的度数 . 8. 如图,在四边形ABCD中,∠ A= 90°, ADB=∠ C.若 P 是

最短路径问题(将军饮马问题)--教学设计复习过程

最短路径问题——将军饮马问题及延伸 湖南省永州市双牌县茶林学校 熊东旭

最短路径问题 教学内容解析: 本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。 本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。 教学目标设置: 1、能利用轴对称解决最短路径问题。 2、在解题过程能总结出解题方法,,能进行一定的延伸。 3、体会“轴对称”的桥梁作用,感悟转化的数学思想。 教学重点难点: 重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。 难点:如何利用轴对称将最短路径问题转化为线段和最小问题。 学情分析: 1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。 2、学生已经学习过“两点之间,线段最短。”以及“垂线段最短”。以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。

教学条件分析: 在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用PPT动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。 教具准备:直尺、ppt 教学过程: 环节教师活动学生活动设计意图 一 复习引入1.【问题】:看到图片,回忆如 何用学过的数学知识解释这个 问题? 2.这样的问题,我们称为“最 短路径”问题。 1、两点之间,线段最短。 2、两边之和大于第三边。 从学生已经学 过的知识入 手,为进一步 丰富、完善知 识结构做铺 垫。 二探究新知1.探究一: 【故事引入】:唐朝诗人李颀在 《古从军行》中写道:“白日登 山望峰火,黄昏饮马傍交河.” 诗中就隐含着一个有趣的数学 问题,古时候有位将军,每天 从军营回家,都要经过一条笔 直的小河。而将军的马每天要 到河边喝水,那么问题来了, 问题:怎样走才能使总路程最 短呢? 认真读题,仔细思考。 将实际问题中的“地点” “河”抽象为数学中的 “点”“线”,把实际问题 抽象线段和最小问题。 从异侧问题入 手,由简到难, 逐步深入。

2020中考将军饮马+变式最值

讲“将军饮马”型最值问题

例 1 (中考题 - 改编)如图,已知点 A(-4 ,8)和点 B(2 ,n )在抛物线y ax2上. ( 1 )求 a 的值; (2)在 x 轴上找一点 Q,使得 AQ+BQ 最短,求出点 Q 的坐标; (3 )平移抛物线,记平移后 A 的对应点为A,点 B 的对应点为B ,当抛物线向左平移到某个位置时,AC CB 最短,求此时抛物线的函数解析式

例 2 如图,抛物线y 3x2 18x 3和 y 轴的交点为 A,M 为OA 的中点,若有一动点 P,自 M 点处出发,55 沿直线运动到 x 轴上的某点(设为点 E ),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直 例 3 (2017 花都一模 16 题)如图,四边形 ABCD 中,∠ BAD=120 °,∠ B= ∠ D=90 °,在 BC、CD 上分别找一点 M、N,使△ AMN 周长最小时,则∠ AMN+ ∠ANM 的度数为 . 例 4 如图,∠ MON=20 °, A 为射线 OM 上一点, OA=4 , D 为射线 ON 上一点, OD=8 , C 为射线 AM 上线运动到点 A ,求使点 P 运动的总路程最短的点 E,点 F 的坐标,并求出这个最短路程的长 .

任意一点, B 是线段 OD 上任意一点,那么折线 ABCD 的长 AB+BC+CD 的最小值是 . 例 5 如图,在平面直角坐标系中, Rt △ OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为( 3 ,3 ),1 点 C的坐标为(,0),点 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为 __________ . 2

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020 年中考数学压轴题线段和差最值问题汇总 ---- 将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢? 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: 1. 定起点的最短路径问题:即已知起始结点,求最短路径的问题. 2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. 3. 定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 4.全局最短路径问题:求图中所有的最短路径. 问题原型】“将军饮马”,“造桥选址”。 涉及知识】“两点之间线段最短” ,“垂线段 最短” ,“三角形三边关系” ,“轴 对称” 平移”. 出题背景】直线、角、三角形、菱形、矩形、正 方形、 圆、坐标轴、抛物线等. 解题思 路】 “化曲为直” 题型一:两定一动,偷过敌营。

例1:如图, AM⊥ EF, BN⊥EF,垂足为 M、N,MN=12m,AM=5m,BN= 4m, P 是 EF 上任 意一点,则 PA+ PB的最小值是 m. 分析: 这是最基本的将军饮马问题, A, B是定点, P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点 A关于 EF的对称点 A',根据两点之间,线段最短,连接A'B,此时A'P+PB即为 A'B,最短.而要求 A'B,则需要构造直角三角形,利用勾股定理解决. 解答: 作点 A关于 EF的对称点 A',过点 A'作A'C⊥BN的延长线于 C.易知A'M=AM=NC =5m,BC=9m,A'C =MN= 12m,在 Rt△A'BC中, A'B=15m,即PA+PB的最小值是 15m. 例2:如图,在等边△ ABC 中,AB = 6,AD ⊥BC,E是AC 上的一点, M是AD 上的一点, 且 AE = 2 ,求 EM+EC 的最小值 解:点 C 关于直线 AD 的对称点是点 B,连接 BE,交 AD 于点 M ,则 ME+MD 最小,过点 B 作 BH ⊥AC 于点 H, 则 EH = AH – AE = 3 – 2 = 1,BH = BC2 - CH2 = 62 - 32 = 3 3 在直角△ BHE 中,BE = BH2 + HE2 = (3 3)2 + 12 = 2 7

(完整版)将军饮马系列最值问题-教师版

同步课程˙“将军饮马”系列最值问题 将军饮马”系列最值问题 1. 两点之间,线段最短. 2. 点到直线的距离,垂线段最短. 3. 三角形两边之和大于第三边,两边之差小鱼第三边. 4. A 、B 分别为同一圆心 O 半径不等的两个圆上的一 点, 当且仅当 A 、B 、O 三点共线时能取等号 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天, 有位将军不远千里专程前来向海伦求教一个百思不得其解的问题: 如图,将军从 A 出发到河边 饮马,然后再到 B 地军营视察, 显然有许多走法. 问怎样走路线最短呢?精通数理的海伦稍加思索, 便 作了完善的回答.这个问题后来被人们称作“将军饮马”问题. 下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若 A 、B 在河流的异侧,直接连接 AB , AB 与 l 的交点即为所求. 知识回顾 R r AB R

若A 、B 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠, 如果直线两旁的部分能够互相重合, 形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线 称图形. 把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合, 直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图, ABC 与 A' B' C '关于直线 l 对称, l 叫做对称轴. A 和A',B 和B',C 和C'是对称点. 轴对称的两个图形有如下性质: ① 关于某条直线对称的两个图形是全等形; ② 对称轴是任何一对对应点所连线的垂直平分线; ③ 两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上. 那么这个图形就叫做轴对称图 (或轴)对称.如等腰 ABC 是轴对 那么就是说这两个图形关于这条

八年级数学将军饮马问题专题练习汇总(20200708010955)

八年级数学将军饮马问题专题练习汇总 1.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为_________。 2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________。 3.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8。点P是AB上一个动点,则PC+PD的最小值为_________。 4.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,求EM+BM的最小值_____。 5.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______。 6.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1。如果B为反比例函

数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上存在一点P,使PA+PB最小,则P点坐标为_______。 7.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜 相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 拓展①:一定点、一动点到直线上一动点组成的线段距离和最短问题 如图,在锐角三角形ABC中,AB=6,∠BAC=60°。∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 _________。 拓展②:一定点与两条直线上两动点组成的三角形周长和最短问题 如图,∠AOB=45°,角内有点P,PO=10,在角的两边上有两点 Q,R(均不同于O点),则△PQR的周长的最小值为 _________。 拓展③:一定点与两条直线上两动点组成的三角形周长和最短问题 在BC,CD上 如图,在四边形ABCD中,∠BAD=120°, ∠B=∠D=90°, 分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ ANM=_______°

中考数学压轴题专题复习:将军饮马问题----两线段和最小值专题讲解训练

将军饮马问题----两线段和最小值专题讲解训练知识链接 几何中最值问题的解题思路 轴对称最值图形 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN为直线l 上的一条动线段,求AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值 转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重合,然后 作其中一个定点关于定直线l的对称点 作其中一个定点关于定直线 l的对称点 折叠最值图形 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 例题精讲 例、如图,直线y=kx+b交x轴于点A(-1,0),交y轴于点B(0,4),过A、B两点的抛物线交x 轴于另一点C. (1)直线的解析式为_______; (2)在该抛物线的对称轴上有一点动P,连接PA、PB,若测得PA+PB的最小值为5,求此抛物线的解析式及点P的坐标; (3)在(2)条件下,在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

题型强化 1、在平面直角坐标系中,已知 2 12 y x bx c (b 、c 为常数)的顶点为 P ,等腰直角三角形ABC 的顶点A 的 坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过 A 、 B 两点,求抛物线的解析式. (2)平移(1)中的抛物线,使顶点P 在直线AC 上并沿AC 方向滑动距离为 2时,试证明:平移后的抛物线与 直线AC 交于x 轴上的同一点.(3)在(2)的情况下,若沿 AC 方向任意滑动时,设抛物线与直线AC 的另一交点为 Q ,取BC 的中点N ,试探究 NP+BQ 是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.

八上最短路径问题(将军饮马)

最短路径问题 练习 一.选择题(共4小题) 1.(2016秋房山区期末)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为() A.6 B.8 C.10 D.12 2.(2015秋通州区期末)如图,在△ABC中,∠ABC=60°,BC=6,CD 是△ABC的一条高线.若E,F分别是CD和BC上的动点,则BE+EF 的最小值是() A.6 B.3C.3D.3 3.(2014秋昌平区期末)如图,等边△ABC的边长为6,E是AC边上一点,AD是BC边上的中线,P是AD上的动点.若AE=2,则EP+CP 的最小值为()

A.2 B.C.4 D. 4.(2011秋东城区期末)如图,已知∠AOB的大小为α,P是∠AOB 内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=() A.30°B.45°C.60°D.90° 二.填空题(共5小题) 5.(2016秋门头沟期末)如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR周长的最小值为. 6.(2014春海淀期末)如图,在平行四边形ABCD中,E为AB边的中点,BF平分∠ABC交AD于F,P是BF上任意一点,∠ABC=60°,AB=4,则PE+PA的最小值为.

7.(2011秋昌平期末)已知∠AOB=30°,点P在∠AOB的内部,OP=6,P1与P关于OB对称,P2与P关于OA对称,则△P1OP2的周长为;若OA上有一动点M,OB上有一动点N,则△PMN的最小周长为. 8.(2011秋海淀期末)已知点A(﹣2,3)和点B(3,2),点C是x 轴上的一个动点,当AC+BC的值最小时,则点C的坐标为.9.(2010秋东城期末)已知如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON上一点,则当△PAB的周长取最小值时,∠APB的度数为. 三.解答题(共15小题) 10.(2014东城二模)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题: 如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB 最小. 我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB′.因此,求AP+BP最小就相当于求AP+PB′最小,显然

相关文档
相关文档 最新文档