文档库 最新最全的文档下载
当前位置:文档库 › (完整版)一次函数经典练习题精心整理

(完整版)一次函数经典练习题精心整理

(完整版)一次函数经典练习题精心整理
(完整版)一次函数经典练习题精心整理

一次函数练习一、选择题

1.若23

y x b

=+-是正比例函数,则b的值是()

A.0

B.2

3

C.

2

3

- D.

3

2

-

2.

当3

-

=

x时,函数7

3

2-

-

=x

x

y的函数值为 ( )

A.-25

B.-7

C. 8

D.11

3.函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )

A.0

<

k B.1

>

k C.1

k D.1

<

k

4.一次函数1

y x

=--不经过的象限是()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

5.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )

A、y=2x

B、 y=2x-6

C、 y=5x-3

D、y=-x-3

6.一次函数的图象与直线y= -x+1平行,且过点(8,2),此一次函数的解析式为:()

A、y=2x-14

B、y=-x-6

C、y=-x+10

D、y=4x

7.如果直线y=2x+m与两坐标轴围成的三角形面积等于m,则m的值是()

A、±3

B、3

C、±4

D、4

8.点A(

1

x,

1

y)和B(

2

x,

2

y)在同一直线y kx b

=+上,且0

k<.若

12

x x

>,则

1

y,

2

y的

关系是()A、

12

y y

> B、

12

y y

< C、

12

y y

= D、无法确定.

9.若m<0, n>0, 则一次函数y=mx+n的图象不经过()

A.第一象限

B. 第二象限

C.第三象限

D.第四象限

10、一次函数y kx b

=+(k b

,是常数,0

k≠)的图象如图所示,则不等式

kx b

+>的解集是()

A.2

x>-B.0

x>C.2

x<-D.0

x<

11.已知函数

1

2

2

y x

=-+,当-1<x≤1时,y的取值范围是()

A.

53

22

y

-<≤ B.

35

22

y

<< C.

35

22

y

<≤ D.

35

22

y

≤<

12.已知两个一次函数y=x+3k和y=2x-6的图象交点在y轴上,则k的值为()

A、3

B、1

C、2

D、-2

13.已知一次函数y=k x-k,若y随x的增大而减小,则该函数的图象经过()

A、第一、二、三象限

B、第一、二、四象限

C、第二、三、四象限

D、第一、三、四象限

14.当0

0>

a时,函数y=a x+b与a

bx

y+

=在同一坐标系中的图象大致是()

2

x

y

2

2-

0 3 4 0.7 1 y(元) x(分)

15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;

②a>0;③当x<3时,y 1

16.汽车由A地驶往相距120km 的B 地,它的平均速度是30km /h ,则汽车距B地路程s(km )与行驶时间t (h )的函数关系式及自变量t 的取值范围是( )

A .S =120-30t (0≤t ≤4)

B .S =120-30t (t >0)

C .S =30t (0≤t ≤40)

D .S =30t (t <4) 二、填空题

1.若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n . 2.在函数2

1

-=x y 中,自变量x 的取值范围是 。 3.把函数3x y =

的图像向 平移 个单位得到函数3

6-=x y 。 4.直线y=2x+b 经过点(1,3),则b= _________

5. 已知一次函数y=-3x+2,它的图像不经过第 象限.

6.若一次函数y =mx -(m -2)过点(0,3),则m = .

7.函数y = -x +2的图象与x 轴,y 轴围成的三角形面积为_________________.

8.已知函数y =-3x +b 的图象过点(1,-2)和(a ,-4),则a =__________

9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出

一个符合上述条件的函数关系式___________

10.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30

220

x y x y --=??-+=?的解是________.

11.若直线y=kx+b 平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ .

12.直线y=2x+3与y=3x -2b 的图象交x 轴上同一点,则b=_______.

13.写出一个图象经过点(-1,-1),且不经过第一象限的函数关系式____________.

14.一次函数y=kx+b 的图象与正比例函数x y 2

1

=的图象平行,且与直线y=-2x -1交于y

轴上同一点,则这个一次函数的关系式为_________. 15.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需

付费______元;小莉打了8分钟需付费_______元.

三、计算题

1.画出函数y=-2x+5的图象,结合图象回答下列问题:

(1)这个函数中,随着x 的增大,它的图象从左到右是怎样变化的? (2)当x 取何值时,y=0?

(3)当x 取何值时,函数的图象在x 轴的下方?

2.已知一次函数y=(4m+1)x-(m+1), (1)m 为何值时,y 随x 的增大而减小?

(2)m 为何值时,直线与y 轴的交点在x 轴的下方? (3)m 为何值时,直线位于第二,三,四象限?

3.已知关于x 的一次函数y=(3a-7)x+a-2的图象与y 轴的交点在x 轴的上方,

且当x 1y 2,求a 的取值范围.

4.已知直线21y x =+.

(1) 求已知直线与y 轴的交点A 的坐标;

(2) 若直线y kx b =+与已知直线关于y 轴对称,求k 与b 的值.

5.已知直线y=-2

3

x+3与y=2x-1,求它们与y 轴所围成的三角形的面积.

6.如图,已知直线L 1:y 1=k 1x+b 1和L 2:y 2=k 2x+b 2相交于点M (1,3),根据图象判断: (1)x 取何值时,y 1=y 2?(2)x 取何值时,y 1>y 2?(3)x 取何值时,y 1

7.已知3-y 与x 成正比例,且2=x 时,7=y . (1)求y 与x 的函数关系式; (2)当2

1

-

=x 时,求y 的值; (3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.

8. 如图,直线y =2x 3与x 轴交于点A ,与y 轴交于点B 。 (1) 求A 、B 两点的坐标;

(2) 过B 点作直线BP 与x 轴交于点P ,且使OP =2OA ,求△ABP 的 面积。

9.已知,直线y =2x +3与直线y =-2x -1. (1)求两直线与y 轴交点A ,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.

10.小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用

的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)

11.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).

(1)小强让爷爷先上多少米?

(2)山顶离山脚的距离有多少米?谁先爬上山顶? (3)小强经过多少时间追上爷爷?

12.某水果店超市,营销员的个人收入与他每月的销售量成一次函数关系,其图象如下:请你根据图象提供的信息,解答以下问题:

(1)求营销员的个人收入y 元与营销员每月销售量x 千克(x ≥0)之间的函数关系式;

(2)营销员佳妮想得到收入1400元,她应销售多少水果?

j

距离(km)

时间(h)

15

13

121110.5O 15

30

x

y

A B

C

1000 2000 4000 3000 400

800 1200 y (元)

x (千克)

一次函数压轴题包括答案.doc

))))))))) 1.如图 1,已知直线 y=2x+2 与 y 轴、 x 轴分别交于 A 、 B 两点,以 B 为直角顶点在第二象限作 等腰 Rt△ ABC (1)求点 C 的坐标,并求出直线 AC 的关系式. (2)如图 2,直线 CB 交 y 轴于 E,在直线 CB 上取一点 D ,连接 AD ,若 AD=AC ,求证: BE=DE . ( 3)如图 3,在( 1)的条件下,直线 AC 交 x 轴于 M , P(, k)是线段 BC 上一点, 在线段 BM 上是否存在一点N ,使直线 PN 平分△ BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由. 考点:一次函数综合题。 分析:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q,利用等腰直角三角形的性质证明△ ABO ≌△ BCQ,根据全等三角形的性质求OQ, CQ 的长,确定 C 点坐标; ( 2)同( 1)的方法证明△ BCH ≌△ BDF ,再根据线段的相等关系证明△ BOE ≌△ DGE,得出结论; ( 3)依题意确定 P 点坐标,可知△BPN 中 BN 变上的高,再由S△PBN= S△BCM,求 BN , 进而得出 ON . 解答:解:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q, ∵∠ OBA+ ∠ OAB=90 °,∠ OBA+ ∠QBC=90 °, ∴∠ OAB= ∠ QBC, 又∵ AB=BC ,∠ AOB= ∠ Q=90°, ∴△ ABO ≌△ BCQ , ∴BQ=AO=2 , OQ=BQ+BO=3 , CQ=OB=1 , ∴C(﹣ 3, 1), 由 A ( 0, 2),C(﹣ 3, 1)可知,直线 AC : y=x+2 ; (2)如图 2,作 CH⊥ x 轴于 H, DF ⊥x 轴于 F, DG ⊥ y 轴于 G, ∵ AC=AD ,AB ⊥ CB ,∴ BC=BD , ∴△ BCH ≌△ BDF ,∴ BF=BH=2 , ∴ OF=OB=1 , ∴DG=OB , ∴△ BOE ≌△ DGE , ∴BE=DE ;

(完整版)函数图象变换及经典例题练习

函数图象变换 1、平移变换(左加右减上加下减): y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h. 2、对称变换: y=f(x) 轴x →y= -f(x); y=f(x) 轴y →y=f(-x); y=f(x) 原点 →y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x); 3、翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到. 4、伸缩变换: y=f(x)ω?→x y=f(ωx ); y=f(x)ω ?→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用 例1.函数1 11--=x y 的图象是( ) 答案B 例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([2 1)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A

例3、利用函数x x f 2)(=的图象,作出下列各函数的图象: (1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f 例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B 例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A 例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析:画出两个函数图象可看出交点有10个.答案 A

一次函数经典例题

类型一:正比例函数与一次函数定义 1、当m 为何值时,函数y=-(m-2)x +(m-4)是一次函数?思路点拨:某函数是一次函 数,除应符合y=kx+b 外,还要注意条件k≠0.解:∵函数y=-(m-2)x +(m-4)是一次函数, ∴∴ m=-2. ∴当m=-2 时,函数y=-(m-2)x +(m-4)是一次函数.举一反三: 【变式 1】如果函数是正比例函数,那么(). A.m=2 或m=0 B.m=2 C.m=0 D.m=1 【答案】:考虑到x 的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C 【变式2】已知y-3 与x成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y的值; (3)当y=4时,求x的值.解析:(1)由于y-3 与x 成正比例,所以设y-3=kx. 把x=2,y=7 代入y-3=kx 中,得 7-3 =2k,∴ k =2.∴ y与x 之间的函数关系式为y-3=2x,即 y=2x+3. ( 2 )当x=4 时,y=2×4+3=11. ( 3 )当y = 4 时,4=2x+3 ,∴x= . 类型二:待定系数法求函数解析式 、求图象经过点(2,-1),且与直线y=2x+1 平行的一次函数的表达式. 思路点拨:图象与y=2x+1 平行的函数的表达式的一次项系数为2,则可设此表达式为 y=2x+b,再将点(2,-1)代入,求出b 即可. 解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2 ,-1 ),∴ -l=2×2+b.∴ b=-5,∴所求一次函数的表达式为y=2x-5. 总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。 举一反三: 【变式 1 】已知弹簧的长度y (cm)在一定的弹性限度内是所挂重物的质量x(kg )的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg 的重物时,弹簧的长度是7.2cm,

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

《一次函数》经典例题剖析(附练习及答案)

《一次函数》复习课 知识点1 一次函数和正比例函数的概念 若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正 比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=2 1 x ,y=-x 都是正 比例函数. 【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定. (2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. (3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象 把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 知识点 3一次函数的图象 由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ), 直线与x 轴的交点(-k b ,0).但也不必一定选取这两个特殊点.画正比例函数 y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓); (3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.

一次函数经典练习题精心整理

1.小骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线 所示,小骑摩托车匀速从乙地到甲地,比小晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小到达甲地后,再经过___小时小到达乙地;小骑自行车的速度是___千米/小时. (2)小出发几小时与小相距15千米? (3)若小想在小休息期间与他相遇,则他出发的时间x 应在什么围?(直接写出答案) 2,甲、乙两人骑自行车前往 A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所 提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(4分) (2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个) .(3分) (3)在什么时间段乙比甲离A 地更近?(3分) 3.(2011,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示, (1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式; (3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程, (第23题图) x (小时) 图13

中考数学反比例函数-经典压轴题附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2. (1)求双曲线的解析式; (2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________; (3)点(6,n)为G1与G2的交点坐标,求a的值. (4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围. 【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得, 所以双曲线的解析式为y= ; (2)2 (3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2), 抛物线G2的解析式为y=﹣(x﹣a)2+9, 把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± , 即a的值为6± ; (4)抛物线G2的解析式为y=﹣(x﹣a)2+9, 把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ; 把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ; ∵G1与G2有两个交点, ∴3+ ≤a≤12﹣2 , 设直线DE的解析式为y=px+q,

把D(3,4),E(12,1)代入得,解得, ∴直线DE的解析式为y=﹣ x+5, ∵G2的对称轴分别交线段DE和G1于M、N两点, ∴M(a,﹣ a+5),N(a,), ∵MN<, ∴﹣ a+5﹣<, 整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0, ∴a<4或a>9, ∴a的取值范围为9<a≤12﹣2 . 【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4), 所以BE= =2 . 故答案为2 ; 【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的 解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围. 2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

一次函数经典应用题

一次函数经典应用题 3.某加油站五月份营销一种油品的销售利润(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式; (3)我们把销售每升油所获得的利润称为利润率,那么,在O A.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案) 4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式; (3)求这辆汽车从甲地出发4h时与甲地的距离.

5.邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求: (1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间? 6.星期天8:00~8:30员以每车20立方米的加气量,依次 给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图2所示. (1)8:00~8:30,燃气公司向储气罐注入了多少立 方米的天然气? (2)当x ≥0.5时,求储气罐中的储气量y (立方米) 与时间x (小时)的函数解析式; (3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由. 分 小

一次函数知识点总结及典型试题(用)

一次函数知识点总结及经典试题 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正

一次函数相关的中考压轴题(含分析和答案)

一次函数是初中数学的重点内容之一,也是中考的主要考点。现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考 一.解答题(共30小题) 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值. (2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

最新一次函数的应用典型练习题

一次函数的应用典型练习题 1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值. 2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式. 3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式. 4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式. 5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式. 6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速: (1)求y 与x (2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远? x y 2 1

7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用 水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准. (3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨? 8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓 球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价 的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒). (1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的 付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系 式. (2)就乒乓球盒数讨论去哪家商店购买合算? 9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这 两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示. (1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系 式; (2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合 算?

(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数k x k y )1(-=+3,则k = . 2、函数n m x m y n +--=+1 2)2(,当m= ,n= 时为正比例函数;当m= , n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上, 0

是 . 8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( ) A.m >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __. 10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0m C. 2m 5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号) 6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

一次函数经典题型+习题(精华,含答案)

1 一次函数 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________; 若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第 ______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________; 到原点的距离是____________; 2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原 点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ????? ,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°, 则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数; 2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线相交。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线

高中函数值域的经典例题12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

相关文档
相关文档 最新文档