文档库 最新最全的文档下载
当前位置:文档库 › 遗传学复习总结

遗传学复习总结

遗传学复习总结
遗传学复习总结

遗传学基础理论

遗传学三大定律:基因分离定律,自由组合定律,基因连锁与交换定律

细胞遗传学,遗传的分子基础

Definition of Genetics:

heredity 遗传& variation 变异

遗传标记

2018年6月21日

16:37

遗传学中通常将可识别的等位基因称为遗传标记。

基本特征:1. 可遗传性 2. 可识别性

Desirable genetic markers : 1. highly polymorphic; 2. co-dominance; 3. even distribution on the entire genome; 4. neutral selection (without pleiotropic effect); 5. easy detection; 6. low cost; and 7. high duplicability.

本章的重点和难点:

1. 了解一对和两对性状的遗传现象;

2. 掌握分离规律和自由组合规律原理;

3. 理解卡平方测验在遗传学研究中的应用。

实现孟德尔比率必须同时满足下列5个假设:

1.研究的生物体必须是二倍体,并且所研究的相对性状差异明显;

2.减数分裂过程中形成的各种配子数目相等,或接近相等;

3.不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均等的机会相互自由结合。

4.受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。

5.杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。

适合度测验是指比较实验数据与理论假设是否符合的假设测验。

偏差的原因:

1.群体小而产生的机会偏差;

2.是遗传造成的本质差异。

孟德尔研究了7对性状,正好豌豆也有7对染色体。决定7对性状的基因正好分别位于7对染色体上的概率是多少?

三点作图的条件:

① 被测个体必须是三个基因的杂合体;

② 子代中必须能观察到基因型的表型变化;

③ 分析的样本必须足够大。

? Three-point testcross 通过一次杂交和一次测交,同时确定3对基因在染色体上的位置。首先判断3对基因是否连锁

如果3对基因独立,则Ft的8种表现型为1:1:1:1:1:1:1:1 如果2对连锁1对独立,则Ft的8种表现型为4多:4少

如果3对基因不完全连锁,则Ft的8种表现型为2最多:2较少:2较少:2最少

已知某生物的连锁图如下,假设基因型为AAbbCCdd 的个体与基因型为aaBBccDD 的个体杂交,试问:

1. 杂种F1个体可以产生哪些基因型的配子?比例如何?

2. F2产生基因型为aabbCCDD 个体的几率有多大?

3. 如果aabbFF 与AABBff 杂交再与aabbff 测交,试推断测交后代产生的子代基因型类型和比例?

4. 在没有干涉的情形下,如果aabbFF 与AABBff 杂交F1 再自交,需要在F3代选择AAbbff的10个纯合家系,至少需要种植F2群体多大?

(1)从连锁图上可以看出,ab基因是连锁的,交换值是20%,cd 基因是连锁的交换值是10%。ab基因与cd基因不在一个连锁群上,是独立遗传的。

(2)先根据交换值分析杂种F1两对连锁基因所产生的配子种类和比例:

AaBb 产生:AB和ab为重组型配子,每种配子产生的比例为10%。

Ab和aB为亲型配子,每种配子产生的比例为40%。

CcDd产生:CD和cd为重组型配子,每种配子产生的比例为5%。

Cd和cD为亲型配子,每种配子产生的比例为45%。

(3)AaBb产生的配子与CcDd产生的配子自由组合即为杂合体AaBbCcDd产生的配子种类和比例:

AB10%:CD 5% ABCD 0.5%

cd 5% ABcd 0.5%

Cd 45% ABCd 4.5%

cD 45% AbcD 4.5%

ab10%:CD 5% abCD 0.5%

cd 5% abcd 0.5%

Cd 45% abCd 4.5%

cD 45% abcD 4.5%

Ab40%:CD 5% AbCD 2%

cd 5% Abcd 2%

Cd 45% AbCd 18%

cD 45% AbcD 18%

aB40%:CD 5% aBCD 2%

cd 5% aBcd 2%

Cd 45% aBCd 18%

cD 45% aBcD 18%

(4)F2产生基因型为aabbCCDD个体的几率:

已知杂合体AaBbCcDd产生abCD配子的几率为0.5%。

则产生aabbCCDD个体的机率为:0.5%×0.5%=0.25/10000=2.5×105。

5. 真菌类的遗传学分析

a、单倍体,没有显性的复杂问题;

b、一次只分析一个减数分裂产物;

c、个体小、长得快、易于培养,一次杂交可以产生大量后代;

d、也进行有性生殖,染色体的结构和功能类似于高等动、植物。

顺序四分子在遗传学分析中有很多的优越性:

a. 可以把着丝粒作为一个locus,计算某一基因与着丝粒的重组率;

顺序四分子在遗传学分析中有很多的优越性:

b. 子囊中子囊孢子的对称性质,证明减数分裂是一个交互过程;

c. 可以检验染色单体的交换是否有干涉现象,而且还可以用它来进行基因转变的研究;

d. 四线分析证明,每一交换只包括4线中的两线,但多重交换可以包括一个双价体的两线、三线和四线

基因与着丝粒重组率为:(交换型子囊数MⅡ÷ 总子囊)×1/2×100%

Enigma: The maximum frequency possible

for MⅡsegregation pattern is 66.7% not 50%. Therefore RF max=33.3 m.u. Villain: The existence of multiple crossover.

一对基因杂交,有6种不同的子囊型;两对基因杂交有36种子囊型。由于子囊内的基因型次序可以忽视,可以将其归纳为3种基本子囊型:PD、NPD、T。+

1. 不管两个基因有没有连锁,都会得到3种类型的孢子;

RF=1/2T + NPD

如果RF 低于50%,这两个基因就是连锁的。但是,此公式没有考虑N次交换。2. NPD 型只包含重组的孢子,T型则只有一半是重组的孢子;

影响交换和重组的因素

环境因素,性别因素(霍尔丹定律:凡是发生较少交换的个体一定是异配性别),着丝粒和B染色体,染色体结构异常,重组的基因控制

孟德尔定律的拓展

1. 掌握等位基因内和非等位基因间互作;

2. 了解基因型、表型与环境作用的关系。

遗传的染色体基础2018年6月23日

18:25

1. 了解性别决定及性别分化;

2. 掌握伴性遗传规律;

3. 区别从性遗传、限性遗传。Drosophila

Typical as many insects a. 2 mm in length (inexpensive) b. 12 days at RT (short) c. n hundred eggs/ female (prolific) d. 4 chr.( X vs Y distinguishable) e. beauty under microscope (allure)

X染色体上的隐性基因与疾病

基本特点:

①男性患者远多于女性患者;

②交叉遗传(父传女,母传子);

③男性患者的同胞兄弟、外祖父、姨表兄弟和外甥中也常见患者;

④一般世代间呈现出不连续的隔代遗传现象。

Fragile X syndrome:

基本特征:

①男性和女性都会发病;

②女患者的致病基因既传儿子,又传女儿,且机会均等;

③男患者的致病基因只传女儿,不传儿子;

④女患者人数多于男患者,但病情比男患者轻。

4. 从性遗传和限性遗传

Sex influenced(从性)characteristics are determined by autosomal genes and are

inherited according to Mendel’s principles, but they are expressed differently in males and females.

Sutton和Boveri (1903)提出了遗传的染色体学说,

认为基因在染色体上。

1. 染色体有一定的形态结构。基因是遗传学的单位,每对基因在杂交中保持它们的完整性和独立性。

2. 染色体是成对存在,基因也是成对的。在配子中每对基因只有一个,而每对同源染色体只有一个。

3. 两个同源染色体也是分别来自母本和父本。个体中成对的基因一个来自母本,一个来自父本。

4. 不同对染色体在减数分裂后期的分离,是独立分配。不同对的基因在形成配子时的分离也是如此。

连锁、交换与染色体作图

1. 理解连锁与交换的遗传机理

2. 掌握三点测验

3. 理解真菌的遗传分析

4. 了解人类遗传图谱分析方法

连锁群(linkage group):

位于同一条染色体上、所有被连锁在一起的基因集合,构成一个连锁群。

① 不完全连锁(incomplete linkage)

位于同一条染色体上的两个相同的基因在形成配子(卵子)的过程中会发生少数的交换现象。

② 交换率保持不变

在不同的杂交组合中,位于同一条染色体上的相同基因的交换率保持不变!

同一染色体上的不同基因对之间的交换率不同--连锁的程度不同。

连锁遗传的实质:

控制各对性状的基因位于同一条染色体上,这些非等位基因的重组是由性母细胞在减数分裂的粗线期非姊妹染色单体片段交换引起的。

重组率(Fequency of Recombination, RF):

杂合体产生的重组型配子的百分数。

Maximum of RF ≦50%

重组率的测定与计算

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

医学遗传学知识总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科 2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病 3.遗传因素主导的遗传病单基因病和染色体病 4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病 5.环境因素主导的疾病非遗传性疾病 6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点 7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构 8.染色体的化学组成DNA 组蛋白RNA 非组蛋白 9.染色体的基本结构单位是核小体 10.染色质的类型:常染色质异染色质 11.常染色质是间期核纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质 14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质 15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三

级结构:超螺线管;四级结构:染色单体 16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY 17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变 18.点突变是基因(DNA链)中一个或一对碱基改变 19.基因突变的分子机制:碱基替换移码突变动态突变 20.碱基替换方式有两种:转换和颠换 21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变 22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变 23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症) 24.系谱是指某种遗传病患者与家庭各成员相互关系的图解 25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率 26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员 27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式

普通遗传学知识点总结

普通遗传学知识点总结 绪论 1.什么是遗传,变异?遗传、变异与环境的关系? (1).遗传(heredity):生物亲子代间相似的现象。 (2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。 生物与环境的统一,这是生物科学中公认的基本原则。因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新代进行生长、发育和繁殖,从而表现出性状的遗传和变异。 2.遗传学诞生的时间,标志? 1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展) 第二章遗传的细胞学基础 1.同源染色体和非同源染色体的概念? 答:同源染色体:形态和结构相同的一对染色体; 异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。 2.染色体和姐妹染色单体的概念,关系? 染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质 3.染色质和染色体的关系? 染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。 4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?) 答:有丝分裂: 间期前期中期后期末期 染色体数目:2n 2n 2n 4n 2n DNA分子数:2n-4n 4n 4n 4n 2n 染色单体数目:0-4n 4n 4n 0 0 减数分裂: *母细胞初级*母细胞次级*母细胞*细胞 染色体数目:2n 2n n(2n) n DNA分子数:2n-4n 4n 2n n 染色单体数目:0-4n 4n 2(0) 0 5.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

(完整版)高中生物遗传学知识点总结

高中生物遗传学知识点总结 高中生物遗传学知识点—伴性遗传 高中生物伴性遗传知识点总结: 伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。 高中生物遗传学知识点—遗传病 常见遗传病的遗传方式有以下这几种:(1)单基因遗传: 常染色体显性遗传:并指、多指; 常染色体隐性遗传:白化病、失天性聋哑 X连锁隐性遗传:血友病、红绿色盲; X连锁显性遗传:抗维生素D佝偻病; Y连锁遗传:外耳道多毛症; (2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿; (3)染色体病:染色体数目异常:先天性愚型病; 染色体结构畸变:猫叫综合症。 单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类: 一、常染色体显性遗传病 致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。

遗传因子的发现知识点总结.docx

· 第一章遗传因子的发现(1)生物的性状是由 决定的。显性性状由 第 1 节孟德尔的豌豆杂交实验(一)决定,用表示(高 茎用 D 表示),隐性性状由 一、豌豆杂交试验的优点决定,用 1、豌豆的特点表示(矮茎用 d 表示)。 ( 1)传粉、授粉。自然状态下,豌豆不会杂 交,一般为。( 2 )体细胞中因子( 2)有的性状。在。纯种高茎的体细胞中遗传2、人工异花授粉的步骤:(开花之前)→(避因子为,纯种矮茎免外来花粉的干扰)→→的体细胞中遗传因子 为。 二、一对相对性状的杂交实验 实验过程说明(3 )在形成时,成 P 表示,♂表对因子发生彼 示,♀表示此,分别进入不同的 ↓表示产生下一代配子中,配子中只有成对因子中的个。 F1 表示 F2 表示(4)受精时,配子的结合是的。 ×表示 ×表示 三、对分离现象的解释 遗传图解假说 Word 资料

四、对分离现象解释的验证——测交性状:生物所表现出来的形态特征和生理特性,如花的颜色、茎的测交: F1 与隐性纯合子杂交高矮等。 相对性状:的的。 显性性状:具有相对性状的两个亲本杂交,表现出来的 性状。 隐性性状:具有相对性状的两个亲本杂交,没有表现出 来的性状。 性状分离:后代中,遗传性状出现和 的现象。 3、基因类 显性基因:控制的基因,用来表五、分离定律示。 在生物的体细胞中,控制同一性状的因子存在,隐性基因:控制的基因,用来表不相融合;在形成配子时,成对的示。 因子发生,分离后的因子分别进入不等位基因:控制的个基因。 同的中,随配子遗传给后代。4、个体类 六、相关概念表现型:指生物个体实际出来的性状,如高茎和矮茎。 1、交配类基因型:与表现型有关的组成。 杂交:基因型的生物体间相互交配的过程。纯合子:由的配子结合成的合子发育成的个体(能 自交:基因型的生物体间相互交配的过程。遗传,后代性状分离): 测交:让 F1与。(可用来测定 F1 的基因型,纯合子(如 AA 的个体)纯合属于杂交)子(如 aa 的个体) 正交和反交:是相对而言的,若甲♀×乙♂为,则杂合子由的配子结合成的合子发育成的个体 甲♂×乙♀为。(能稳定遗传,后代发生性状分离) 2、性状类表现型与基因型关系:+→ 表现型 第3页共10页第4页共10页

高三生物知识点归纳分享【5篇】

高三生物知识点归纳分享【5篇】 高三生物知识点1 (1)植物基因工程:抗虫.抗病.抗逆转基因植物,利用转基因改良植物的品质. 基因工程与作物育种(抗虫农作物) 单倍体育种方法:花药离体培养获得单倍体植株,再人工诱导染色体数目加倍. 单倍体育种优点:明显缩短育种年限,后代都是纯合体. (2)动物基因工程:提高动物生长速度.改善畜产品品质.用转基因动物生产药物. 基因工程与药物研制(胰岛素.干扰素和乙肝疫苗等) (3)基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用. (4)基因工程与环境保护 亲子鉴定:利用医学.生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系. 使用国产制剂进行亲子鉴定 鉴定亲子关系目前用得最多的是DNA分型鉴定.人的血液.毛发.唾液.口腔细胞及骨头等都可以用于亲子鉴定,十分方便. 利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别.DNA亲子鉴定,否定亲子关系的准确率几近1_%,肯定亲子关系的准确率可达到99.99%. (5)基因芯片的基本原理:就是最基本的DNA分子杂交,利用基因芯片检测某种基因时,先将待测样品制成荧光标记的DNA探针,让它与基因芯片上已知序列的DNA片段杂交,杂交信号经放大后输入计算机进行统计分析,这样就可以检测出样品DNA序列. 用途:用来检测基因表达的变化.分析基因序列.寻找新的基因和新的药物分子.利用基因芯片,可以比较同一物种不同个体或物种之间,以及同一个体在不同生长发育阶段.正常和疾病状态下基因表达的差异,寻找和发现新的基因,研究基因

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

(完整版)遗传学知识点归纳(整理)

遗传学教学大纲讲稿要点 第一章绪论 关键词: 遗传学 Genetics 遗传 heredity 变异 variation 一.遗传学的研究特点 1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。 2. 遗传信息的传递包括世代的传递和个体间的传递。 3. 通过个体杂交和人工的方式研究基因的功能。 “遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity 生物性状或信息世代传递的现象。 同一物种只能繁育出同种的生物 同一家族的生物在性状上有类同现象 变异variation 生物性状在世代传递过程中出现的差异现象。 生物的子代与亲代存在差别。 生物的子代之间存在差别。 遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。 二. 遗传学的发展历史 1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。 1910年Morgan建立基因在染色体上的关系。 1944年Avery证明DNA是遗传物质。 1951年Watson和Crick的DNA构型。 1961年Crick遗传密码的发现。 1975年以后的基因工程的发展。 三. 遗传学的研究分支 1. 从遗传学研究的内容划分 进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制突变和选择 有害突变淘汰和保留 有利突变保留与丢失 中立突变 DNA多态性 发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。 特征:基因的对细胞周期分裂和分化的作用。 应用重点干细胞的基因作用。 转基因动物克隆动物 免疫遗传学研究基因在免疫系统中的作用的遗传学分支。 重点不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分 群体遗传学研究基因频率的改变的遗传学分支。

2019届高考理综生物知识点总结第四单元专题十 遗传的分子基础

2019届高考理综生物知识点总结 专题十遗传的分子基础 考点1 人类对遗传物质的探索过程 1.格里菲思的肺炎双球菌转化实验如下: ①将无毒的R型活细菌注入小鼠体内,小鼠不死亡;②将有毒的S型活细菌注入小鼠体内,小鼠患败血症死亡;③将加热杀死的S型细菌注入小鼠体内,小鼠不死亡;④将R型活细菌与加热杀死的S型细菌混合后,注入小鼠体内,小鼠患败血症死亡。 根据上述实验,下列说法正确的是() A.整个实验证明了DNA是转化因子 B.实验①、实验③可作为实验④的对照 C.实验④中死亡小鼠体内S型活细菌的毒性不能稳定遗传 D.实验④中部分R型活细菌突变形成S型活细菌 2.艾弗里及其同事用R型和S型肺炎双球菌进行实验,结果如表所示。从表可知() 实验组号接种 菌型 加入S型 菌物质 培养皿 长菌情况 ①R 蛋白质R型菌 ②R 荚膜多糖R型菌 ③R DNA R型菌、S型菌 ④R DNA(经DNA酶处理) R型菌 A.①不能证明S型菌的蛋白质不是转化因子 B.②说明S型菌的荚膜多糖有酶活性 C.③和④说明S型菌的DNA是转化因子 D.①~④说明DNA是主要的遗传物质 3.如图表示肺炎双球菌的转化实验,下列说法中正确的是() A.该实验的设计遵循了对照原则和单一变量原则 B.a、d组小鼠死亡是小鼠免疫功能丧失的结果 C.从d组死亡小鼠体内分离得到的S型活细菌是由S型死细菌转化而来的

D.从变异的角度看,细菌的转化属于基因突变 4.关于“噬菌体侵染细菌的实验”的叙述,正确的是() A.分别用含有放射性同位素35S和放射性同位素32P的培养基培养噬菌体 B.分别用35S和32P标记的噬菌体侵染未被标记的大肠杆菌,进行长时间的保温培养 C.用35S标记噬菌体的侵染实验中,沉淀物存在少量放射性可能是搅拌不充分所致 D.32P、35S标记的噬菌体侵染细菌的实验分别说明DNA是遗传物质、蛋白质不是遗传物质 5.已知烟草花叶病毒仅由RNA和蛋白质外壳组成,下列操作不能证明烟草花叶病毒的遗传物质是RNA的是() A.分离烟草花叶病毒的RNA和蛋白质外壳,用其分别感染正常烟草叶片,观察烟草叶片是否出现烟草花叶病症状 B.分离烟草花叶病毒,用分离的烟草花叶病毒感染正常烟草叶片,观察烟草叶片是否出现烟草花叶病症状 C.用RNA酶处理烟草花叶病毒,再用处理液感染正常烟草叶片,观察烟草叶片是否出现烟草花叶病症状 D.用烟草花叶病毒RNA和车前草花叶病毒的蛋白质外壳构建的重组病毒感染正常烟草叶片(已知车前草花叶病毒的蛋白质不能使烟草叶片出现花叶病症状),观察烟草叶片是否出现烟草花叶病症状 6.[2018吉林长春质监(一)]下列关于遗传物质探索过程的叙述,正确的是() A.肺炎双球菌的转化实验运用了同位素示踪技术 B.经含32P的培养基培养的大肠杆菌可用于标记T2噬菌体 C.真核细胞的遗传物质是DNA,原核细胞的遗传物质是RNA D.沃森和克里克建立的DNA双螺旋模型证明了DNA是主要的遗传物质 7.[2016江苏,1,2分]下列关于探索DNA是遗传物质实验的叙述,正确的是() A.格里菲思实验中肺炎双球菌R型转化为S型是基因突变的结果 B.格里菲思实验证明了DNA是肺炎双球菌的遗传物质 C.赫尔希和蔡斯实验中T2噬菌体的DNA是用32P直接标记的 D.赫尔希和蔡斯实验证明了DNA是T2噬菌体的遗传物质 8.如图是用模型模拟噬菌体侵染细菌实验的过程,请回答有关问题: (1)正确的侵染过程是(用字母和箭头表示)。赫尔希和蔡斯用不同的放射性同位素分别标记不同噬菌体的DNA和蛋白质,而不是同时标记一个噬菌体的DNA和蛋白质,其中蕴含的设计思路是。 (2)DNA复制发生在图中过程之间。

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

遗传学总结

遗传学总结 第一章绪论 遗传(heredity, inheritance)指生物世代间相似的现象(名词)或指生物性状或基因(注意二者的不同)从上代向下代的传递过程(动词) 变异(variation)生物个体间的差异(名词)生物的性状或基因从上代向下代传递时发生变化的过程(动词)(并非所有的变异都可以遗传!) 简述遗传和变异的矛盾与统一 ?遗传和变异现象是自然界普遍存在的生命活动的基本特征 ?遗传决定了物种的基本特性,变异决定了种内个体间差异 ?遗传(的稳定)是相对的,变异是绝对的 ?变异积累达到或超过一定“阈值”就可能成为新物种的来源 ?变异给进化提供丰富素材,遗传使变异得以积累和传递。如果性状不存在变异,遗传将只是简单的重复,如果变异不能遗传,也就失去其遗传学意义,生物同样不能够进化,都是生物的进化和发展不可缺少的因素 第二章孟德尔遗传定律 实验设计: 1.实验对象:豌豆 2.对具有不同单一性状的纯系(true-breeding or pure-breeding strains)进行遗传杂交—-单因子杂交(monohybrid cross) 3.反复试验验证 4.数学方法分析 5.理论归纳 显性定律(The Principle of Dominance): 在杂合子中,一个等位基因可能掩盖另一个等位基因的存在。 分离定律(The Principle of Segregation): 在杂合子中,两个不同等位基因在配子形成时会彼此分离。 6.定律验证-测交(Testcrosses) 双因子杂交(dihybrid cross) 自由组合(独立分离)定律(The Principle of Independent Assortment): 不同对基因在形成配子时,不同基因的等位基因自由组合(或称为彼此独立分离) 限制条件:控制性状的两对或两对以上的非等位基因位于非同源染色体上或在同源染色体上但距离较远。 7对基因位于7对不同染色体上的几率: 1 x 6/7 x 5/7 x 4/7 x 3/7 x 2/7 x 1/7 = 0.0061种 表型分析方法: 1.棋盘法

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

(完整版)遗传的分子基础知识点

专题四遗传的分子基础 【探索遗传物质的过程】 一、1928年格里菲思的肺炎双球菌的转化实验: 1、肺炎双球菌有两种类型类型: S型细菌:菌落光滑,菌体有夹膜,有毒性 R型细菌:菌落粗糙,菌体无夹膜,无毒性 2、实验过程(看书) 3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有 毒性的S型活细菌。这种性状的转化是可以遗传的。 推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促 成这一转化的活性物质—“转化因子”。 二、1944年艾弗里的实验: 1、实验过程: 分析:实验的思路:将S菌的DNA和蛋白质等物质分开,分别单独观察它们的作用 2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。 (即:DNA是遗传物质,蛋白质等不是遗传物质) 3、从变异的角度看,R菌转化成S菌,属于基因重组(R菌的DNA中插入了可表达的 外源DNA) 三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验 1、T2噬菌体机构和元素组成:

2、实验过程(看书) 1)实验方法:同位素标记法 2)如何标记噬菌体:用被标记的细菌培养噬菌体(注意不能用培养基直接培养噬菌体) 3)搅拌的目的:使吸附在细菌上的噬菌体与细菌分离 4)离心的目的:使上清液析出噬菌体,沉淀物中留下大肠杆菌 5)对照:两组实验之间是相互对照 6)误差分析:35S标记蛋白质,搅拌不充分,会使沉淀物中放射性升高 32P标记DNA,若保温时间太短或过长,会使上清液中放射性升高; 3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物 质)(该实验不能证明蛋白质不是遗传物质) 四、1956年烟草花叶病毒感染烟草实验证明:在只有RNA的病毒中,RNA是遗传物质。 五、小结: 细胞生物(真核、原核)非细胞生物(病毒) 核酸DNA和RNA DNA RNA 遗传物质DNA DNA RNA 因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。 【DNA的结构和DNA的复制】 一、DNA的结构 1、DNA的组成元素:C、H、O、N、P 2、DNA的基本单位:脱氧核糖核苷酸(4种) 3、DNA的结构: ①由两条、反向平行的脱氧核苷酸链盘旋成双螺 旋结构。 ②外侧:脱氧核糖和磷酸交替连接构成基本骨架。 内侧:由氢键相连的碱基对组成。 ③碱基配对有一定规律:A =T;G ≡C。(碱基互补配对原则) ④两条链之间通过氢键连接,一条链中相邻的碱基通过“脱氧核糖-磷酸-脱氧核糖”连 接 4、DNA的特性: ①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n(n为碱基对对数) ②特异性:每个特定DNA分子的碱基排列顺序是特定的。

遗传学期末复习总结

名词解释 遗传学:遗传学是研究生物的遗传与变异规律的一门生物学分支科学,是认识和阐明生物体遗传信息的组成、传递、和表达规律的科学。 基因:基因位于染色体上,是具有特定核苷酸顺序的(主要是DNA)片段,是储存遗传信息的功能单位.基因可以发生突变,基因之间可以发生交换。孟德尔在遗传分析中所提出的遗传因子,就是基因。 基因座:基因在染色体上所处的位置。特定的基因在染色体上都有其特定的座位。 等位基因:在同源染色体的相同座位上控制同一性状的不同形式的基因。 复等位基因:在群体中占据同源染色体上同一位点的两个以上的基因,如人的ABO血型中IA,IB和i。 显性基因:在杂合状态中,能够表现其表型效应的基因。 隐性基因:在杂合状态中,不表现其表型效应的基因。 基因型:个体或细胞的特定基因的组成。 表型:生物体某特定基因所表现的性状(可以观察到的各种形体特征、基因的化学产物、各种行为特性等)。 纯合体:基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞称为纯合体,或称基因的同质结合。 杂合体:基因座上有两个不同的等位基因,或称基因的异质结合。 回交:杂交产生的子一代个体再与其亲本进行交配的方式。 测交:杂交产生的子一代个体再与其隐性(或双隐性)亲本的交配方式,用以测验子代个体的基因型的一种回交。 概率:指在反复试验中,某事件发生的可能性大小。 基因型:控制生物性状的全部基因的总称。 表现型:指生物体所有性状的总称。 完全显性:F1所有个体都表现出显性亲本的性状,这种表现形式称完全显性。 不完全显性:杂合子性状介于显性纯合子与隐性纯合子之间,这种表现形式称不完全显性。

共显性或并显性:杂合子中两种基因都完全表达出来,这种表现形式称共显性/并显性。 镶嵌显性:两纯合亲本杂交,杂合体的表型与两纯合亲本都不同,而是各自在不同部位分别表现出显性的现象。如黑瓢虫鞘翅色斑遗传(由谈家桢教授发现)。 致死基因:生物体中具有致死作用的基因。 隐性致死:基因的致死作用只在纯合体时表现。 显性致死:基因的致死作用只在杂合体时表现。 复等位基因:种群中同源染色体同一座位上存在的两个以上的等位基因,在遗传上称为复等位基因,是对群体而言。 性染色体:与性别决定有关的染色体,叫性染色体。 常染色体:与性别决定无密切关系的染色体,叫常染色体。 性别决定:一般指雌雄异体生物决定性别的方法,通常可分为染色体决定与非染色体决定。 性别分化:受精卵在性别决定的基础上,进行雄性或雌性性状发育的过程。 性染色质体(巴氏小体):位于间期细胞核内一染色很深的小体,与性别、X-染色体数有关,故称为X染色质体。 剂量补偿效应:XY型性别决定的生物中,使性连锁基因在两种性别中有相等或相近的有效剂量的遗传效应。 伴性遗传:性染色体上的基因所控制的性状在遗传上总是与性别相关,这种遗传方式称伴性遗传或性连锁。 从性性状:由常染色体上基因所控制的性状,由于受性激素的影响,基因在不同性别中的表达不同,这种性状的遗传叫从性遗传。 限性性状:性染色体或常染色体上的基因所控制的性状仅在某一性别中表现的现象,这种性状的遗传叫限性遗传。 交换:指减数分裂过程中,每一对同源染色体在(配对)联会时,染色体常常交叉,因而使同源染色体的非姐妹染色体互相调换相应或同源的片段,这一过程叫交换。 交换率/交换值:是染色单体两个基因间发生交换的平均次数。 重组率/重组值( RF):是指重组型配子数占总配子数的百分率。重组值RF=(重组型配子数/总配子数)×100%。

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

数量遗传学知识点总结

第一章绪论 一、基本概念 遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。 二、数量遗传学的研究对象 数量遗传学的研究对象是数量性状的遗传变异。 1.性状的分类 性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。 根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。 数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。 质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。 阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。有或无性状:也称为二分类性状(Binary traits)。如抗病与不抗病、生存与死亡等。分类性状:如产羔数、产仔数、乳头数、肉质评分等。 质量性状、数量性状与阈性状的比较 质量性状数量性状阈性状 性状主要类 型品种特征、外貌 特征 生产、生长性状生产、生长性状 遗传基础单个或少数主 基因 微效多基因微效多基因 变异表现方式间断型连续型间断型 考察方式描述度量描述 环境影响不敏感敏感敏感或不敏感研究水平家系群体群体 2.数量性状的特点: 必须进行度量,要用数值表示,而不是简单地用文字区分; 要用生物统计的方法进行分析和归纳; 要以群体为研究对象; 组成群体某一性状的表型值呈正态分布。 3.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。 果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究内容

相关文档