文档库 最新最全的文档下载
当前位置:文档库 › 高数第十一章习题教学文案

高数第十一章习题教学文案

高数第十一章习题教学文案
高数第十一章习题教学文案

高数第十一章习题

第十一章第一节曲线积分习题 一、填空题:

1、已知曲线形构件L的线密度为),(y x ρ,则L的质量M=_______________;

2、

?L

ds =_______________;

3、对________的曲线积分与曲线的方向无关;

4、

?

L

ds y x f ),(=?'+'β

α

φ?φ?dt t t t t f )()()](),([22中要求α

________β.

5、计算下列求弧长的曲线积分: 1、?+L

y x ds e

2

2,其中L为圆周222a y x =+,直线y=x及x轴在第一象限内所围成的扇形的整个边界;

2、?Γ

yzds x

2

,其中L为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);

3、

?+L

ds y x )(2

2,其中L为曲线???-=+=)cos (sin )sin (cos t t t a y t t t a x π20≤≤t ; 4、计算?L

ds y ,其中L为双纽线 )0()()(2

22222>-=+a y x a y x .

三、设螺旋形弹簧一圈的方程为t a x cos =,

t a y sin =,kt z =,其中π20≤≤t ,它的线密度222),,(z y x z y x ++=ρ,求:

1、它关于Z 轴的转动惯量Z I ;

2、它的重心 . 答案一、1、?L

ds y x ),(ρ; 2、L 的弧长; 3、弧长; 4、<.

二、1、2)4

2(-+

a e

a

π

;2、9;3、)21(2232ππ+a ; 4、)22(22-a .

三、)43(3

22

22222k a k a a I z ππ++=;222

2436k a ak x π+=; 2

222436k a ak y ππ+-=; 2

2222243)

2(3k a k a k z πππ++=.

第二节对坐标的曲线积分习题

一、填空题:

1、 对______________的曲线积分与曲线的方向有关;

2、设0),(),(≠+?dy y x Q dx y x P L

,则 =++??-L

L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(____________; 3、在公式=+?dy y x Q dx y x P L

),(),(?'+'β

α

φφ??φ?dt t t t Q t t t P )}()](),([)()](),([{中,下限a 对应于L 的____点,上限β对应

于L 的____点;

4、两类曲线积分的联系是______________________________________________________. 二、计算下列对坐标的曲线积分: 1、?

L

xydx ,其中L 为圆周)0()(222>=+-a a y a x 及X 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);

2、?+--+L

y

x dy y x dx y x 22)()(,其中L 为圆周2

22a y x =+(按逆时针方向饶行); 3、?Γ

+-ydz dy dx ,其中为有向闭折线ABCD ,这里的C B A ,,依次为点(1,0,0),(0,1,0),(0,0,1);

4、

?++ABCDA

y x dy dx ,其中ABCDA 是以)0,1(A ,)1,0(B ,)0,1(-C ,)1,0(-D 为顶点的正方形正向边界线 .

三、设z 轴与重力的方向一致,求质量为m 的质点从位置),,(111z y x 沿直线移到),,(222z y x 时重力所作的功. 四、把对坐标的曲线积分?+L

dy y x Q dx y x P ),(),(化成对弧长的积分, 其中L 为:1、在xoy 面内沿直线从点(0,0)到点(1,1);2、

沿抛物线2

x

y =从点(0,0)到点(1,1);3、沿上半圆周x y x

222

=+从点(0,0)到点(1,1).

答案

一、1、坐标; 2、-1; 3、起,点; 4、

dz R Qdy Pdx ?Γ

++ds R Q P )cos cos cos (γβα?Γ

++=.

二、1、;2

3a π

-

2、π2-;

3、

21

; 4、0.三、{})(,,0,012z z mg mg -==. 四、1、?+L dy y x Q dx y x P ),(),(?+=L ds y x Q y x P 2

)

,(),(; 2、?+L dy y x Q dx y x P ),(),(?++=L ds x

y x xQ y x P 2

41),(2),(; 3、

?

+L

dy y x Q dx y x P ),(),(?-+-=L

ds y x Q x y x P x x )],()1(),(2[2.

第三节格林公式习题 一、填空题:

1、设闭区域D由分段光滑的曲线L围成,函数),(),,(y x Q y x P 及在D上具有一阶连续偏导数,则有

????-??D

dxdy y

P

x Q )(

________________; 2、设D为平面上的一个单连通域,函数),(),,(y x Q y x P 在D内有一阶连续偏导数,则?+L

Qdy Pdx 在D内与路径无关的充要条件是

_______________在D内处处成立;

3、设D为由分段光滑的曲线L所围成的闭区域,其面积为5,又),

(y x P 及),(y x Q 在D上有一阶连续偏导数,且

1=??x

Q

,1-=??y P ,则

=+?L

Qdy Pdx ___.

4、 计算?++-L

dy y

x dx x xy )()2(2

2

其中L是由抛物线2x y =和x y =2所围成的区域的正向边界曲线,并验证格林公式的

正确性 . 5、

曲线积分,求星形线t a y t a x

33sin ,cos ==所围成的图形的面积 .

四、证明曲线积分

?

-+-)

4,3()

2,1(2232)36()6(dy xy y x dx y xy 在整个xoy 面内与路径无关,并计算积分值 .

五、利用格林公式,计算下列曲线积分: 1、

?+--L

dy y x dx y x

)sin ()(22

其中L是在圆周2

2x x y -=上由点(0,0)到点(1,1)的一段弧;

2、求曲线积分?

--+=AMB

dy y x dx y x I 221

)()(和?

--+=ANB

dy y x dx y x I 222)()(的差.其中AMB 是过原点和

)1,1(A ,)6,2(B 且其对称轴垂直于x轴的抛物线上的弧段, AMB是连接A,B的线段 .

六、计算?+-L y x ydx

xdy 2

2,其中L为不经过原点的光滑闭曲线 .(取逆时针方向)

七、验证y x x dx xy y x 23228()83(+++dy ye y

)12+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样一个),(y x u . 八、试确定λ,使得dy r y

x dx r y x λλ22-是某个函数),(y x u 的全微分,其中2

2y x r +=,并求),(y x u .

九、设在半平面x>0内有力)(3y x r

k F +-=构成力场,其中k为常数, 2

2y x r +=.证明在此力场中场力所作的功与所取的

路径无关 . 答案

一、1、

?+L

dyQ Pdx ; 2、

x Q y p ??=??;3、10.三、30

1.四、2

83a π.五、236.六、1、2sin 4167+-; 2、-2.七、1、当L所包围的区域D不包含原点时,0;2、当L所包围的区域D包含原点, 且L仅绕原点一圈时,π2;3、当L所包围的区域D包含原点, 且L绕原点n圈时,πn 2.

)(124),(223y y e ye y x y x y x u -++=.八、y

r

y x u =-=),(,1λ.

第四节对面积的曲面积分习题 一、填空题:

1、已知曲面∑的面积为a, 则??∑

ds 10_______;

2、

??∑

ds z y x f ),,(=??yz

D z y z y x f ),),,((________dydz ;

3、设∑为球面2222

a z y x =++在xoy 平面的上方部分,则=++??∑

ds z y x )(222____________;

4、

=??

zds 3_____,其中∑为抛物面)(22

2y x z +-=在xoy 面上方的部分; 5、

=+??∑

ds y x )(22______,其中∑为锥面2

2y x z +=及平面z=1所围成的区域的整个边界曲面.

二、计算下列对面积的曲面积分: 1、

??∑

+--ds z x x xy )22(2

,其中∑为平面622=++z y x 在第一卦限中的部分; 2、

??∑

++ds zx yz xy )(,其中∑为锥面2

2y x z +=被柱面ax y x

222

=+所截得的有限部分 .

三、求抛物面壳)10)((2122

≤≤+=

z y x z

的质量,此壳的面密度的大小为z =ρ. 四、求抛物面壳)10()(2

12

2≤≤+=z y x z 的质量,此壳的面密度的大小为.z =ρ

答案

一、1、a 10; 2、

2

2)()(

1z

x y x ??+??+; 3、4

2a π; 4、

π10

111

; 5、

π2

2

1+.二、1、427

-

; 2、421564a .三、6

π.

四、

)136(15

2+π

. 第五节对坐标的曲面积分 一、填空题: 1、

????+

-

∑∑+dzdx z y x Q dzdx z y x Q ),,(),,(=_______________________.

2、第二类曲面积分

dxdy R Qdzdx Pdydz ??∑

++化成第一类曲面积分是__________,其中γβα,,为有向曲面∑上点),,(z y x 处

的___________的方向角 .

二、计算下列对坐标的曲面积分: 1、

??

++ydzdx xdydz zdxdy ,其中∑是柱面122=+y x 被平面z=0及z=3所截得的在第一卦限内的部分的前侧; 2、??∑

++yzdzdx xydydz xzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外

侧; 3、

dxdy y

x e z ??

+2

2

,其中∑为锥面2

2y x z +=和z=1,z=2所围立体整个表面的外侧 .

三、把对坐标的曲面积分

??∑

+dzdx z y x Q dydz z y x P ),,(),,(dxdy z y x R ),,(+化成对面积的曲面积分,其中∑是平面

63223=++z y x 在第一卦限的部分的上侧 .

答案

一、1、0;2、

??∑

++dS R Q P )cos cos cos (γβα,法向量. 二、1、π23

; 2、

8

1;3、2

2e π. 三、dS R Q P )5

325253(??++. 第六节高斯公式习题

一、利用高斯公式计算曲面积分: 1、dxdy z dzdx y dydz x 333++??∑,其中∑为球面2222

a z y x

=++外侧;

2、

??

++zdxdy ydzdx xdydz ,其中∑是界于z=0和z=3之间的圆柱体922≤+y x 的整个表面的外侧; 3、

??∑

xzdydz ,∑是上半球面2

22y x R z --=的上侧 .

二、证明:由封闭曲面所包围的体积为??∑

++=

ds z y x V )cos cos cos (31

γβα,式中γβαcos ,cos ,cos 是曲面的外法线的方

向余弦 .

三、求向量

k xz j y x i z x A 22)2(-+-=,穿过曲面∑:为立方体a y a x ≤≤≤≤0,0,a z ≤≤0的全表面,流向外侧的通量 .

四、求向量场k xz j xy i e A xy )cos()cos(2

++=的散度 .

五、设),,(,),,(z y x v z y x u 是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,n

v

n u ????,依次表示),,(,),,(z y x v z y x u 沿

∑的外法线方向的方向导数。证明: ds n u

v n v u dxdydz u v v u )()(??-??=?-??????Ω∑

,其中∑是空间闭区域Ω的整个边界曲面.

(注 22

2222z

y x ??+??+??=?,称为拉普拉斯算子)

答案

一、1、5512a π;2、π81; 3、44

R π.三、)62(23

a a -.四、)sin(2)sin(2xz xz xy x ye A div xy --=

第七节斯托克斯公式习题

一、计算

?

Γ

+-dz yz xzdy ydx 23,其中Γ是圆周2,222==+z z y x 若从z轴正向看去,这圆周是逆时针方向 .

二、计算?

Γ

++dz x dy z dx y 222,其中Γ是球面2222a z y x =++和园柱面ax y x =+22的交线)0,0(≥>z a ,从x轴正向看

去,曲线为逆时针方向 .

三、求向量场j y x z i y z A

)cos ()sin (--+=的旋度 .

四、利用斯托克斯公式把曲面积分??∑

?ds rot 化成曲线积分,并计算积分值,其中A,∑及n分别如下:xz xy y ++=2

,∑

为上半个球面221y x z --=的上侧,n是∑的单位法向量.

五、求向量场k xy j yz x i z x A 233)()(-++-=沿闭曲线Γ为圆周0,222=+-=z y x z

(从z轴正向看Γ

依逆时针方向)

的环流量 . 六、设),,(z y x u u =具有二阶连续偏导数,求)(gradu rot .

答案

一、π20-.二、34

a π

-.三、j i A rot

+=四、0.五、π12六、0

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学习题及解答 (1)

普通班高数作业(上) 第一章 函数 1、试判断下列每对函数是否是相同的函数,并说明理由:(第二版P22:4;第三版P8:1)(注:“第二版P22:4”指第二版教材第22页的第4题) (2))sin(arcsin x y =与x y =; (4)x y = 与2x y =; (6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。 2、求下列函数的定义域,并用区间表示:(第二版P22:5;第三版P8:2) (2)x x x y -+=2; (3)x y x -+=1ln arcsin 21; (7)x e y x ln 111 -+ =。 3、设?????<-≥-=0 ,10 ,1)(2 2x x x x x f ,求)()(x f x f -+。(第二版P23:10;第三版无) 4、讨论下列函数的单调性(指出其单增区间和单减区间):(第二版P23:11;第 三版P12:1) (2)24x x y -= ; (4)x x y -=。 5、讨论下列函数的奇偶性:(第二版P23:12;第三版P12:2) (2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=; (6)x x f ln cos )(=; (7)? ??≥+<-=0,10,1)(x x x x x f 。 6、求下列函数的反函数及反函数的定义域:(第二版P23:16;第三版P14:1) (1))0,(),21ln(-∞=-=f D x y ; (6)???≤<--≤<-=21,)2(210, 12)(2 x x x x x f 。 7、(1)已知421)1(x x x x f +=-,求)(x f ; (2)已知2 ln )1(222 -=-x x x f ,且x x f ln )]([=?求)(x ?。(第二版P23:19;第三版P16:3) 8、以下各对函数)(u f 与)(x g u =中,哪些可以复合构成复合函数)]([x g f ?哪些不可复合?为什么?(第二版P24:23;第三版P16:7)

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

6. 设函数()ln cos f x x =,则二阶导数()f x ''=______________. 7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点.

大学高等数学第二章习题及答案

习题2—1(A ) 1.下列论述是否正确,并对你的回答说明理由: (1)函数的导数是函数的平均变化率在自变量的增量趋于零时的极限; (2)求分段函数(),, ()(),x x a f x x x a ?φx )处的导数. 解:x x x x x x x y x x x x x x 1 e ln ])1ln[(lim ln )ln(lim 1 100==?+=?-?+='?→?→?. 5. 对函数x x x f 2)(2 -=,分别求出满足下列条件的点0x : (1)0)(0='x f ; (2)2)(0-='x f .

高等数学典型习题及参考答案

第八章典型习题 一、 填空题、选择题 1、点)3,1,4(M -到y 轴的距离就是 2、平行于向量}1,2,1{a -=? 的单位向量为 3、().0431,2,0垂直的直线为 且与平面过点=--+-z y x 4、.xoz y z y x :面上的投影柱面方程是在曲线?? ?==++Γ2 10222 5、()==-=+=+=-δ λ δλ则平行与设直线,z y x :l z y x : l 1111212121 ()23A ()12B ()32C ()21 D 6、已知k 2j i 2a ????+-=,k 5j 4i 3b ? ???-+=,则与b a 3??-平行的单位向量为 ( ) (A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-± (D )}11,7,3{179 1-± 7、曲线???==++2 z 9 z y x 222在xoy 平面上投影曲线的方程为( ) (A )???==+2z 5y x 22 (B )???==++0z 9z y x 222(C )???==+0 z 5y x 22 (D )5y x 22=+ 8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9 、 设 空 间 三 直 线 的 方 程 分 别 为 251214: 1+=+=+z y x L ,67313:2+=+=z y x L ,4 1312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L 10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面 11、方程05 z 3y 3x 2 22=-+所表示的曲面就是( ) (A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面 二、解答题

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

自测题(1-7章附参考答案)-高等数学上册.

第一章函数与极限 一、选择题: 1.函数的定义域是() (A; (B; (C; (D. 2.函数的定义域是() (A;(B;(C; (D. 3、函数是() (A偶函数; (B奇函数; (C非奇非偶函数;(D奇偶函数. 4、函数的最小正周期是() (A2; (B; (C 4 ; (D . 5、函数在定义域为() (A有上界无下界; (B有下界无上界; (C有界,且; (D有界,且. 6、与等价的函数是() (A ; (B ; (C ; (D .

7、当时,下列函数哪一个是其它三个的高阶无穷小() (A);(B); (C);(D). 8、设则当()时有 . (A; (B; (C; (D任意取 . 9、设,则( (A-1 ; (B1 ; (C0 ; (D不存在 . 10、() (A1; (B-1;(C0; (D不存在. 二、求下列函数的定义域: 2、 . 三、设 (1)试确定的值使 ; (2)求的表达式 . 四、求的反函数.

五、求极限: 1、; 2、; 3、; 4、; 5、当时,; 6、 . 六、设有函数试确定的值使在连续 . 七、讨论函数的连续性,并判断其间断点的类型 . 八、证明奇次多项式: 至少存在一个实根 . 第二章导数与微分 一、选择题: 1、函数在点的导数定义为() (A); (B); (C);

(D); 2、若函数在点处的导数,则 曲线在点(处的法线() (A)与轴相平行;(B)与轴垂直; (C)与轴相垂直;(D)与轴即不平行也不垂直: 3、若函数在点不连续,则在 ( (A)必不可导;(B)必定可导; (C)不一定可导;(D)必无定义. 4、如果=(),那么. (A ; (B ; (C ; (D . 5、如果处处可导,那末() (A);(B); (C);(D). 6、已知函数具有任意阶导数,且 ,则当为大于2的正整数时, 的n阶导数是() (A);(B);

高等数学典型例题与应用实例

例 利用二重积分的性质,估计积分 2 222(2)d D x y x y σ+-?? 的值,其中D 为半圆形区域2 2 4,0x y y +≤≥. 解 我们先求函数2 2 2 2 (,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值. 由2 2 220,420,x y f x xy f y x y '?=-=??'=-=??解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2 ()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0. 在边界22 2:4L x y +=(0)y ≥上, 242()(,4)58(22)h x f x x x x x =-=-+-≤≤ 由3 ()4100h x x x '=-=得驻点123550,,22 x x x ==- =,(0)(0,2)8h f ==. 5537 ()(,)2224 h f ± =±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知 222202(2)d 82D x y x y πσπ?≤+-≤???, 即 22220(2)d 16D x y x y σπ≤+-≤??. 例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域, 1D 为D 在第一象限的部分,则 (cos sin )( )D xy x y dxdy +=??. (A )1 2 cos sin D x y dxdy ?? (B )1 2D xy dxdy ?? (C )1 4 (cos sin )D xy x y dxdy +?? (D )0

高等数学第二章课后习题答案

第二章 导数与微分 1. ()().1,102-'=f x x f 试按定义求设 2002 00(1)(1)10(1)10 '(1)lim lim 1020lim lim (1020)20x x x x f x f x f x x x x x x ?→?→?→?→-+?--?---==???-?==?-=-? 2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。 ⑴ ()()=?-?-→?x x f x x f x 000lim (0'()f x -); ⑵ ()=→?x x f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()() =--+→h h x f h x f h 000lim (02'()f x ). 3. 求下列函数的导数: ⑴ ='=y x y ,4 则34x ⑵ ='=y x y ,32 则1 323 x - ⑶ ='=y x y ,1 则3212x -- ⑷ = '=y x x y ,5 3则11 5165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点?? ? ??=πx y 'sin ,'()3y x y π=-= 所以切线方程为1)23y x π- =- 2(1)0y +-=

法线方程为1)23y x π- =- 化简得3)0x π+-+= 5. 讨论函数?????=≠=0 00 1sin 2 x x x x y 在0=x 处的连续性和可导性. 20(0)0 1 lim sin 0(0)()x f x f x →===因为有界量乘以无穷小 所以函数在0x =处连续 因为 20001 sin (0)(0) 1lim lim lim sin 0x x x x f x f x x x x x ?→?→?→?+?-==?=??? 所以函数在0x =处可导. 6. 已知()()()()是否存在? 又及求 0 ,0 0 , 0 2f f f x x x x x f '''???<-≥=-+ 2 ' 00(0)(0)(0)lim lim 0h h f h f h f h h + →+→++-=== '0 0(0)(0)(0)lim lim 1h h f h f h f h h -→-→++--===- ''(0)(0)f f +-≠Q '(0)f ∴不存在 7. ()(). , 0 sin x f x x x x x f '?? ?≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;

同济大学版高等数学课后习题答案第2章

习题2-1 1. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称 t θ ω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样 确定该物体在时刻t 0的角速度? 解 在时间间隔[t 0, t 0+?t]内的平均角速度ω为 t t t t t ?-?+=??=)()(00θθθω, 故t 0时刻的角速度为 )() ()(lim lim lim 0000 00t t t t t t t t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为 t t T t t T t T ?-?+=??)()(, 故物体在时刻t 的冷却速度为 )()()(lim lim 00t T t t T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此

函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义. 解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量. x x f x x f ?-?+) ()(表示当产量由x 改变到x +?x 时单位产量 的成本. x x f x x f x f x ?-?+='→?) ()(lim )(0 表示当产量为x 时单位产量的成 本. 4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 x x x f x f f x x ?--?+-=?--?+-=-'→?→?2 200 )1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 1002 0-=?+-=??+?-=→?→?x x x x x x . 5. 证明(cos x)'=-sin x . 解 x x x x x x ?-?+='→?cos )cos(lim )(cos 0 x x x x x ???+-=→?2sin )2sin(2lim x x x x x x sin ]2 2sin ) 2 sin([lim 0-=???+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么: (1)A x x f x x f x =?-?-→?) ()(lim 000 ;

高等数学经典求极限方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】) sin 1tan 1(sin tan lim sin 1tan 1lim 3030 x x x x x x x x x x +++-=+-+→→

高等数学典型例题与应用实例(重积分B部分)

例 利用二重积分得性质,估计积分 得值,其中为半圆形区域. 解 我们先求函数在区域上得最大值与最小值. 由解得内驻点为,. 在边界上,在上得最大值为,最小值为. 在边界上, 由得驻点,. . 综上,在上得最大值为,最小值为.又得面积为,所以由二重积分得估值性质知 , 即 . 例 设为xoy 平面上以为顶点得三角形区域,为在第一象限得部分,则. (A) (B) (C) (D) 解 区域D 如图所示,并记为以为顶点得三角 形区域,则关于轴对称,且为在轴右侧得部分区域,区域关于轴对称. 又关于与均为奇函数;而关于为偶函数.关于为奇函数,由二重积分得奇偶对称性得 ,故; 1 cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==?????? , 故 . 所以 1 (cos sin )cos sin 2cos sin D D D D xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=????????. 因此我们选(A ). 例 设区域,为上得正值连续函数,为常数,则 . 解 由题意知,关于直线对称,由二重积分轮换对称性得 . 因此,我们应填“.” 例 计算二次积分 解 积分区域如图,则 原式 ;

例 设为椭圆区域,计算二重积分. 解 令则得极坐标表示为,且. 由式,可得 . 例 计算二重积分,其中D 为 解 解法1 D 得边界曲线为这就是一个以为圆心,为半径得圆域,采用一般得变量代换,令即作变换于就是D 变为 所以, (再用极坐标) 解法2 由于积分区域D:关于(即对称,故 类似地,由于D 关于对称,故 从而 . 2323d d d d 1d d 21d d 21d d )(2 π π=??? ? ???===?+??? ?? -+??? ??-=+??????????面积D y x y x y x y y x x y x y x D D D D D 例 计算,其中, 解 D 由分为D 2,D 2两部分,如图、 x e y y e x y x e y x e I y y x x D y D x d d d d d d d d 0 10 10 2 2 2 2 1 2????????+=+= 例 利用二重积分计算定积分 解 因为 所以 ? ??? ???? ??++=+=+=== b a b a b a b a t t a b t dt t dx x dt dx dt x I 11ln )1ln(11)(1 10

相关文档
相关文档 最新文档