文档库 最新最全的文档下载
当前位置:文档库 › 计算方法复习题(2003级)

计算方法复习题(2003级)

计算方法复习题(2003级)
计算方法复习题(2003级)

数值计算方法复习题(2003级)

1、问142.3,141.3,7/22分别作为π的近似值各具有几位有效数字?

2、设计算球体体积允许其相对误差限为1%,问测量球半径的相对误差限最大为多少?

3、1)经过四舍五入得出1025.61=x ,115.802=x 。试问它们分别具有几位有效数字? 2)求21x x +的绝对误差限。

4、已知10100=,11121=,12144=,用抛物线插值求115的近似值,并 估计误差。

5、设4)(x x f =,试利用拉格朗日插值余项定理写出以2,1,0,1-为插值节点的三次 插值多项式。

6、已知1234)(248+++=x x x x f ,求]2,,2,2[810 f .

7、已知x x f sin )(=的数值表如下,试写出三阶(向前)差分表.

8、用最小二乘法建立下表的经验公式

9、设),,1,0)((n k x l k =是n+1个互异节点n x x x ,,,10 上的n 次基本插值多项式,试

证:

m n

k k m k x x k x

≡∑=0

)(),,1,0(n m =

10

求满足边界条件0)3(,1)0(='='S S 的三次样条插值函数。

11

试用3点公式计算)1.1(f '。

12、用梯形公式和辛普森公式计算积分?-1

dx e

x

,并估计误差。

13、求近似公式

≈?1

)(dx x f )]43(2)21()41(2[31f f f +-的代数精度。 14、用复合梯形公式计算积分?10sin dx x

x

的近似值,使误差不超过4105.0-?。 15、推导求积公式2/))(()()()(2a b f a f a b dx x f b

a

-'+-=?ξ,其中],[b a ∈ξ。

16、叙述二分法、牛顿法的优缺点。

17、用二分法和迭代法求方程01)(3=--=x x x f 的根。 18、判别下列方程能否用迭代法求解:

(1)4/)sin (cos x x x += (2) x

x 24-= 19、证明用迭代公式k

k k x x x 1

21+

=+, 2,1,0=k 产生序列,对于10≥x 均收敛于2. 20、设0>a ,试建立求

a

1

的牛顿迭代公式,要求在迭代公式中不含有除法运算. 21、用Gauss 消去法、列主元素消去法和矩阵的三角分解法(LU 分解)分别解方程组

??????????142210321??????????321x x x ????

??????=13814. 22、以方程组???

? ??=???? ??????

??212122211211

b b x x a a a a 为例,说明用Gauss 消去法求解时为什么要选主元?23、(1)设T

x )8513(-= ,求1x ,2x ,∞

x

.

(2)已知?

?

?

?

??--=6134A ,求1A ,∞A ,2A ;并求∞)(A cond . 24、给定线性方程组???

??????=++-=+-+=-+-=-+17

72223823113875104321

4321321431x x x x x x x x x x x x x x ,写出雅可比迭代公式和高斯-赛德尔迭代公式;分别取初值T x

)0,0,0,0()

0(=,计算)3(x ,并考察它们的敛散性。

25、考察方程组???=+=+221

1

212b x kx b kx x ,给出雅可比迭代法和高斯-赛德尔迭代法收敛的条件。

26、试分别用欧拉方法)025.0(=h 、改进欧拉方法)05.0(=h 以及经典R-K 方法)

1.0(=h

求初值问题???

?

?=∈-='0

)0(]

3.0,0[,1y x y y 的数值解。

27、用改进的欧拉法计算积分?

-=

x

t dt e y 0

2

在1,5.0,25.0=x 时的近似值。

(保留4位小数) 28、对初值问题?

??==+'1)0(0y y y ,证明用梯形公式求得的近似解为n

n h h y ???

??+-=22。

29、证明中点方法),(211n n n n y x hf y y +=-+是2阶方法。

30、讨论梯形公式求初值问题?

??=-='a y y

y )0(λ的稳定性(这里,实数0>λ)。

题型:填空题,简答题,计算题,证明题。

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

计算方法复习题

复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ???????????。 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 4、近似值*0.231x =关于真值229.0=x 有( )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( ),=]4,3,2,1,0[f ( ); 7、计算方法主要研究( )误差和( )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ),代数精度为( ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为()。 13、 为了使计算 32)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

(完整word版)西工大计算方法试题参考(完整版).docx

2002-2003 第一学期 一.计算及推导( 5*8) 1.已知 x* 3.141, x ,试确定 x * 近似 x 的有效数字位数。 * * * 0.100 * * * 2.有效数 x 1 3.105, x 2 0.001, x 3 1 x 2 3 ,试确定 x x 的相对误差限。 3.已知 f ( x) 0.5 x 3 0.1x 2 ,试计算差商 f 0,1,2,3 4.给出拟合三点 A (0,1), B (1,0) 和 C (1,1) 的直线方程。 5.推导中矩形求积公式 b (b a) f ( a b ) 1 f '' ( )(b a)3 f (x)dx a 2 24 b n f (x)dx A i f ( x i ) a 6.试证明插值型求积公式 i 0 的代数精确度至少是 n 次。 7.已知非线性方程 x f (x) 在区间 a, b 内有一实根,试写出该实根的牛顿迭代 公式。 8.用三角分解法求解线性方程组 1 2 1 x 1 0 2 2 3 x 2 3 1 3 0 x 3 2 二.给出下列函数值表 0.4 0.5 0.6 0.7 0.8 x i 0.38942 0.47943 0.56464 0.64422 0.71736 f ( x i ) 要用二次插值多项式计算 f (0.63891) 的近似值,试选择合适的插值节点进行计 算,并说明所选用节点依据。 (保留 5 位有效数字)(12 分) 三. 已知方程 x ln x 0 在 (0,1) 内有一实根 ( 1)给出求该实根的一个迭代公式,试之对任意的初始近似 x 0 (0,1) 迭代法都收 敛,并证明其收敛性。 ( 2) x 0 0.5 试用构造的迭代公式计算 的近似值 x n ,要求 x n x n 1 10 3 。 四. 设有方程组

《计算方法》练习题

《计算方法》练习题一 一、填空题 1. 14159.3=π的近似值,准确数位是( )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。 4.乘幂法是求实方阵( )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( )。 6. 71828.2=e 具有3位有效数字的近似值是( )。 % 7.用辛卜生公式计算积分?≈+1 01x dx ( ) 。 8.设)()1() 1(--=k ij k a A 第k 列主元为)1(-k pk a ,则=-) 1(k pk a ( )。 9.已知?? ? ? ??=2415A ,则=1A ( )。 10.已知迭代法:),1,0(),(1 ==+n x x n n ? 收敛,则)(x ?'满足条件( )。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( )。 。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有( )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ). A .)(h o B.)(2h o C.)(3h o D.)(4 h o 6.近似数2 1047820.0?=a 的误差限是( )。 (

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

计算方法复习题

计算方法复习题 一、判断正误 1.若73()1,f x x x =++则017 2,2,,2f ???????=0。 2.牛顿-柯特斯(Newton-Cotes )数值求积公式∑?=-≈n i i n i b a x C f a b dx x f 0 )()()()(,当n 为奇数时,至 少具有n 次代数精确度。 3.形如?∑=≈b a n i i i x f dx x f 1)()(ω的高斯(Gauss )求积公式具有最高代数精度12+n 次。 4.若A 是n 阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使A =LU 成立。 5.对任意初始向量X )0(及右端向量g ,一般迭代过程g B X X +=+)()1(m m 收敛于方程组的精确解x *的充要条件是1)(

数值计算方法期末模拟试题二

,取 , ,取初始值, 近似解的梯形公式是 ,则== = =

10、设,当时,必有分解式,其中 L为下三角阵,当其对角线元素足条件时,这种分解是唯一的。 二、计算题(共60 分,每题15分) 1、设 在上的三次Hermite插值多项式H(x)使满 (1)试求 足H(x)以升幂形式给出。 (2)写出余项的表达式 2、 已知的满足,试问如何利用构造一 个收敛的简单迭代函数,使0,1…收敛? 3、试确定常数A,B,C和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss型的? 4、推导常微分方程的初值问题的数值解公式:

三、证明题 1、设 (1)写出解 的Newton迭代格式 (2)证明此迭代格式是线性收敛的 2、设R=I-CA,如果,证明: (1)A、C都是非奇异的矩阵 (2) 参考答案: 一、填空题 1、2.3150 2、 3、 4、1.5 5、 6、 7、 8、收敛

9、O(h) 10、 二、计算题 1、1、(1) (2) ,可得 2、由 因故 故,k=0,1,…收敛。 3、,该数值 求积公式具有5次代数精确度,它是Gauss型的 4、数值积分方法构造该数值解公式:对方程在区间 上积分,得 ,记步长为h,对积分

用Simpson求积公式得 所以得数值解公式: 三、证明题 1、证明:(1)因,故,由Newton 迭代公式: n=0,1,… 得,n=0,1,… (2)因迭代函数,而, 又,则 故此迭代格式是线性收敛的。 2、证明:(1)因,所以I–R非奇异,因I–R=CA,所以C,A都是非奇异矩阵 (2)(2)故则有

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 已知函数21 1y x = +的一组 数据: 求分段线性插值函数, 并计算 () 1.5f 的近似值. 计算题1.答案

计算方法各章习题及答案

第二章 数值分析 2.1 已知多项式432()1p x x x x x =-+-+通过下列点: 试构造一多项式()q x 通过下列点: 答案:54313 ()()()3122 q x p x r x x x x x =-=- ++-+. 2.2 观测得到二次多项式2()p x 的值: 表中2()p x 的某一个函数值有错误,试找出并校正它. 答案:函数值表中2(1)p -错误,应有2(1)0p -=. 2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++. 2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x e 时,使用多少个节点能够保证误差不超过 61 102 -?. 答案:需要143个插值节点. 2.5 设被插值函数4()[,]f x C a b ∈,() 3()h H x 是()f x 关于等距节点 01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a h n -= .试估计() 3||()()||h f x H x ∞-. 答案:() 4 43||()()||384 h M f x H x h ∞-≤. 第三章 函数逼近 3.1 求()sin ,[0,0.1]f x x x =∈在空间2 {1,,}span x x Φ=上最佳平方逼近多项式,并给 出平方误差. 答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-, 二次最佳平方逼近的平方误差为 0.1 22-1220 (sin )())0.989 310 710x p x dx δ=-=??. 3.2 确定参数,a b c 和,使得积分 2 1 2 1 (,,)[I a b c ax bx c -=++-?取最小值. 答案:810, 0, 33a b c ππ =- == 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式 ()p x . 答案:()f x 的最佳一致逼近多项式为3 2 3 ()74 p x x x =++ . 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-. 答案: 236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤ 3.5 求() (11)x f x e x =-≤≤上的关于权函数 ()x ρ= 的三次最佳平方逼近 多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-. 答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++, 32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤. 第四章 数值积分与数值微分 4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1 (1,2,3,4)n x dx n =? ,并与 精确值比较. 答案:计算结果如下表所示

数值计算方法复习题9

习题九 1. 取步长h = 0.1,分别用欧拉法与改进的欧拉法解下列初值问题 (1);(2) 准确解:(1);(2);欧拉法:,,, 改进的欧拉法:,,, 2. 用四阶标准龙格—库塔法解第1题中的初值问题,比较各法解的精度。,,, 3. 用欧拉法计算下列积分在点处的近似值。 0.5000,1.1420,2.5011,7.2450 4. 求下列差分格式局部截断误差的首项,并指出其阶数。 (1),2 (2),3; (3),4 (4),4 5.用Euler法解初值问题取步长h=0.1,计算到x=0.3(保留到小数点后4位).

解: 直接将Eulerr法应用于本题,得到

由于,直接代入计算,得到 6.用改进Euler法和梯形法解初值问题取步长 h=0.1,计算到x=0.5,并与准确解相比较. 解:用改进Euler法求解公式,得 计算结果见下表 用梯形法求解公式,得 解得 精确解为 7.证明中点公式(7.3.9)是二阶的,并求其局部截断误差主项. 证明根据局部截断误差定义,得 将右端Taylor展开,得

故方法是二阶的,且局部截断误差主项是上式右端含h3的项。 8.用四阶R-K方法求解初值问题取步长 h=0.2. 解直接用四阶R-K方法 其中 计算结果如表所示: 9.对于初值问题 解因f'(y)=-100,故由绝对稳定区间要求(1)用Euler法解时, (2)用梯形法解时,绝对稳定区间为,由因f 对y是线性的,故不用迭代,对h仍无限制。(3)用四阶R-K方法时, 10. (1) 用Euler法求解,步长h应取在什么范围内计算才稳定?(2) 若用梯形法求解,对步长h有无限制? (3) 若用四阶R-K方法求解,步长h如何选取?

计算方法试题集及答案(新)

1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 1.73≈(三位有效数字)-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2,L 如果取 0 1.41y =≈作计算,则计算到10y 时,误差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值Λ14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。 9、 若* 2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。 10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 11、近似值* 0.231x =关于真值229.0=x 有( 2 )位有效数字; 12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()23 346 10111y x x x =+ +- --- 的乘除法次数尽量地少,应将该表达式改

数值计算方法试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知/⑵=12 /⑶= 1.3 ,则用辛普生(辛卜生)公式计算求得 J 1 /(x )d“ ,用三点式求得广⑴? ___________ 。 答案:2.367, 0.25 2、/(1) = -1, /⑵=2, /(3) = 1,则过这三点的二次插值多项式中F 的系数为 ___________ ,拉格 朗日插值多项式为 ________________________ L 、(x) — — (x — 2)(x — 3) — 2(x — l)(x — 3) — — (x — l)(x — 2) 3、近似值疋=0.231关于真值% = 0.229有(2 )位有效数字; 4、设/(J 可微,求方程Y = /U )的牛顿迭代格式是( 答案畑 1 一厂 (x“) 5、 对/V ) = P + x + l 差商/'[0,1,2,3]=( 1 ),/[0丄2,3,4] =( 0 ); 6、 计算方法主要研究(裁断)误差和(舍入)误差; 7、 用二分法求非线性方程f (x )=0在区间@力)内的根时,二分〃次后的误差限为 b-a (耐 ); 8、已知人1)=2,人2)=3,人4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15 ); 11、 两点式高斯型求积公式匸心皿利"曲4[磴#)+磴为]),代数精度为 (5); … 3 4 6 y = 10 ---------- 1 -------- ------------ T 12、 为了使计算 兀一 1匕一1广 仗一1)的乘除法次数尽量地少,应将该表达 式改写为〉'=1°+(3+(4-6/””,『=口,为了减少舍入谋差,应将表达式^/555^-^/i^ 答案:-1, );