文档库 最新最全的文档下载
当前位置:文档库 › 专题16 空间向量 简单几何体

专题16 空间向量 简单几何体

A B

C

D

A

B

C

D A

C

B A

B

C

专题六 空间向量 简单几何体

一 能力培养

1,空间想象能力 2,数形结合思想 3,转化能力 4,运算能力 二 问题探讨

问题1(如图)在棱长为1的正方体ABCD 1111-A B C D 中, (1)求异面直线1A B 与1B C 所成的角的大小; (2)求异面直线1A B 与1B C 之间的距离; (3)求直线1A B 与平面1B CD 所成的角的大小; (4)求证:平面1A BD//平面C 1B 1D ;

(5)求证:直线A 1C ⊥平面1A BD; (6)求证:平面AB 1C ⊥平面1A BD; (7)求点1A 到平面C 1B 1D 的距离; (8)求二面角1A -1B C -1D 的大小.

问题2已知斜三棱柱ABCD 1111A B C D -的侧面1A AC 1C

与底面垂直,0

90ABC ∠=,2BC =,AC =且A 1

A ⊥1A C, A 1A =1A C. (1)求侧棱A 1A 和底面ABC 所成的角的大小; (2)求侧面1A A

B 1B 和底面AB

C 所成二面角的大小; (3)求顶点C 到侧面1A AB 1B 的距离.

A

B

C

D

E F

三 习题探讨 选择题

1甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为 A,

3827a

3

a C,313a D,389a 2夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之 比为

A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:3

3设二面角a αβ--的大小是0

60,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是

A,

3

B,3

C,23cm

D,

3 4如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC

的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是

A,324a

B,324

a

C,

312a

D,3

12

a 5棱长为的正八面体的外接球的体积是 A,

填空题

6若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α 的位置关系是 .

7若异面直线,a b 所原角为0

60,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .

8如图(1),在直四棱柱1111A BC D ABCD -中,当底面四边形ABCD 满足条件

时,有1A C

⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)

C D

F A

B

O

C

D E

O

A

A B C

D P Q

9如图(2),是一个正方体的展开图,在原正方体中,有下列命题:

①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成0

60; ④MN 与CD 所在直线互相垂直.

其中正确命题的序号为 .(将所有正确的都写出) 解答题

10如图,在ABC ?中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ?沿 DE 折起来使得A 到1A ,且1A DE B --为0

60的二面角,求1A 到直线BC 的最小距离.

11如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1. (1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;

(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.

A B

C

D

A B

C D

图(1)

A B

E

N

M 图(2)

参考答案:

问题1(1)解:如图,以D 为原点建立空间直角坐标系,有1A (1,0,1),B(1,1,0),1B (1,1,1),C(0,1,0) 得1(0,1,1)A B =- ,1(1,0,1)BC =-- ,设1A B 与1BC

所成的角为α,则

11111

cos 2A B B C A B B C

α?==

=?

,又000180α≤≤,得060α= 所以异面直线1A B 与1B C 所成的角的大小为0

60.

(2)设点M 在1A B 上,点N 在1B C 上,且MN 是1A B 与1B C 的公垂线,令M (1,,1)m m -,

N (,1,)n n ,则(1,1,1)MN n m m n =--+-

由1100A B MN B C MN ??=???=?? ,得(0,1,1)(1,1,1)0

(1,01)(1,1,1)0

n m m n n m m n -?--+-=??

--?--+-=?,解得23m =,n =23 所以111(,,)333MN =- ,

得MN =,即异面直线1A B 与1B C

.

(3)解:设平面1B CD 的法向量为1(,,,)n x y z = ,而(0,1,0)DC =

,由1n DC ⊥ ,11n B C ⊥ , 有(,,,)(0,1,0)0(,,,)(1,0,1)0x y z x y z ?=???--=?,得0

x z

y =-??=?,于是1(1,0,1)n =- , 设1n 与1A B 所成的角为β,则

1111

1

cos 2A B n A B n β?==

=-? ,又000180β≤≤,有0120β=. 所以直线1A B 与平面1B CD 所成的角为0

60.

(4)证明:由1A B //C 1D ,C 1D ?平面C 1B 1D ,得1A B //平面C 1B 1D , 又BD//1B 1D ,1B 1D ?平面C 1B 1D ,得BD//平面C 1B 1D , 而1A B BD B = ,于是平面1A BD//平面C 1B 1D .

(5)证明:A(1,0,0),1C (0,1,1),1(1,1,1)AC =- ,(1,1,0)DB =

,

有11(1,1,1)(0,1,1)0AC AB ?=-?-= 及1(1,1,1)(1,1,0)0AC DB ?=-?= ,得 11AC AB ⊥ ,1AC DB ⊥ ,1A

B BD B = ,

于是,直线A 1C ⊥平面1A BD.

(6)证明:由(5)知1AC ⊥平面1A BD,而1AC ?平面AB 1C ,得平面AB 1

C ⊥平面1A BD. (7)解:可得1B C=C 1

D =11D B

有11201sin 602B CD S ?=

??=

由11111A B CD C A B D V V --=,得111

11(11)1332B CD S h ???=

????,

12h =,

得h = 所以点1A 到平面11CB D

的距离为

3

. (8)解:由(3)得平面1B CD 的法向量为1n

=(1,0,1)-,它即为平面11A B C 的法向量. 设平面11B CD 的法向量为2(,,,)n x y z = ,则21n B C ⊥ , 211n B D ⊥ 又11B D

(0,0,1)(1,1,1)(1,1,0)=-=--

由(,,,)(1,0,1)0(,,,)(1,1,0)0x y z x y z ?--=???--=?,得y x

z x =-??=-?,所以2(1,1,1)n =--

设1n 与2n

所成的角为γ,则

1212

cos n n n n γ?==

=? 所以二面角111A B C D --

的大小为问题2解:建立如图所示的空间直角坐标系,由题意知

A ,B(0,0,0),C(0,2,0).

又由面1A AC 1C ⊥面ABC,且A 1A =1A C,知点1

A

,1(AA =

, 平面ABC 的法向量(0,0,1)n =.

(1)111cos ,21AA n AA n AA ?<>===? ,得0

1,45AA n <>=

于是,侧棱1AA 和底面ABC 所成的角的大小是0

45.

(2)(AB =-

设面1A AB 1B 的法向量1(,,,)n

x y z =,则由

11(,,,)(0n AA x y z y ?=?=+=

1(,,,)(0n AB x y z ?=?-=-=

得0x =

,y =.于是

,1(0,)n =,又平面ABC 的法向量(0,0,1)n =,得

1111

cos ,2n n n n n n ?<>=

==?,有01,60n n <>=. 所以侧面1A AB 1B 和底面ABC 所成二面角的大小是0

60. (3)从点C 向面1A AB 1B 引垂线,D 为垂足,则0

60CBD ∠=

11BC kn BC DC CD DC kn ??===

=

所以点C 到侧面1A AB 1B

习题

1过顶点A,V 与高作一截面交BC 于点M,点O 为正四面体的中心,1O 为底面ABC 的中心, 设正四面体VABC 的棱长为m ,则

=VM,1O M

=13AM =

, 123O A AM m =

=

,1VO ==,

得11OO VO VO a =-=- 在1Rt AOO ?中,22211AO OO AO =+,

即2

22(

)()33a a =-+,

得3

m a =. 则1VO =

43a ,

有203

111(sin 60)3227

V ABC V m VO a -=????=.选B. 温馨提示:正四面体外接球的半径VO :内切球的半径1OO =1

:

3:13

a a =. 2 32

2

12341::():(2):(2)2:3:13

3

V V V R R R R R πππ=???=,选B.

3设PA ⊥棱a 于点A,PM ⊥平面α于点M,PN ⊥平面β于点N,PA=t ,PAM θ∠=,则

sin 1sin(60)2

t t αα=??-=?,

5sin αα=,

有sin α=

或舍去),

所以1sin 3

t α=

=cm ,选B. 4由DE ⊥EF,EF//AC,有DE ⊥AC,又AC ⊥BD,DE BD=D,得AC ⊥平面ABD.

由对称性得0

90BAC CAD BAD ∠=∠=∠=,于是2

AB AC AD ===

.

3

11()3222224

B ACD V a a a a -=????=,选B.

5可由两个相同的四棱锥底面重合而成,有2r =

得2

r =

,

外接球的体积343V r π=

=,选D. 6当2AB <时,AB//α;当2AB =时,AB//α或AB ⊥α;当2AB >时,AB//α或与α斜交.

7由EF EA AB BF =++ ,得22222cos EF EA AB BF EA BF θ=+++??

(1)当0

60θ=时,有21

9412212

AB =+++??? ,得AB = ;

(2)当0

120θ=时,有219412212

AB =++-??? ,得AB = 8 AC ⊥BD.(或ABCD 是正方形或菱形等)

9将展开的平面图形还原为正方体NACF EMBD -,可得只②,④正确.

10解:设ABC ?的高AO 交DE 于点1O ,令1AO x =,

由12=,有112OO x =-,

在11AOO ?中,01160AOO ∠=,有2220

11111112cos60AO AO OO AO OO =+-???

得1

AO =当6x =时,1A 到直线BC 的最小距离为6.

11解:(1)(如图)以A 为原点建立空间直角坐标系,设BQ x =,则

Q (1,,0)x ,P(0,0,1),D (0,,0)a 得(1,,1)PQ x =- ,(1,,0)QD a x =--

由PQ QD ⊥ ,有(1,,1)(1,,0)0x a x -?--=,得2

10x ax -+= ①

若方程①有解,必为正数解,且小于a .由2

()40a ?=--≥,0a >,得2a ≥.

(i)当2a ≥时,BC 上存在点Q,使PQ ⊥QD;

(ii)当02a <<时, BC 上不存在点Q,使PQ ⊥QD.

(2)要使BC 边上有且只有一个点Q,使PQ ⊥QD,则方程①有两个相等的实根,

这时,2

()40a ?=--=,得2a =,有1x =.

又平面APD 的法向量1(1,0,0)n =,设平面PQD 的法向量为2(,,)n x y z =

而(1,1,0)QD =- ,(0,2,0)(0,0,1)(0,2,1)PD =-=-

,

由2200n QD n PD ??=???=??

,得(,,)(1,1,0)0(,,)(0,2,1)0x y z x y z ?-=???-=?

,解得,2x y z y == 有2(1,1,2)n =,则

121212cos ,n n n n n n ?<>=

==

?,

则12tan ,n n <所以二面角Q PD A --

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)

专题37 空间几何体(知识梳理) 一、空间几何体 1、空间几何体的基本定义 如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。 围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。 几何体不是实实在在的物体。 平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。 例1-1.下列是几何体的是( )。 A 、方砖 B 、足球 C 、圆锥 D 、魔方 【答案】C 【解析】几何体不是实实在在的物体,故选C 。 例1-2.判断下列说法是否正确: (1)平静的湖面是一个平面。 (×) (2)一个平面长3cm ,宽4cm 。 (×) (3)三个平面重叠在一起,比一个平面厚。 (×) (4)书桌面是平面。 (×) (5)通过改变直线的位置,可以把直线放在某个平面内。 (√) 【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。 (6)平行四边形是一个平面。 (×) (7)长方体是由六个平面围成的几何体。 (×) (8)任何一个平面图形都是一个平面。 (×) (9)长方体一个面上任一点到对面的距离相等。 (√) (10)空间图形中先画的线是实线,后画的线是虚线。 (×) (11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。 (√) 例1-3.下列说法正确的是 。 ①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。 【答案】②③ 【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别; ②正确;③正确。 [多选]例1-4.下列说法正确的是( )。 A 、任何一个几何体都必须有顶点、棱和面 B 、一个几何体可以没有顶点 C 、一个几何体可以没有棱 D 、一个几何体可以没有面

空间向量专题讲解

空间向量的概念解析 例1、下列说法中正确的是( ) A.若|a |=|b |,则a,b 的长度相同,方向相同或相反 B.若向量a 是向量b 的相反向量,则|a |=|b | C.空间向量的减法满足结合律 D.在四边形ABCD 中,一定有AB AD AC += 练习 1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( ) A.4 B.3 C.2 D.1 2、下列四个命题: (1)方向相反的两个向量是相反向量 (2)若a,b 满足|a |>|b |,且a,b 同向,则a >b (3)不相等的两个空间向量的模必不相等 (4)对于任何向量a,b ,必有|a+ b |≤|a |+|b | 其中正确命题的序号为( ) A.(1)(2)(3) B.(4) C.(3)(4) D.(1)(4) 空间向量的线性运算 例1、 已知长方体ABCD-A ’B ’C ’D ’,化简下列向量表达式,并标出化简结果的向量 (1)AA CB '-(2)AB B C C D '''''++(3) 111222 AD AB A A '+- 练习 1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++②11111()AA A D DC ++ ③111()AB BB BC ++④11111()AA A B BC ++ A.1个 B.2个 C.3个 D.4 个

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

空间向量练习题

空间向量在立体几何中的应用 【知识梳理】1、已知直线12,l l 的方向向量分别为12,v v u r u u r ,平面,αβ的法向量分别为12,n n u r u u r ,则 (1)12//l l ? ;(2)12l l ⊥? ;(3)若直线12,l l 的夹角为θ,则cos θ= ; (4)1//l α? ;(5)1l α⊥? ;(6)若直线1l 与面α的成角为θ,则sin θ= ; (7)//αβ?面面 ;(8)αβ⊥?面面 ;(9)若αβ面与面成二面角的平面角为θ,则 。 2、(1)三余弦定理: ; (2)三垂线定理(及逆定理): ; (3)二面角的平面角定义(范围): ; 【小试牛刀】1、A (1,1,-2)、B (1,1,1),则线段AB 的长度是( ) A.1 B.2 C.3 D.4 2、向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( ) A.相交 B.垂直 C.平行 D.以上都不对 3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是( ) A .- 21a +21b +c B .21a +21b +c C .2 1 a - 21b +c D .-21a -2 1 b + c 4.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 5 1 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 5.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

专题11.4 空间向量的应用(专题训练卷)(解析版)

专题11.4 空间向量的应用(专题训练卷) 一、单选题 1.(2020·江苏如东 高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A . 6 B . 102 C . 155 D . 105 【答案】D 【解析】 以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1), 1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110 cos ,558 BC AC ∴<>= =?. ∴直线1BC 与平面11BB DD 10 故选:D . 2.(2020·河北新华 石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )

A.1 6 B. 1 4 C. 1 6 -D. 1 4 - 【答案】A 【解析】 如图,以D为坐标原点,分别以1 ,, DA DC DD所在直线为,, x y z轴建立空间直角坐标系.设正方体的棱长为2,则()( )()() 1 100,012,121,002 M N O D ,,,,,,,,,∴()() 1 1,1,2,1,2,1 MN OD =-=--.则 1 1 1 1 cos, 6 66 MN OD MN OD MN OD ? === ?.∴异面直线 MN与 1 OD所成角的余弦值为 1 6 ,故选A. 3.(2020·辽宁高三其他(文))如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D 所成角的正弦值为() A 6 B 26 C 15 D 10 【答案】D 【解析】 以D点为坐标原点,以DA、DC、1 DD所在的直线为x轴、y轴、z轴,建立空间直角坐标系则A(2,0,

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间几何体专题复习

空间几何体专题 第1讲 空间几何体(文/理) 热点一 三视图与直观图 例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π (2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( ) 答案 (1)C (2)D 解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧 =1 2 ×4π×4=8π,圆柱的侧面积S 柱侧 =4π×4= 16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. (2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到

的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果. 跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是() (2)一几何体的直观图如图,下列给出的四个俯视图中正确的是() 答案(1)D(2)B 解析(1)由俯视图,易知答案为D. (2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形. 热点二几何体的表面积与体积 空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割

高三数学专题复习:空间向量

一、知识梳理 【高考考情解读】 高考对本节知识的考查以解答题的形式为主:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明、空间角(主要是线面角和二面角)的计算.2.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题. 1. 直线与平面、平面与平面的平行与垂直的向量方法 设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同). (1)线面平行:l ∥α?a ⊥μ?a ·μ=0?a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α?a ∥μ?a =k μ?a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β?μ∥v ?μ=λv ?a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直:α⊥β?μ⊥v ?μ·v =0?a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角:设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22 . (2)线面夹角:设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ| =|cos 〈a ,μ〉|. (3)面面夹角:设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v | =|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离 直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距 离:d =|PM →·n ||n | (其中n 为α的法向量,M 为α内任一点). 二、课前预习 1.平面α的法向量为m ,向量a 、b 是平面α之外的两条不同的直线的方向向量,给出三个论断:①a ⊥m ;②a ⊥b ;③m ∥b .以其中的两个论断作为条件,余下一个论断作为结论, 写出所有正确的命题______________________. 2.如图,直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1, ∠BCA =90°,棱AA 1=2,则cos 〈BA 1→,CB 1→〉的值为________. 3.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,

空间几何体的三视图、表面积、体积专题练习

空间几何体的三视图、表面积、体积专题练习(宋) 1、若一个几何体的正视图与侧视图均为边长是1的正方形,且体积为1 2 ,则该几何体的俯视图是( ) 2. 3.已知某几何体的俯视图是如图所示的边长为2的正方形, 主视图与左视图是边长为2的正三角形,则其全面积是 A.8 B.12 C .4(1D . 4. A.1 4+ πB.1 3 4 + π C.8 3 4 + π D.8 4+ π 5. 如右图,已知一个锥体的正(主)视图,侧(左)视图和 俯视图均为直角三角形,且面积分别为3,4,6,则该锥 体的体积为 A.24B.8C.12D.4 6.如右图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视 图轮廓为正方形,则其体积是() A. 42 3 B. 43 3 C. 3 6 D. 8 3 俯视图

7.用大小相同的且体积为1的小立方块搭一个几何体,使它的主视图 和俯视图如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与15 8.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 9.一个几何体的三视图如图所示,其中正视图中 ABC 是边长为2的正三角形,俯视图为正六边 形,那么该几何体的侧视图的面积为 A.12 B.32 C.2 3 D.6 10. 如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图象可能是( ) 11.(2008年海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A. 22 B. 23 C. 4 D. 2 5 12.如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F 这六个字母之一,现放置成如图的三种不同的位 置,则字母A,B,C 对面的字母分别为 ( ) (A) D ,E ,F ( B) F ,D ,E ( C) E, F ,D ( D) E, D,F 13.一个正三棱柱的三视图如下所示,则这个正三棱柱的高和底面边长分别为( ). A. 2, B. 2 C. 4,2 D. 2,4 14如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为( ). (不考虑接触点) 主视图 正视图侧视图 俯视图 A 俯视图 左视图 正视图 俯视图 侧视图 C A

最新平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设?Skip Record If...?cos?Skip Record If...?,?Skip Record If...?), ?Skip Record If...?sin?Skip Record If...?,且?Skip Record If...?∥?Skip Record If...?,则锐角 ?Skip Record If...?为() A. ?Skip Record If...? B. ?Skip Record If...? C. ?Skip Record If...? D. ?Skip Record If...? 2.已知点?Skip Record If...?、?Skip Record If...?,动点?Skip Record If...?,则点P的轨迹是() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量?Skip Record If...?() A. 1 B. ?Skip Record If...? C. ?Skip Record If...? D. ?Skip Record If...? 4.已知?Skip Record If...?是非零向量且满足?Skip Record If...?() A. ?Skip Record If...? B. ?Skip Record If...? C. ?Skip Record If...? D. ?Skip Record If...? 5.将函数y=sinx的图像上各点按向量?Skip Record If...?(?Skip Record If...?)平移,再将所得图像上各点的横坐标变为原来的2倍,则所得图像的解析式可以写成() A.y=sin(2x+?Skip Record If...?)+2 B.y=sin(2x-?Skip Record If...?)-2 C.y=(?Skip Record If...?)-2 D.y=sin(?Skip Record If...?)+2 6.若A,B两点的坐标是A(3?Skip Record If...?,3?Skip Record If...?,1),B(2?Skip Record If...?2?Skip Record If...?1),|?Skip Record If...?|的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25]

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

相关文档
相关文档 最新文档