文档库 最新最全的文档下载
当前位置:文档库 › 概率论在实际生活中的应用

概率论在实际生活中的应用

概率论在实际生活中的应用
概率论在实际生活中的应用

概率论在实际生活中的应用

论文摘要:概率论是从数量上研究随机现象统计规律的一门数学学科,是对随机现象进行演绎和归纳的科学[1]。概率论的表述,能够使人们清楚直观的看清现象,理解、掌握、运用概率论知识和概率计算方法,对解决各种概率相关问题能起到促进和深化的作用。本文就概率论在经济,市场,体育,博弈,加密,保险方面的应用进行了简单的介绍,通过一些贴近生活的例子,说明了概率论的应用为生活带来了极大的便利,从数字的角度清晰的解析了问题的关键部分,也为许多问题提供了一个方法。

关键词:概率论;生活;应用

Application of probability theory in real life

Abstract:Are quantitative research in probability theory random statistical laws of a mathematical discipline, is carried out on random phenomena of deductive and inductive science. Description of the probability theory, to make it clear and intuitive to see, understand and master, using probability theory knowledge and probability calculation methods for solving various probability-related issues can play a role in promoting and deepening. This article on probability theory in economic, market, sports, games, encryption,application of insurance to a simple introduction, through a number of examples of daily life, describes the application of probability theory to live brings great convenience, clear analysis from a digital perspective the key part of the problem, also provide a method for many of the problems.

Keywords: Probability theory;Life;Applications

引言

概率论问题的应用十分宽泛,这里就经济,交通,体育,博弈学,密码学方面进行简单的举例,通过这些贴近生活的具体实例说明概率论的方法可以为解决实际问题提供方法,为生活提供便利。

1.概率论在经济中的应用

1.1概率论在生产中的应用

生产流程中间,出现合格产品以及不合格产品都有一定的概率,抽取部分产品,检查其中不合格品的数量,就可以推断出全部生产产品中的不合格品的数量,以及出现不合格产品的概率,进而推断出该批次产品能否投入市场。

例1:某零件场生产出的产品有3种,规定ABC产品的不合格产品概率要分别低于0.01,0.005,0.001的时候才能出厂。某日检查第一种产品,随机抽查5个产品中有1个不合格产品。用概率的方法推测这个批次的产品能否出厂?

解: 把抽查每一个产品看成一个独立事件,可把问题看成一个典型的概率问题。如果产品符合要求,则其不合格的概率小于0.01,令p=0.01,q=1-p=0.99。抽取5

件产品没有不合格品的概率为P

5(0)=C0

5

(0.01)0(0.99)5=0.950990049若产品

符合要求,则抽取样品中有不合格品的概率为1- P

5

(0)≈0.05。因此出现不合格品应该是一个小概率事件[2],当抽取5个出现有1个不合格产品的时候,不合格品出现的概率为0.2,这个批次的A产品不合格率超过了0.01,故这批次产品不能够直接出厂,需要继续检查。

1.2概率论在市场销售中的运用

生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。这里,举出一个例子。

例2:市场中每月对产品A的需求量ξ为10到30间的任意数值,故产品销售商每月初去进货的数量也就应该为区间[10,30]中的某一整数值。已知成功的销售出去一样产品,经销商将盈利400元。若产品的数量大于需求量,销售商会将过量的部分商品采取降价处理的措施,则这多出的这部分产品每一件将亏损200元。为了使销售商每个月的盈利期望达到10000元,则销售商每个月应该进货的数量为多少件?

解:设进货量为a,则每个月的盈利量为

η=g(ξ)=400a (a≤ξ≤30) = 400a (a≤ξ≤30)

400ξ-200(a-ξ) (ξ≤a≤30) 600ξ-200a (ξ≤a≤30) 期望利润为

E(η)=?3010201 g(x)dx=201?a10( 600x-200a)dx+201?30a400adx=25(a2+28a-60)=25(a+14)2-25×256

依题意得当a最小取值为26时取得盈利期望达到10000,所以可以获利10000的进货区间为[26,30]

故要达到期望的利润值要求进货商进货量应为[26,30]中的任意整数值。

1.3概率论在投资中的运用

俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。

例3.某公司购买了3支可以获利的独立股票,且3支股票获利的概率分别为0.7,0.5,0.4,求

(1)任意两种股票中至少有一种能够取得收益的概率;

(2)三种股票中至少有一种能够取得收益的概率。

解:设3支独立股票获利分别获利的事件为A.B.C,那么事件A.B.C是相互独立的。且P(A)=0.7,P(B)=0.5,P(C)=0.4

(1)任意两支股票中有至少一只股票获利的概率相当于3支股票中至少有两支获利。(假设少于两支股票获利,那么3只股票中就可能随机抽取出两只不获利的股票)。任意两种股票中至少有一种能够取得利益的概率

=P(AB+BC+AC)=P(AB)+P(BC)+P(AC)-2P(ABC)=0.7×0.5+0.5×0.4+0.7×0.4-2 P

1

×0.7×0.5×0.4=0.35+0.20+0.28-0.28=0.55

(2)三种股票中至少有一种能够取得收益的概率

=P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

P

2

=0.7+0.5+0.4-0.7×0.5-0.5×0.4-0.7×0.4+0.7×0.5×0.4=0.91

可见三种股票中至少有一种获利的概率达到了9成以上,即有极大的几率会获利。而两支股票至少有一支会获利的概率只比一半多一些。若想要保证能够获利,就应该选择分散投资,也就是说“不要把鸡蛋放在一个篮子里面”[3]。

2概率论在交通设施建设上的应用

随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题[4]。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。

例4:A城的B路口,由西而来到路口的车辆,经过十字路口时,向东行驶的概率是0.5,向南行驶的概率是0.25,向北行驶的概率是0.25。在C时间段60秒内十字路口由西而来的车辆约为150辆。若向东行驶的车辆最长的红灯等待时间为40秒。可通行时间为20秒。那么这20秒内需要通过多少辆车才能够避免交通的堵塞?

解:向东行驶的车辆最长等待红灯时间为40秒,可通行时间为20秒,那么在自西向东车辆等待红灯的40秒时间内将有20秒时间内自西向南和自西向北的车辆可通行。40秒内约有由西而来的车辆100辆,其中向东行驶的车辆概率为0.5。那么可以得出,向东行驶的车辆约为50辆,为了避免交通的堵塞,那么在这20秒内通过车辆的数量至少应该为50辆,相当于每秒中要通过路口的车辆为2.5辆。路口的设计行驶为8行道。所以在每秒中完全可以达到道路交通要求的标准,这样,这个路口就不会造成堵塞。

概率问题运用到交通设施建设中方便了生活的方方面面,春节期间,人们的出行率达到一个高峰,五一,十一等节假日,人们的出行率也会有很大程度的提高,这对于铁路交通运输就会造成很大的压力。特别是春节期间,人们常常感叹一票难求。交通运输部门可以根据人们出行,以及人们返乡出行路线概率的计算,结合车辆的运输容量,增开一些班次路线的列车,可缓解交通运输的压力,为人们带来福利。而人们在制定旅行计划时,也可以运用概率的方法推算一定时间内景点的客流量,确定自己的路线和时间。

3概率论在体育赛事中的运用

奥运会是全世界人民共同关注的一场体育盛宴,而每四年举行的奥运会中第一天总会有射击的赛事,也是中国取得开门红的重要夺金点。

例5:射击所用的靶子一般有十环,从靶心向外分别是黄色,红色,蓝色,黑色和白色,射中位置越靠近靶心,所得的环数就越高,同样,选手的得分就越高。请运用概率方法解释这一现象,为什么越靠近中心分数越高?

解:可将靶子中间的十环看成是十个同心圆,由内向外,设最小的那个圆的半径

为r,那么由内向外的其余9个圆的半径分别为2r,3r,4r,5r,6r,7r,8r,9r,10r。[6]根据圆面积公式S=πr2这10个圆的面积分别πr2,4πr2,9πr2,16πr2,25πr2,36πr2,49πr2,64πr2,81πr2,100πr2。则可以得出向外每个同心圆环的面积分别为3πr2,5πr2,7πr2,9πr2,11πr2,13πr2,15πr2,17πr2,19πr2。

假设选手每一次都不会脱靶,那么他射中每一个环的概率应该与环的面积比例相等。那么射中10环的概率为πr2/100πr2=0.01,依此类推,9环的概率为0.03,8环的概率为0.05……见下表

通过概率的方法,可以很容易看出,射中越大环数的概率越小,也就越有难度,所以也就得分越高。

体育运动是全民的活动,概率论在体育中的运用也是十分广泛的。

例6:A校和B校将进行一次乒乓球友谊赛,地点和赛事规定由B校制定。A校的李选手和B校的王选手曾经进行过许多次比赛,统计其比赛结果,A校的李选手的胜率为0.6,B校的王选手胜率为0.4。乒乓球比赛的赛事一般采用三局两胜制或者五局三胜制,那么如何制定才能让B校的胜率更大呢?

解:设某一局李选手胜为事件A,王选手胜为事件B。

若采取三局两胜制,那么王选手获胜的情况分为两种:1.前两局王选手获胜 2.前两局王选手一胜一负,第3局获胜。王选手获胜的概率为

P 1=P(B

1

B

2

)+P(A

1

B

2

B

3

)+P(B

1

A

2

B

3

)=0.4×0.4+2×0.6×0.4×0.4=0.352

若采取五局三胜制,那么王选手获胜的情况分为三种:1.前3局王选手获胜2.前3局王选手两胜一负,第4局获胜3.前4局王选手两胜两负,最后一局获胜。王选手获胜的概率为

P

2=P(B

1

B

2

B

3

)+P(A

1

B

2

B

3

B4)+P(B

1

A

2

B

3

B4)+P(B

1

B

2

A

3

B4)+P(A

1

A

2

B

3

B4B

5

+P(A

1B

2

A

3

B4B

5

)+P(A

1

B

2

B

3

A

4

B

5

)+P(B

1

A

2

A

3

B4B

5

)+P(B

1

A

2

B

3

A

4

B

5

)+P

(B

1B

2

A

3

A

4

B

5

)=0.4×0.4×0.4+3×0.6×0.4×0.4×0.4+6×0.6×0.6×0.4×

0.4×0.4=0.064+0.1152+0.13824=0.31744

比较P 1和P 2的结果,采取第一种方法,就是三局两胜制,B 校的王选手获胜的概率要高一些,但是和第二种方法之间的差异不大,都只有不到0.4。这说明王选手取胜的几率比李选手低一半,其胜率并不是可以通过比赛的赛事制度就可以扭转的,这方面不能够投机取巧的。同样也说明了,想要赢得比赛的胜利,就应该努力训练,提高自身的能力。

4概率论在博弈学中的运用

博弈学中概率论运用的十分广泛,同样也起着十分重要的作用。

4.1赌本分配问题

例7.甲,乙两个赌徒在每一局的获胜的概率都是1/2。两人约定谁先赢得一定的局数就能得到全部的赌本,但是赌博在中途因外来因素被打断了,请问在以下各种情况下,应如何合理分配赌本:

(1)甲,乙两个赌徒都各需赢k 局才能获胜;

(2)甲赌徒还需赢2局才能获胜,乙赌徒还需赢3局才能获胜;

(3)甲赌徒还需赢n 局才能获胜,乙赌徒还需赢m 局才能获胜[7]。

解:为了表示赌局的公平性,合理分配的赌注,就要按照甲乙两人最终获胜的概率大小来分赌本。

(1)由于在这种情况下,甲乙两人都需要赢k 局才能获胜,而且每一局甲乙两人的赢率是一样的,甲乙两人所处的地位是对称的,所以甲乙两人最终获胜的概率都是1/2,甲获得全部赌本的1/2,乙获得全部赌本的1/2。

(2)甲赌徒还需要再赢2局,乙赌徒还需要再赢3局,那么最多再进行4局就能够分出胜负,设A i 表示如果再继续赌下去的第i 局中为甲获胜,i=1,2,3,4,则甲最终获胜的概率P 1=P(A 1A 2)+P(A 12A A 3)+P(1A A 2A 3)+P(A 12A 3A A 4)+P (1A A 23A A 4)+P (1A 2A A 3A 4)=(1/2)2+2×(1/2)3+3×(1/2)4=11/16

所以甲赌徒最终获胜的概率为11/16,乙赌徒获胜的概率为5/16,赌本的分配应当为甲分得全部赌本的11/16,乙分得全部赌本的5/16。

(3)甲赌徒还需要赢n 局,乙赌徒还需要赢m 局,那么最多再赌n+m-1局必分胜负,则存在有21-+m n 种可能的情况,如果甲最终获胜了:那么在这n+m-1局种甲赢

了n 局,那么乙最多只能赢m-1局,则共有C 0

1-+m n +C 11-+m n +……+C 11--+m m n 种情况,设 a=C 0

1-+m n +C 11-+m n +……+C 11--+m m n

b=C m

m n 1-++C 11+-+m m n +……+C 11-+-+m n m n [8] 则甲最终获胜的概率为P 2=12-+m n a

乙最终获胜的概率为P 3=12-+m n b

根据甲乙赢的概率来公平分赌本的话,所以甲得全部赌本的a/21-+m n ,乙得全

部赌本b/21-+m n 。

4.2赌博中的庄家盈利

赌博中庄家常常给赌徒制造一种幻觉性心理,让赌徒觉得自己有很大的赢率,实际上这种心理是不切实际的。可以通过概率的方法来解释这一现象的不实际性。

例8.新年前夕,人们采办年货的时候,总会有一些人摆出小赌摊,这个赌摊的主人准备了一个红色的袋子,袋子从外面是看不到里面的,赌摊的主人准备了8个黑色的小球和8个白色的小球,将这些球都放入袋子里面,并规定是这样的,想要来尝试的人需要交1元钱,然后从袋子里面摸出5个小球。如果摸到的是5个黑色小球奖励20元,如果摸到的是4个黑色的小球就奖励2元,如果摸到的有3个白子则赌摊的主人会送你一个价值5角的新春“福”字,如果摸到的是其他的,主人也会送你一句新春祝福。那么

(1) 摸到能够奖励20元的小球的概率有多少呢?

(2) 能获得2元钱的概率有多少呢?

(3) 如果每天有1000人来到这个赌摊这里摸球,赌摊的主人可以得到多少钱

的收益呢?

解:一共有16个小球,从这16个小球中间摸出5个小球的会出现的情况有C 516种。

(1)其中摸出的球中5个均是白球的可能情况数为C 58,由此可以得出任意摸出的5

个小球为白球的概率为C 58/ C 516

≈0.0128,也就是说赢得20元的概率不到2%。 (2)其中摸出5个球中有4个白球和1个黑球的可能性为C 48C 18种。那么任意摸

出的5个小球中有4个白球1个黑球的概率为C 48C 18/ C 516

≈0.1282,也就是说,赢得2元的概率为12.82%[9]。

a+b=21-+m n

(3)任意摸出的5个小球中有3个白球,2个黑球的可能性为C3

8C2

8

,则可以换

到新春“福”字的概率为C3

8C2

8

/ C5

16

0.3590。如果每天有1000次参与这个赌博,

那么大约有13个人可以获得20元,有128个人可以获得2元,有359可以获得“福”字,也就是价值5角,也就是说赌摊的主人要支付的钱为695.5元。但是这1000个人用于尝试的钱为1000元,那么主人可以净赚300多元,可见,根据概率的方法计算,赌博中的庄家是一定会赢利的,这也说明了赌博是一种欺诈的行为。

5概率论在密码学中的运用

随着电脑的普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。

例9:某加密文件的密钥长度为10,其中每一位的密钥可能为26个英文字母中的任意一个,且区分大小些,也可能为[0,9]区间内的任意整数。若采取穷举攻击的方法破译密码,设尝试一个组合的时间为0.1秒,当破译时间超过7天则该文件破译所花费的带价将高于文件本身的价值,破译者将选择放弃破译。那么这个加密文件是否有破译的价值呢?若是破译者已知密钥的前5位为同一个英语字母,而后5位为数字,那么这份文件是否存在破译的价值?

解:26个英语字母区分大小写,共有52种可能性[10]。加上十个数字,那么任意一位有62种可能性。这个加密文件的密钥长度为10,那么密码组合的可能性为

C1

62× C1

62

×……× C1

62

=6210=52036560683837093888≈5.2×1019

10个

一天为24个小时,为86400秒,由此可得破译出这个密码大约需要6×1011天。这说明破译出这个密码是一个小概率事件,其花费的代价远远大于文件本身的价值,所以破译者会放弃破译,文件的安全性得到了保障。

若是破译者已知密钥的前5位为英语字母,而后5位为数字,则其组合的可能性

为C1

52×C1

10

× C1

10

×……× C1

10

=5.2×106所以破译这个密码需要6天,那么这个5个

文件是可以尝试去破译的。

6概率论在保险中的运用

保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的概率是相对稳定的,那么保险公司就需要确定合理的赔率来保证公司的盈利,这就涉及到了概率的应用。 例10:有10000名条件背景基本相同的人参加了某保险公司的一项人寿保险,该公司的规定是,每一位投保人在年初的时候需要交纳200元的保险金,若是在这一年的时间范围内不幸死亡,那么其收益人将从保险公司获得100000的赔偿金。已知,这类型的投保人的死亡率为0.001.那么该保险公司开展这项业务获利的概率为多少?至少获利500000的概率为?

解:设X 为10000名投保人在一年内死亡的人数,保险公司这一项人寿保险业务一年的总收入为10000×200=2000000(元)。投保人一年内死亡的概率为0.001,于是有n=10000,p=0.001两者差异较大,所以用λ=np=10的泊松分布进行近似计算。 当X >20时,保险公司就会亏损,因此只要X <20时,该项将获利,其概率为

P (X <20)≈∑=20

0!10k k

k e 10-=0.998 这说明保险公司的这一项业务盈利的概率达到了99.8%,也就是说亏损的可能性是极小的。

保险公司在这项业务上面至少可以获利500000就相当于X ≤15。其概率为

P (X ≤15)≈∑=15

0!10k k

k e 10-=0.951

这说明保险公司在这一项业务上有95.1%的概率获利达到500000,该保险公司设置保险赔偿的金额是合理的。

小结

概率论在生活中已经得到了广泛的应用,为方方面面带来了便利[11],同样也合理的解释了许多现象,解决了很多问题,本文仅就其中五个方面举出了一些例子,以说明其应用,相信随着科技的发展,概率论必将在生活中有越来越多的应用。

参考文献:

[1]袁卫,庞浩,曾五一[M].统计学.高等教育出版社.2004

[2]廖炜炜,张伟.运用概率与数理统计对经济分析的探讨[J].北方经贸.2009(4)

[3]蔡宣三.决策与经济计划最优化.清华大学出版社[M]1982

[4]朱耀兵,宋程.城市平面交叉可靠性分析[J].中国城市交通.2010(1)

[5]杨晓光.城市道路交通设计指南[M].人民交通出版社.2003

[6]陈安槐,陈萌生.体育大词典[M].上海辞书出版社.2000

[7]杨忠连,等.小概率原理在日常生活中的应用[J].科技信息.2008

[8]茆诗松,等.概率论与数理统计[M].高等教育出版社,2004.

[9]李贤平.概率论基础[M].高等教育出版社.2003

[10]杨波.现代密码学[M].清华大学出版社.2007

[11]高鸿业.西方经济学[M].中国人民大学出版社.2004

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在经济中的应用

学科分类号: 本科毕业论文 题目(中文):概率论在经济中的应用 (英文):Probability theory in the application 姓名缪艳芳 学号 100200540102 院(系)数学与计算机科学学院 专业、年级数学与应用数学 指导教师雍进军职称讲师 二○一三年十二月

贵州师范学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名:(亲笔签名) 年月日

目录 摘要 (1) ABSTRACT (2) 1绪论 (3) 2在经济管理决策中的应用 (4) 2.1最大利润与投资风险(数学期望与方差的应用) (4) 2.2 概率论知识在彩票问题中的应用 (6) 3 概率论在商品生产与检验中的应用 (8) 3.1应用极大似然估计,确定商品合格率 (8) 3.2 两子样秩和检验法的应用 (9) 4 中心极限定理的应用 (11) 4.1在医疗保险中的应用 (11) 4.2在工业生产效率中的应用 (12) 5 贝叶斯公式在疾病中的应用 (14) 参考文献: (17) 致谢 (17) 附录A (18)

摘要 本论文共分为四个章节,内容包括数学期望及方差,随机变量,中心极限定律,极大似然估计,两个秩和检验,贝叶斯公式等的应用。概率论与数理统计就是研究随机现象的统计规律的数学学科,由于随机现象的普遍现象的普遍性,使得概率论与数理统计具有极其广泛的应用。近年来,一方面它为科学技术、工业农业生产等的现代化做出了重要贡献。本文通过实例讨论了概率论与数理统计方面的知识经济决策,最大利润,商品生产与检验,在医疗保险中的应用工业生产效率等多方面的介绍。 关键词:概率统计;经济;应用

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率论在经济投资中的应用

概率论在经济投资中的应用 中文摘要:概率论起源于生活,同时也可以应用于生活,其已不仅是一门简单的数学学科。了解概率论在描述经济变化,证券和保险等经济投资方面的应用,对于我们了解经济变化趋势和合理的理财有着至关重要的作用。 关键字:概率论经济投资应用 正文: 概率论是古老而庞大的数学大家庭中一个年轻的分支学科, 它产生于十七世纪中后期, 至今只有短短的三百多年历史。年轻的概率论具有顽强的适应力,随着时代的变迁,近十几年来,由于金融学、保险学等经济学分支学科越来越普遍的应用,研究随机事件的概率论在经济学中得到越来越快的发展。同时由于概率论考虑了样本与总体之间的关系的这一特性,对实证经济学特别是经济计量学可以说起到了非常大的推动作用。甚至可以说,当代实证经济学的发展就是概率统计知识在经济模型中的实际应用,如果考虑在实证经济学领域的诺贝尔获奖者,那概率论对经济学的影响就更大了,包括第一届诺贝尔奖获得者丁博根、第二届诺贝尔获奖者萨谬尔森等在内,前前后后大约有20名经济学家研究和应用概率论在经济学中的应用因此概率论在经济学中有十分广泛的作用。

一、概率论在描述经济数据特征的应用 经济学的实证研究需要很多的数据来支撑,毕竟现代经济学不同于古典经济学的一个主要特征是现代经济学依靠数据来说明经济原理,而古典经济学依靠价值判断和逻辑推理来解释经济学。数据的性质直接决定了经济原理的结果,因此说明数据的统计特征成为大部分实证研究文章的第一步,我们以1992年到2005年我国经济增长率的数据为例(见下表),考查概率论的一些基本概念在经济数据描述方面的应用。 表-1992年到2005年中国经济增长率 根据表1的数据我们可以得到1992年到2005年我国的平均增长率为9.72%,高于潜在增长率8%,中间值为9.55%,在样本区间最大的增长率为13.3%,最小的增长率为7.4%,标准差为0.0194,大于显著性水平为5%的两倍标准差,说明在1992年到2005年之间我国的经济增长率是比较快的;同时根据正态分布统计量: 其中N为样本总数,、分别为三阶矩、四阶矩,计算结果为1.48,卡方统计量的显著性为0.48,统计检验的原假设为:该数据服从正态分布,备选假设为该数据不服从正态分布,由于

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

经济应用数学—概率论与数理统计马统一的习题1一5答案

习题er 1. 解 (1) 设学生数为n ,则 {0/,1/,2/,,100/}n n n n n Ω=L (2) 枚骰子点数之和为 {3,4,5,,18}Ω=L (3) 三只求放入三只不同A ,B ,C 盒子,每只盒子中有一个球的情况有 {(,,),(,,),(,,),(,,,),(,,),(,,)}a b c a c b b a c b c a c b a c a b Ω= 其中(,,)a b c 表示A 盒子放入的球为a ,B 盒子放入的球为b ,C 盒子放入的球为c ,其余类似. (4) 三只求放入三只不同A ,B ,C 盒子情况有 {(,0,0),(0,,0),(0,0,),(,,0),,(,,)}abc abc abc ab c c a b Ω=L 其中(0,,0)abc 表示A 盒子没有放入球,B 盒子放入的球为,,a b c ,C 盒子没有放入球,其余类似,共3 ||327Ω==个样本点. (5) 汽车通过某一定点的速度设为v {|0}v v Ω=>. (6) 将一尺长的棍折成三段,各段的长度为,,x y z {(,,)|0,0,0,1}x y z x y z x y z Ω=>>>++=. (7) 对产品检验四个产品,连续检验到两个产品为不合格品是,需停止检验,检验的 结果为 {(0,0),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1), (1,0,0),(1,0,1,0),(1,1,0,0),(1,0,1,1),(1,1,1,0),(1,1,1,1),(1,1,0,1)} Ω= 其中(0,1,0,0)表示第一次取到不合格品,第二次取到合格品,第三次取到不合格品,第四 次取到不合格品,其余类似. 2. 解 (1) 一只口袋中装有编号为1,2,3,4,5的五只球,任取三只,最小的为1的样本点有 {(123),(134),(135)}A = 其中(123)表示取出的球为编号为1,2,3的球(无顺序). (2) 抛一枚硬币两次, A =“第一次出现正面”的样本点有{(10),(11)}A =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. B =“两次出现不同的面”的样本点有{(10),(01)}B =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. C =“至少出现一次正面”的样本点有{(10),(0,1),(11)}C =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. (3) 检验一只灯泡的寿命,其寿命为t 不小于500小时, A =“灯泡寿命不小于500小时”的样本点有{|500}A t t =≥. (4) 某交换台在一分钟接到的呼唤次数不大于10, A =“某交换台在一分钟接到的呼唤次数不大于10”的样本点有{|0,1,2,,10}A n n ==L . (5) 重复抛掷一枚硬币,当出现正面时停止, A =“抛了偶数次时首次出现正面”的样本点有{(0,1),(0,0,0,1),(0,0,0,0,0,1),}A =L ,其中(0,1)表示第一次出现反面,第二次出现正面. 3. 解 (1) ABC AB C =-; (2) A B C U U ;

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

一些很有趣的概率学问题

一些很有趣的概率学问题 说到概率,有些好玩的东西不得不提。比如,你知道吗,23个人中至少两个人生日相同的概率竟然超过了1/2;假如你们班上有50个人的话,那更不得了,至少两人生日相同的概率达到97% !如果你会计算这个概率问题的话,你可以亲自证实这一点。本文适宜的读者是知道上述问题怎么算的高中朋友,上述问题也是高中阶段学的一些基本概率知识。 上面的问题都是简单概率,它包含了一个最基本的原则,即使没有系统地学习过,平常人们也都在无形之中使用它:概率等于你要算的东西除以总的数目。比如。我们要计算23个人中任何两个人都不在同一天生的概率。假设2月29 日与其它日期出现概率相同的话(这是为了便于计算我们做出的假设,它有悖于常理),那么它的概率为A(366,23)/366^23。它约为0.493677。因此,至少两人在同一天生的概率为1-0.493677=0.506323。当然,对于“你要算的东西除以总的数目”的认识是片面的,比如“投两个骰子出现的数字和从2到12共有11种可能,问数字和大于10的概率”这一问题的答案并不是2/11,因为这11个点数和出现的概率不是相等的,我们只能从投出的两个数字共6*6=36种情况中进行统计,可能的情况只有(5,6)、(6,5)和(6,6) (不会有人说还有(6,7)之类的吧),答案应该是3/36=1/12。这些都是废话,我不细说了。 但是,你有想过这个问题吗:要是这些数目是无穷的怎么办?换句话说,统计的东西不是“离散”的怎么办?比如看这样一个问题。明天早上我要和MM约会,但是具体见面时间我忘了,好像是8:00-9:00的某个时候。那么我随便在这个时段中选一个时间去等MM,最多等她半个小时,正好能见到MM的概率是多少(假设MM先到的话不会等我)。这个问题和我们平时见到的问题不同的地方在于,它的“情况”是连续的,不是离散的,不能逐一统计数目。咋办呢?我们注意到,我的时间随机取一个,MM的时间随机取一个,对于某些组合我们是有缘分的(这些组合无穷多)。这些组合正好对应了平面区域上的点。就是说,搞一个横坐标表示我的时间,纵坐标表示MM的时间,那么肯定能画出那么一块区域,区域里的所有点(x,y)对应所有我和MM可能相见的组合。任何一个时间组合有多大的可能落在这个区域呢?由于在矩形区域内点(x,y)是均匀分布的,我们只需要计算一个面积之比就行了。下图中显而易见,答案是3/8。 一个类似的问题是Buffon投针实验。有一个人,叫Buffon。他在地板上画了很多间隔相同的平行线,然后叫了一帮狐朋狗友来,把一些长度相同的针扔在地上。然后,他统计有多少针和地板上的线相交,并宣称可以得到圆周率π的值。换句话说,一根针投到间隔相同的平行线中,与平行线相交的概率和π有关。我们时常感到数学的神奇之处,比如当这个π在很多不该出现的场合莫明

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论在日常生活中的应用

概率论在日常生活中的应用 及数理统计在国民经济中的应用 021251班 马璁02125007

引言 概率论与数理统计是研究随机现象统计规律的一门学科,简单地说,就是一件事发生的可能性的大小.这门学科在社会生产和生活中起着非常重要的作用,概率统计几乎遍及所有的科学技术领域,工农业生产国民经济及日常生活各个方面,,比如:,在研究最大经济利润中寻求最佳生产方案,在检验生产产品合格率,在面试通过方面,在公交站台的侯车时间,打电话时间长短分配,在各种比赛赛制问题上,在生日概率问题上,以下通过具体的例子讨论概率论在生活中的应用。

目录 引言 (2) 日常生活的应用 (4) 一、生日概率问题 (4) 二、街边抽奖 (5) 国民经济中的应用 (6) 一、数学期望在企业经营中的应用 (6) 二、参数估计在商品进货中的应用 (7) 三、中心极限定理在保险业中的应用 (8)

日常生活的应用 一、生日概率问题 小时侯看《少年科学》,记得一个问题,就是在一群人中,你很有可能找到相同生日的人.而且你找到生日相同的人的可能性超过找不到生日相同的人的可能性,对这群人数的数字要求,可能并不像你想象中的那样高. 一个班有五十个人,我赌班上肯定有生日相同的一对同学.《少年科学》讲,胜算非常大.一直记不清人数达到多少时,有生日相同的人的可能性会超过百分之五十.终于看到答案:23人. 我们来看一个经典的生日概率问题.以1年365天计(不考虑闰年因素),你如果肯定在某人群中至少要有两人生日相同,那么需要多少人?大家不难得到结果,366人,只要人数超过365人,必然会有人生日相同.但如果一个班有50个人,他们中间有人生日相同的概率是多少?你可能想,大概20%~30%,错,有97%的可能! 它的计算方式是这样的: a、50个人可能的生日组合是365×365×365×……×365(共50个)个; b、50个人生日都不重复的组合是365×364×363×……×316(共50个)个; c、50个人生日有重复的概率是1-b a . 这里,50个人生日全不相同的概率是b a =0.03,因此50个人生日有重复的概 率是1-0.03=0.97,即97%. 根据概率公式计算,只要有23人在一起,其中两人生日相同的概率就达到51%! 但是,如果换一个角度,要求你遇到的人中至少有一人和你生日相同的概率大于50%,你最少要遇到253人才成.

生活中的一些有趣事件分析

生活中的一些事件分析 1.升级游戏 升级游戏中(共有54张,留6张底牌),底牌中有“王”的概率。解:底牌中有王,即在洗牌时要至少放一张王牌于底牌的六张中。将54张牌 的每一种排列看作一次随机试验,即基本事件总数为:!5454 54==p n ,而底牌中有王所包还的基本事件数为:52 52 262253531612P P C P P C m +=故,所求事件的概率为 233.0159 37 ≈== n m p 2.考试猜答案能否及格的问题 考试的时候,许多学生都会遇到不会做的题目,对于选择题,不会做也不会空着,大家都会选择猜个答案填上去。我们所关心的是猜中正确答案的概率有多大?如果一个单项选择题有四个答案,那么猜中的概率应该是1/4。如果某试卷仅有10个单项选择题,每题10分。某学生完全不会做,随机答题,我们所关心的是他及格的概率是多少? 我们知道每答一个题有两个基本结果,就是答对和答错,所以做10道题就是10重伯努利试验。我们用A 表示答对,B 表示及格,那么及格就是至少答对6道题,所求概率 k k k k k C k p B p ?==?==∑∑1010 6 10 10 610)41 1()41()()(10 9 9910288103771046610)4 1(43()41()43()41(43(41(43()41(++++=C C C C 5 69091796870.01972770=从结果中我们知道,如果不学习,题目不会做的话只有不足2%的概率及格,在实际中,这种情况几乎不会发生,所以靠投机是不行的,学生还是要扎扎实实好好学习。

3.3.有志者事竟成 有志者事竟成“有志者事竟成”的意思是:只要有决心,有毅力,事情终究会取得成功。很多人在遇到失败时,都会用这句古话来不断激励自己。现在从概率论角度来思考,更感此语之妙。 将一个试验独立重复的做了n 次,设在每次试验中事件A 发生的概率为 )10(<

相关文档
相关文档 最新文档