文档库 最新最全的文档下载
当前位置:文档库 › 基于余水位的潮位实时推算系统

基于余水位的潮位实时推算系统

基于余水位的潮位实时推算系统
基于余水位的潮位实时推算系统

潮汐类型

一、潮汐的类型 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。高潮中比较高的一个叫高高潮,比较低的叫低高潮;低潮中比较低的叫低低潮,比较高的叫高低潮。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 二、潮汐要素 涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。 平潮的持续时间各地有所不同,可从几分钟到几十分钟不等。平潮过后,潮位开始下降。 当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。 停潮过后潮位又开始上涨,如此周而复始地运动着。从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。

潮汐的变化规律

潮汐的变化规律 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始 有个计算公式共,仅供大家参考。 满潮时间=(农历日—1或16)乘以0.8+10:32 干潮时间=满潮时间加或减6:12 潮汐表编辑 潮汐预报表的简称。它预报沿海某些地点在未来一定时期的每天 潮汐情况。在航运方面,有些水道和港湾须在高潮前后才能航行和进出港;在军事方面,有时为了选择有利的登陆地点和时间,就必须考虑和掌握潮汐的情况;在生产方面,沿海的渔业、水产养殖业、农业、盐业、资源开发、港口工程建设、测量、环境保护和潮汐发电等,都要掌握潮汐变化的规律。潮汐表就是为这些方面服务的。 中文名 潮汐预报表 外文名

Tidal prediction table 作用 预报沿海某些地点潮汐情况 服务行业 航运,军事,生产... 最早文献 《海涛志》 包括 主港逐日预报表,附港差比数等 目录 1简介 2文献来源 3港差比数 4潮汐信息 5简便算法 6潮汐时间 1简介编辑 cháo xī biǎo 潮汐表 tide tables 潮汐表又称潮汐长期预测表,即在正常天气情况下由天文因素影响所

产生的潮汐。 2文献来源编辑 英国开尔文 中国唐代窦叔蒙在《海涛志》一文中提出了根据月相推算高潮时刻的图表法,这是保存下来的介绍潮汐预报方法的最早的文献,大约比英国的《伦敦桥潮候表》早400年。19世纪60年代末,英国开尔文和G.H.达尔文等人提出了潮汐调和分析方法,后来还设计和制造了机械的潮汐推算机,使潮汐表的编算工作得到迅速发展。自20世纪60年代以来,电子计算机已广泛应用在潮汐推算工作中。 潮汐表一般包括主港逐日预报表(通常有高潮和低潮的时间和潮高,有的港还有每小时的潮高)、附港差比数、潮信和任意时刻的潮高计算等内容。 主港逐日预报表 潮汐现象可视为由许多不同周期的分潮叠加而成,故任意时刻的潮高可表示为 图片中A为平均海平面在潮高基准面上的高度,表示分潮的圆频率,为交点因子,d为格林威治开始时的天文相角,H和为分潮的调和常数──振幅和迟角。这样,应用已求出的该港的潮汐调和常数,就能

潮汐简便计算法

潮汐简便计算法 人们通过长期的实践、观察,发现海水有规律的涨落,而涨落的时间和高度又有着周期性的变化,由此人们把这种海水涨落的现象叫潮汐。而随着海水的涨落、水位的升降,出现了海水的水平流动,这种海水流动的现象叫潮流。海水有周期性涨落规律,如在每日里出现两次大潮和两次小潮。通过长期实践、观察、发现每日的高潮大多出现在月亮的上、下中天(即过当地子午线时1前后。低潮时间则在月出月落前后,并且每日的高(低)潮时间逐日后程约48分钟,即每天晚48分钟(0.8小时)。每月的两次大潮是农历初一、十五附近几天,两次小潮是在农历的初七、八和甘二、廿三附近几天。人们还发现,潮汐现象同月亮、太阳、地球的相对运动有密切的关系。地球在一定轨道上绕太阳运转,月亮又在一定轨道上绕地球运转,它们之间有一定的吸引力和离心力,这种力就是产生潮汐现象的基本因素。但实际潮汐涨落的主要成因却是月球对地球(表层)的吸引力,其次是太阳对地球的吸引力,太阳的乍用较小,约为月球的2/5,因月球离 地球较近,故此月球的乍用较大。 据科学推测是:月球绕地球转,每一个月(29.5天多一点)转一圈,当月、日、地三者成一直线时,潮涨落的最大,这时是新月和望月(初一、十五)的时候,当日、月、地三者成直角三角形时潮涨落的最小,这是月上弦(初七、八)和下弦(廿二、廿三)的时候。但在实际上形成大潮和小潮的时间,并不正好是上述时间,因为地球形状很复杂,所以各地发生最大潮和最小潮的时间要比理论上拖后几天。如:山东半岛沿海每月的初三和十八潮的涨落最大,而初十和廿五前后潮的涨落又最小。由于地球本身的自转,使地球上某点与月球的相对位置随时发生变化,这种变化每天(太阳约24时48分)为一周期。每24时48分,发生两次高潮和两次低潮。由高潮到低潮约经过6时12分,由第一个高潮到第 二个高潮约经过12时24分。 潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0 8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮汐流,这是水位升降起伏的潮信现象,是由于海水受到引潮力的作用发生了水平流动后所导致的结果。因此潮流和潮汐一样具有周期性的变化规律,但海水流动受到地形条件的影响,故常呈现两种状态,一种是往复性,

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

海洋要素计算(潮汐)

海洋要素计算作业之二——潮汐(威海2013年五月份) 一.本次潮汐调和分析共选取了十三个分潮: MSf,Q1,O1,K1,P1,K2,N2,M2,S2,MK3,M4,MS4,M6 为使您查看方便,将本次大作业的放在本文件夹各文件内,具体参考如下: 1.原数据为:qd.dat; 2.Fortran编程见该文件夹内:tide.f90文件; 3.求各分潮调和常数H、g的值及其中间过程得到的各值见:qd_tide.dat文件;二.对比回报值和实测值: 1. 回报1968年一月份的水位值见:huibao.dat; 2. 用matlab绘制的潮汐过程曲线见:潮汐过程曲线.bmp 3. 用给定的六个分潮求得的高潮和低潮发生的时刻及潮位值见—:gaodichao.dat; 运行tide.f90后求得威海地区2013年5月份的平均潮差。 由图可知:由于只计算了一个月的潮汐数据,所以回报值和实测值相符的不是很好,如果计算一年的数据,应该会取得比较良好的结果。

三.程序 %% 潮汐过程曲线图 clear,clc %% huibao=load('G:\chaoxi\huibao.dat'); % huibao=fread(fhuibao); shice=load('G:\chaoxi\qd.dat'); % shice=fread(fshice); %huibao_y=zeros(1,12*62); %shice_y=zeros(1,12*62); huibao=double(huibao'); huibao_y=double(huibao(:)); %shice_y=reshape(shice',1,[]) %for i=1:12; % for j=1:62 % huibao_y(i)=huibao(i,j) % shice_y(i)=shice(i,j) %end %end shice=double(shice'); shice_y=double(shice(:)); x=linspace(1,31,length(huibao_y)); plot(x,huibao_y,'r-') hold on plot(x,shice_y,'b-') title('威海(37°31′N ,122°08′E)2013年五月潮汐调和分析图') legend('回报值','实测值') xlabel('时间(2013年五月份)') ylabel('水位(m)')

潮汐观测作业指导书

潮汐观测作业指导书 1.观测点的选择 观测点应选择在与外海畅通,水流平稳,不易淤积,波浪影响较小的海域;应避开冲刷严重、易坍塌的海岸;在理论最低潮时,水深应大于1m;尽可能利用防波堤、码头、栈桥等海上建筑物。 2.验潮井的设置 验潮井是为观测潮汐而专门设置的建筑物。它的设计,特别是进水管道必须使井内与井外潮位差小于1cm,并具有良好的消波性能。验潮井的设置应详细记载和归档。 3.水准系统的设置与水准测量 3.1水准点的设置 观测站应在适当位置设置一个基本水准点和一至两个校核水准点。基本水准点是观测站永久性的高程控制点。校核水准点是用于引测和检查水尺零点、读数指针高程的水准点。 基本水准点和校核水准点分别按基本水准标石和普通水准标石的埋设方法埋设,并应采取严格的保护措施,使之不易受到破坏。水准标石埋设的技术设计、选点、埋设方法和要求按GB12898的规定执行,并详细记载和归档。

3.2水准点的水准测量要求 3.2.1基本水准点应按国家三等水准测量要求与国家水准高程系统连测。 3.2.2校核水准点应按国家三等水准测量要求与基本水准点连测。 3.2.3基本水准点与校核水准点启用后每年应复测一次; 两年后若没有发现高程变动,基本水准点每隔四年应复测一次,校核水准点每隔二年应复测一次。 3.2.4水准点的测量按GB 1 2 8 9 8 的有关规定执行,并将各次测量及复测情况详细记载和归档。 3.3潮高基准面的确定 3.3.1测站潮高基准面宜采用当地理论最低潮面,简称测站基面。 3.3.2在未确定潮高基准面的测站,可用开始观测时的第一根水尺零点处的水平面或设定的某一水平面临时作为潮高基准面。在观测一年后,使用所测资料通过推算,确定当地理论最低潮面作为测站潮高基准面 3.3.3测站基面一经确定不应轻易变动,测站基面的高程应记载和归档。 3.3.4 测站基面确定后,测站的潮高资料必须订正到测站基面上。 4.井内、井外水尺的设置

月相变化观察记录簿

月相变化观察记录:学号:班级: 月相农历目视月出 时间 实际月出 时间 与太阳出没比较与太阳位置比较月出位置 夜晚目视 呈现时段 目视效果图实际观测图时间(年月日) 新月初一清晨几乎同升同落接近重合彻夜不见 不可见 蛾眉月初二三日落后太阳升起 后的一个 多小时 跟在太阳后,迟 升后落 日在西月在东西方 太阳落山后 的一两个小 时西边亮 上弦月初七八日落后正午前后迟升后落日在西月在东南偏西近 正南 上半夜西天 西边亮一半 凸月十一二日落后午后两时 左右 迟升后落日在西月在东东南 日落至凌晨 两时左右 西边亮 满月十五六日落黄昏日落黄昏此起彼落地球居中彻夜可见 全亮 残月(凸月) 十八九 夜晚九时 前后 夜晚九时 前后 早升先落日在东月在西 升起后至日 出前可见 东边大半亮 下弦月二二三午夜之后午夜之后早升先落日在东月在西午夜之后至 日出前可见东边亮一半 蛾眉月二六七凌晨三四 点 凌晨三四 点 早升先落日在东月在西 凌晨三四点 至日出前可 见东边亮 口诀:“上上上西西、下下下东东”。上弦月出现在农历月的上半月的上半夜(黄昏至午夜可见),月球亮面朝西,位于西半天空,月相变化由缺到圆;下弦月出现在农历月的下半月的下半夜(午夜至清晨可见),月球亮面朝东,位于东半天空,月相变化由圆到缺。

关于月相变化对学生的粗浅解释 如果不考虑地球围绕太阳的转动,单纯计算月亮绕地球旋转一周的时间,那只是27天7小时43分11秒。(这是由于在月亮绕地球转动过程中,途径28组恒星星座,作为月亮运行位置的记录,每组恒星各有名目,通称28宿(宫)。月亮每天运行一宿,近28天正好实际绕行地球一周)那么,为什么一朔望月时间会是29天多呢?现在,以月的合朔日为起点加以说明:我们知道,月亮的合朔是太阳、月亮、地球三者正处于一条直线上,月亮居于太阳和地球中间,背向地球,人们丝毫看不见月亮的时候。这时假设地球停止绕日公转,那么,月亮绕地球一周后再回到相对地球的这一位置时,就是27天7小时43分11秒。这一长度叫做“恒星月”。但是,在月亮围绕地球转动时,地球也在围绕太阳转动,当月亮行走27天多,又回到上月合朔时相对地球的那一位置时,月亮已不再居于太阳与地球的直线之间了,因地球的向前运动已使原来相对月亮、太阳的位置向前移动,脱离开太阳与地球的连线,形成了一段距离。月亮只能继续向前运动,走过这段距离,再达到太阳与地球新的连线的时候,才能再形成新的合朔,这段距离需要1~2日的时间,也就是所谓的一、二隐日。因而,月亮有28显日,其后,还有1~2日的隐日。 月相变化歌 初一新月不可见,只缘身陷日地中。初七初八上弦月,半轮圆月(半明半暗)面朝西。满月出在十五六,地球一肩挑日月。二十二三下弦月,月面朝东下半夜。 一个口诀:“上上上西西、下下下东东”——意思是:上弦月出现在农历月的上半月的上半夜(黄昏至午夜可见),月球亮面朝西,位于西半天空,月相变化由缺到圆;下弦月出现在农历月的下半月的下半夜(午夜至清晨可见),月球亮面朝东,位于东半天空,月相变化由圆到缺。

潮汐计算

潮汐计算 1.中国潮汐表 1)实际水深=海图水深+潮高+(海图基准面-潮高基准面) 2)利用《潮汐表》推算潮汐; A) 应用差比数进行推算 附港高(低)潮时=主港高(低)潮时+高(低)潮时差 附港高(低)潮高=〔主港高(低)潮高-(主港平均海面+主港季节改正数)〕×潮差比+(附港平均海面+附港季节改正数) 当主附港季节改正数<10㎝,可不比进行平均海面的季节改正,而直接用差比数栏中的改正值求得附港的潮高,即附港高(低)潮高=主港高(低)潮高×潮差比+改正值 B)求任意时的潮高和潮差 任意时的潮高的公式: 潮高改正数Δh=1/2潮差-x=1/2潮差×(1-cosθ) 式中, Δh ---任意时潮高与低潮潮高之差 潮差---相邻高潮潮高与低潮潮高之差 θ-----任意时刻的相位角,由低潮时起算 θ=t/T×180= t----任意时与低潮的时间间隔; T----落潮或涨潮的时间间隔 所以: 任意时的潮高=低潮潮高+潮高改正数=低潮潮高+潮差×1/2〔1-cos(t/T×180=)〕=高潮潮高-潮高改正数=高潮潮高-潮差×1/2〔1-cos(t' /T×180=)〕 t'--任意时与高潮的时间间隔- 任意时的潮时=高潮时-潮时改正值(t') 2.英版潮汐表 附港潮汐计算公式 附港高(低)潮时=主港高(低)潮时+高(低)潮时差 附港高(低)潮高=主港潮高-主港平均海面季节改正+潮高差(经内插)+附港平均海面季节改正 3.往复流 平均流速=1/2(大潮日流速+小潮日流速) 若仅给出大潮日流速则 小潮日流速=1/2大潮日流速 平均流速=3/4大潮日流速=3/2小潮日流速 注意: 我国各地大潮日(农历初八,十八)及其前后两天(农历初一至初五及十六至二十),用大潮流作为当天的最大流速;在小大潮日(农历初十,二十五)及其前后两天(农历初八至十二及二十三至二十七),用小潮流作为当天的最大流速;其余日期用平均流速作为当天的最大流速.

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

潮汐推算

潮汐推算 潮汐的发生和太阳,月球都有关系,也和我国传统农历对应。在农历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”,故农谚中有“初一十五涨大潮,初八二十三到处见海滩”之说。另外在第天也有涨潮发生,由于月球每天在天球上东移13度多,合计为50 分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。我国劳动人民在千百年来总结经验出来许多的算潮方法(推潮汐时刻)如八分算潮法就是其中的一例:简明公式为: 高潮时=0.8h×[农历日期-1(或16)]+高潮间隙 上式可算得一天中的一个高潮时,对于正规半日潮海区,将其数值加或减12时25分(或为了计算的方便可加或减12时24分)即可得出另一个高潮时。若将其数值加或减6时12 分即可得低潮出现的时刻——低潮时。但由于,月球和太阳的运动的复杂性,大潮可能有时推迟一天或几天,一太阴日间的高潮也往往落后于月球上中天或下中天时刻一小时或几小时,有的地方一太阴日就发生一次潮汐。故每天的涨潮退潮时间都不一样,间隔也不同。 潮汐能是以位能的形态出现的海洋能,是指海水潮涨和潮落形成的水的势能。海水涨落的潮汐现象是由地球和天体运动以及它们之间的相互作用而引起的。在海洋中,月球的引力使地球的向月面和背月面的水位升高。由于地球的旋转,这种水位的上升以周期为12小时25分和振幅小于1m的深海波浪形式由东向西传播。太阳引力的作用与此相似,但是作用力小些,其周期为12小时。当太阳、月球和地球在一条直线上时,就产生大潮(spring tides);当它们成直角时,就产生小潮(neap tides)。除了半日周期潮和月周期潮的变化外,地球和月球的旋转运动还产生许多其他的周期性循环,其周期可以从几天到数年。同时地表的海水又受到地球运动离心力的作用,月球引力和离心力的合力正是引起海水涨落的引潮力。 除月球、太阳外,其他天体对地球同样会产生引潮力。虽然太阳的质量比月球大得多,但太阳离地球的距离也比月球与地球之间的距离大得多,所以其引潮力还不到月球引潮力的一半。其他天体或因远离地球,或因质量太小所产生的引潮力微不足道。根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。这种实际与计算的差别目前尚无确切的解释。一般认为当海洋潮汐波冲击大陆架和海岸线时,通过上升、收聚和共振等运动,使潮差增大。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水力发电相比,潮汐能的能量密度很低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。

海洋水文气象调查与观测实习

海洋水文气象调查与观测实习 一、实习时间和具体安排 2015年7月6号:召开实习动员大会 2015年7月9号:校内实验 2015年7月10:号芦潮港海洋监测站观测实习 2015年7月14号:海上实习 二、实习目的 理论和实践相结合,掌握各海洋要素观测前的准备、观测操作以及样品(数据)处理等阶段的具体要求和注意事项;培养吃苦耐劳的精神,增强动手能力和知识运用能力;培养海上安全意识;认识海洋调查与观测的重要意义。海洋调查与观测实习有助于培养自我分析、概括、欣赏的能力;培养语言表达能力及公众场合发言的能力;培养同学之间相互沟通相互交流,团结合作的能力;培养学生具有扎实的对试验资料进行统计分析处理的能力和初步的生物学试验设计的能力。 三、实习项目: 2.1、芦潮港海洋检测站观测实习 1、观测内容 在专业人员的带领和讲解下,参观了用于监测海洋水文气象要素的仪器(浮标、CTD、ADCP、潮位仪等)和监测自动化系统(海洋水文气象自动监测系统、卫星接收系统等),了解监测站的工作内容,并去码头参观,实地参观码头上设置观测取样点(验潮井、温盐井、水尺)。了解和学习监测站的基本监测要素所用的仪器、设备。 2、观测仪器简介 浮标:海洋浮标是一种投放在海洋中的现代化的海洋观测设施。有锚定类型浮标和漂流类型浮标。它具有全天候、全天时稳定可靠地收集海洋环境资料的能力,并能实现数据的自动采集、自动标示和自动发送。海洋浮标与卫星、飞机、调查船、潜水器及声波探测设备一起,组成了现代海洋环境立体监测系统。海洋浮标,一般分为水上和水下两部分,水上部分装有多种气象要素传感器,分别测量风速、风向、气温、气压和温度等气象要素;水下部分有多种水文要素传感器,分别测量波浪、海流、潮位、海温和盐度等海洋水文要素。 CTD:它是特指一种用于探测海水温度,盐度,深度等信息的探测仪器,名为:温盐深仪ADCP:超声多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。 潮位仪:潮位仪(验潮仪,水位计,波潮仪)可测潮位、水位、波浪环境要素 加拿大RBR公司的有4款小巧的潮位仪: 1,TGR-2050 自记式潮位仪,适合近岸海洋工程勘察,深度精度精度0.05%。 2,TGR-1050 HT 实时遥报潮位仪,自动去除大气压影响,适合港口实时潮位监测,深度精度0.1%。 3,XR-420 SBR 深海水位计,适合深海水位测量,深度精度0.01%。 4, TWR-2050 波潮仪,即可测潮位,又可测波浪,深度精度精度0.05%。 验潮井:验潮井是为安装验潮仪而专设的建筑物。验潮井按其建筑结构形式可分为岛式和岸式两种。 温盐井:为获取温、盐实时连续数据而建立的观测设施,并安装温、盐自动监测设备。

潮汐推算1

潮 汐计 算 一 求任意时间的潮高和任意潮高的潮时 (1)公式法 1)求任意时间的潮高 A )以高潮为基准 高、低潮时分别为T HW 、T LW ,高、低潮高分别为H HW 、H LW ,潮差R=H HW -H LW 。θ为相位角。△h 称为潮高改正数 任意时潮高H t : h H H HW t ?-= 而 )cos 1(2cos 22θθ-=-=?R R R h ??--=180HW LW HW T T T T θ 所以,任意时潮高H t : )cos 1(2θ--=R H H HW t )]180cos(1[2??----=HW LW HW HW T T T T R H T H T T H H T .D .B R △h △h′R () /2/2R H 求任意时潮高 高潮面 任意时水面平均海面低潮面 潮高基准面

B )以低潮为基准(对应图中的θ'与h '?), 任意时刻T 的潮高H t 可由下式求得:h H H LW t '?+= 而 )cos 1(2 θ'-= '?R h 所以,任意时潮高H t : )cos 1(2θ'-- =R H H LW t )]180cos(1[2??---+=LW HW LW LW T T T T R H 例:求1992年2月8日铜沙T=1200的潮高H t 。已知铜沙该日潮汐为0428 108;0959 418;1737 101;2219 350。 解: 因为 6.471805909371759090012180?=??--=??--=m h m h m h m h HW LW HW T T T T θ )(317101418cm H H R LW H W =-=-= )cos 1(2 θ-=?R h =)(5.51)6.47cos 1()2/317(cm =?-? 所以 )(36652418cm h H H H W t =-=?-= 以低潮为基准计算H t : 4.1321805909371700123717180?=??--=??--=m h m h m h m h HW LW LW T T T T θ )cos 1(2 θ'-=?R h )(4.265)4.132cos 1(2 317cm =?-= )(366265101cm H H LW t =+== 两种方法的计算结果完全一致。

一个简化的潮汐预报准调和分析方法

一个简化的潮汐预报准调和分析方法 王如云1,2,李慧娟1,2,蒋风芝2 (1 河海大学水文水资源与水利工程科学国家重点实验室,南京210098; 2 河海大学海洋学院,南京210098) 摘要:在用现有的浅水港日潮汐准调和分析预报方法进行潮汐分析预报时,发现最小二乘法的法方 程组的系数矩阵条件数很大,数量级在108,因此矩阵是坏条件的(或为病态的),算法不稳定。根据 潮汐动力学寻找高频潮族与低频潮族之间可能的相互作用关系,在只考虑相角的变化率情况下,建 立了一个简化的浅水准调和分析模型。利用连云港的多年实测数据检验,简化的准调和分析模型相 对于原准调和分析模型来讲,最小二乘法的法方程组系数矩阵条件数小很多,因此简化后的模型计 算更为稳定。在实测数据时间较长的情况下,简化前后的模型预报精度相当。但当实测数据较短时, 简化前的原模型却没有传统的调和分析模型的预报结果精度高,而简化后的模型却能保持比传统的 调和分析模型的预报结果有一定的改善。特别是简化后比简化前的模型计算时间减少了68%。 关键词:浅水潮汐;准调和分析;潮汐预报 1引言 在潮汐预报方面,一般采用调和分析方法,在深水区域此方法可以获得很好的预报效果,但在浅水区域尤其是河口区域,由于浅水潮汐的复杂性,采用此方法往往不能获得满意的效果。例如杜德森提出的60个分潮[1],其结果不能令人满意。为此,杜德森后来又提出了一个直接对高低潮进行浅水改正的方法[2],该方法虽然使高低潮的预报精度有了提高,但把它应用到逐时潮位预报上则有许多困难和不便之处。在浅水区域由于非线性效应的加大,潮波往往产生畸变。此时,高频振动的作用必须予以充分考虑。为了提高浅水区域潮汐预报的精度,从调和分析方法来讲就必须增加高频的浅水分潮。在水深不太浅的区域,浅水分潮的振幅会随着阶数的增高而迅速减小,所以在一般港口采用较少数目的主要浅水分潮即可满足潮汐预报的要求。但在浅水区,常常需要考虑到六阶甚至更高阶的相互作用,才能满足潮汐预报的要求。上个世纪六十年代,一些潮汐学者试图通过扩充高频分潮的数目以使预报结果获得改进,如Zelter and Cumimngs[3]以及Rossiter and Lennon[4]曾将分潮的数目扩充到110多个,但效果并不理想。方国洪等人认为,不理想的原因在于随着频率的增加,高频分潮的数目极速的增加,不可能从中挑选出少数分潮近似代替所有分潮,难以用有限数目的浅水分潮来体现总的浅水效应。可以认为通过增加浅水分潮以改进潮汐预报,其效果可能是比较有限的。 基于以上分析,方国洪等提出了一个浅水潮汐预报的准调和分析方法[5],可以用来推算任意时刻的潮高,也可以用来推算高、低潮,效果比传统的调和分析法有了显著的改进。但我们使用此方法对连云港的多年潮位实测数据进行分析预报时,发现最小二乘法的法方程组系数矩阵条件数很大,算法不稳定。为此,我们对浅水准调和分析模型进行了简化,简化后的模型计算更为稳定,计算时间大为减少。 2 准调和分析方法介绍 方国洪等人[5]提出的浅水预报准调和方法思路是把潮高分做两部分,一部分为低频部分,由 基金项目:水文水资源与水利工程科学国家重点实验室开放研究基金(2005407411);中国教育部科学技术研究重点项目(104104);中国江苏省普通高等学校高新技术产业发展项目(JH03-010) 作者简介:王如云(1963-),教授,男,安徽芜湖人,从事计算物理学研究,E-mail:wangry@https://www.wendangku.net/doc/c89381538.html,

水深测量中多站潮位的数据处理程序设计

水深测量中多站潮位的数据处理程序设计 1 前言 在沿海工程的施工测量工作中,潮位的控制及改正是非常重要的环节。以往采用传统的人工分带进行潮位改正,不但计算方法繁琐,工作量大,费时费力,处理精度也较低,严重限制了成图工期,影响作业进度,最新的HYPACK MAX软件进行潮位处理技术也只能同时处 理最多三个潮位站且只能为同一天的数据,现有的潮位处理技术已不能适应测绘技术发展的需求。为提高水深测量数据处理的自动化程度,减少测绘人员工作量,加快出图速度,本文结合实际生产的工程实例进行了软件的开发,针对潮位改正中的潮位插值计算方法、潮位分区区域的划分等几个方面进行了探讨,并编制出相应软件,使之能适应各种复杂的测区潮位控制情况,操作方便,处理结果可靠,具有重要的实用价值。 2 潮位数据处理方法 在进行多站潮位内插改正时,不论图解还是由软件自动改正都必须遵循如下的潮位分带假设。假定潮位站间潮波以一定速度匀速传播,潮波整个潮波匀速传播意味着相邻站潮波周期相似,潮高相关。也就是潮位站间的潮位的潮时、潮高变化与其距离成比例。 软件实现多站潮位内插改正的原理:采用现有的计算机技术,借助AUTO CAD平台,通过潮位记录文件绘制各站潮位过程曲线,使用 水深原始记录文件中水深定位点的时间,在图上内插各潮位站潮位,使用水深定位点的位置信息,不再沿用传统潮位每0.1m为一分带的

潮位分带方法,消除了传统的分带改正方法存在潮位人工分带的人为造成的水位台阶式跳跃,而与实际潮位面是一个连续的曲面情况不相符的情况。在CAD平面图中,根据水深点与潮位站的几何关系,根据潮位站分布、潮位改正方案划分测区分区,内插瞬时潮位,此方法较以往通过数学计算内插法相比,克服潮位改正不直观,准备数据复杂,不容易发现错误的弱点。 2.1单站潮位改正方法 在单站潮位站能够控制的测区范围内,在Auto CAD中,以潮高为纵轴,时间为横轴,绘制该站的潮位过程曲线,根据水深原始文件中的水深点的时间,在潮位过程曲线上内插潮位值,将每点的潮位数据添加到水深原始文件中。 2.2 双站潮位改正方法 在双站潮位能够控制测区水位的范围内,进行线型内插潮位。 图1 潮位站与测点关系图 图1中a、b是水深点D在潮波传播路径(图中红线)上投影长度,线段长度是潮位计算的重要数据;如果没有潮波传播路径,程序将两站连线自动作为潮波传播路径。 要获取水深点D的实时改正潮位,可根据水深定位点的位置、时间,利用软件在CAD中绘制的潮位曲线上进行潮位内插实时潮位,

表1 物种鉴定原始记录表

1 连环监生物分析记录表1 流转卡号 物种鉴定分析记录表 样品类别:地表水□ 海水□ 污水□ 潮间带□ 其它□ 采样点位: 采样日期: 分析日期: 仪器型号及编号 分析项目:①浮游植物□网采:网口面积 m 2 ,绳长 m ,浓缩体积 ml, 计数体积 ml ;□定量:采样体积 ml,浓缩体积 ml,计数体积 ml ②浮游动物□网采:网口面积 m 2 ,绳长 m ,浓缩体积 ml, 计数体积 ml ;□定量:采样体积 ml ,浓缩体积 ml,计数体积 ml ③着生生物□ 采样面积: cm 2 ,计数面积: cm 2 ; ④底栖动物□ 采样面积 m 2 ; ⑤潮间带生物□ 潮位:高□中□低□ 采样面积 m 2 备注: 1、浮游植物计算:n=kn W C A V N A V = ? 将具体数值代入后得 k= 式中:N — 每升水中浮游植物的数量(个/L ) A — 计数框面积(mm 2); A C —计数面积(mm 2 ),即视野面积×视野数或长条计数时长条长度×参与计数的长条宽度×镜检的长条数; V W — 1L 水样经沉淀浓缩后的样品体积(mL ); V — 计数框体积(mL ); n —计数所得的浮游植物的个体数或细胞数。 2、浮游动物计算: 1 23n V kn V V N ?= =? 将具体数值代入后得 k= 式中: N — 每立方米水中浮游动物的数量(个/ m 3) n —计数所得的个体数; V 1—浓缩样体积(mL ); V 2—计数体积(mL ); V 3—采样量(m 3 )。 3、着生生物计算: 1i i 2n kn h C L N C R S ???= =?? 将具体数值代入后得 k= 式中:N i — 单位面积i 种藻类的个体数(个/厘米2) C 1 — 标本定容水量数(毫升); C 2 — 实际计数的标本水量数(毫升); L — 藻类计算框每边的长度(微米); R — 计算的行数; h — 视野中平行线间的距离(微米); n i — 实际上计数所得; S —刮取基质的总面积(厘米2)。 4、底栖生物与潮间带生物计算: n N S = 式中: n —计数所得的个体数; S —采样面积(米2)。

潮汐自动观测系统技术参数

潮汐自动观测系统技术参数 1、仪器设备名称: 潮汐自动观测系统 2、技术指标: ★潮汐自动观测系统要求与国家海洋局宁波海洋环境监测中心站现有的水文气象自动观测系统完全兼容;环境性能符合海洋行业标准《海洋仪器基本环境试验方法》(HY016—1992);数据记录及传输格式符合GB/T14914—2004《海滨观测规范》的规定。 配置要求: (1)水文数据采集器(浮子式水位计): 1.1测量范围:水位(0~1000)cm; 1.2准确度:水位±1cm; 1.3数据传输:可通过RS485、RS232、GSM或GPRS/CDMA等方式传输数据; 1.4工作方式:连续工作; 1.5工作温度:(-10~45) ℃; 1.6供电电源:DC12V; 1.7必须提供检定证书。 (2)温盐传感器: 2.1温度测量范围:-5~45℃;精度:±0.01℃(0~35℃);

2.2盐度测量范围:2~70mS/cm,精度:±0.01mS/cm(2~65mS/cm); 2.3电源电压:12V DC;工作电流≤60mA; 2.4使用水深: ≥50m; 2.5信号输出RS232接口; 2.6信号电缆:五芯水密电缆线。 2.7 要求传感器为国产。 2.8必须提供检定证书。 (3)数据接收机 3.1处理器:Intel I5-9500 3.2内存:8G 3.3存储:1T硬盘 3.4鼠标键盘:罗技光电键盘、鼠标套装 3.5显示器: 19寸液晶显示器 (4)多功能通讯控制箱 4.1实现前端采集器与数据处理计算机之间的网络、3G双通讯,预留第三种通讯(北斗)接口。 4.2单独直流供电(9-28V)。 (5)相关配件 码盘、电源供电系统、相关配件应与国家海洋局宁波海洋环境监测中心站现有型号的水文气象自动观测系统完全兼容。 3、数量(台/套) 如上,见表格。 4、到货地点: 浙江省宁波市象山县丹河东路878号水利和渔业局 收货人:包希伟 安装地点等具体事宜由采购方指定。 5、到货时间: 交货期:合同生效后30天内到货。 安装时间:合同生效后45天以内完成安装。 资金结算:合同生效后,全部设备到货由供应商负责安装调试正常后,经采购方组织现场验收,确认合格后采购方向供货商支付合同款95%的货款,质保期满后付清5%余款。 6、售后服务: (1)保修维修:卖方须对所提供的设备提供至少12个月的质保期,时间从设备验收合格、买方接受使用之日算起。并提供终身免费技术支持,如有必要,须提供现场免费维护和维修,零部件更换费用由买方承担。质保期内的工作应包括终身免费技术支持以及必要的设备免费维修和保养等工作,卖方须负责修理和替换任何由于设备自身的质量问题造成的损坏及故障,所发生的费用由卖方承担。具体的内容须在投标时说明。 (2)安装调试:由卖方派人负责完成自动观测系统的安装、调试,安装地点由买方指

相关文档