文档库 最新最全的文档下载
当前位置:文档库 › 结构矩阵分析原理与程序设计

结构矩阵分析原理与程序设计

结构矩阵分析原理与程序设计
结构矩阵分析原理与程序设计

结构矩阵分析原理与程序设计上机

桥梁---6班(土1001-11班)

第二组

组员:冯顺天20100382

吴陈静20100364

李超辉20100352

刘旭东20100359

吴松20100373

吕东20100351

日期:2013/6/10

一、试用frame计算下列各题

81页例题2.1

plane frame structural analysis

*********************************

input data

= = = = =

structural control data

-----------------

nn ne nf nd ndf npj npe n

4 3 2 1 2 1 3 6 nodal coordinates

-----------------

node x y

1 4 4

2 8 4

3 0 4

4 4 0

element information

-----------------

ele.no. jl jr ea ei al

1 1 3 2000000 64000 4

2 1 2 2000000 64000 4

3 1

4 2000000 64000 4 nodal load

-----------------

i mj xd yd md

1 1 0 0 80

element loads

-----------------

i mf ind aq bq q1 q2

1 1

2 0 4 30 30

2 2 1 2 0 -100 0

3 3 1 2 0 80 0 boundary conditions

-----------------

i ibd bd

1 4 0

2 5 0

output data

===============

nodal displacement

---------------

node no. u v fai

1 5.02153073651105E-05 -2.6050280684805E-04 4.50745460562155E-04

2 2.51076536825553E-19 1.255954605271E-19 -1.1043112828491E-03

3 0 0 0

4 0 0 0

element no.&member-end force:

=========================

ele no. n(l) q(l) m(l) n(r) q(r) m(r)

-------------------------

1 -25.1076536825553 -67.6918573713151 62.5956421116247 25.1076536825553 -52.3081426286849 -31.8282126263642

2 25.1076536825551 62.55954605271 -50.23818421084 -25.1076536825551 37.44045394729 -1.4210854715202E-14

3 130.251403424025 -50.215307365110

4 67.6425420992153 -130.25140342402

5 -29.784692634889

6 -26.7813126387737

84页例题2.2

plane frame structural analysis

********************************* input data

= = = = =

structural control data

-----------------

nn ne nf nd ndf npj npe n 7 6 3 1 2 3 5 12 nodal coordinates

-----------------

node x y

1 0 4

2 6 4

3 12 4

4 1

5 4

5 0 0

6 6 0

7 12 0

element information

-----------------

ele.no. jl jr ea ei al

1 1

2 11200000 678400 6

2 2

3 11200000 678400 6

3 3

4 11200000 678400 3

4 1

5 9760000 176000 4

5 2

6 9760000 176000 4

6 3

7 9760000 176000 4

nodal load

-----------------

i mj xd yd md

1 1 0 0 -30

2 3 0 0 20

3 4 0 -20 0

element loads

-----------------

i mf ind aq bq q1 q2

1 1

2 0 6 0 -20

2 1

3 3 6 0 20

3 2 1 3 0 -15 0

4 2 2 0 6 -

5 -5

5 4 1 2 0 25 0

boundary conditions

-----------------

i ibd bd

1 10 0

2 12 0

output data

===============

nodal displacement

---------------

node no. u v fai

1 1.10059190161361E-05 -4.98956632190588E-07 -9.54889080003477E-05

2 7.88027433161225E-06 -5.5250562304984E-06 5.98636773997588E-05

3 2.77733304595933E-06 -2.06153313996061E-05

1.41647216496821E-05

4 1.03687100382482E-19 -1.08194961043941E-04 3.32031157223817E-19

5 0 0 0

6 0 0 0

7 0 0 0

element no.&member-end force:

=========================

ele no. n(l) q(l) m(l) n(r) q(r) m(r)

-------------------------

1 5.83453674444456 1.21745418254503 -24.9675615368738 -5.83453674444456 -1.21745418254503 -12.3371635583964

2 9.5254903998854

3 14.6985913849611 2.3212544419252

4 -9.52549039988543 30.3014086150389 44.4871972483079

3 10.3687100382478 20 -26.7968842776186 -10.3687100382478 -20 -33.2031157223814

4 1.21745418254503 -5.83453674444456 -5.03243846312618 -1.21745418254503 -19.1654632555554 -21.6294145590956

5 13.4811372024161 -3.69095365544088 10.0159091164711 -13.4811372024161 3.69095365544088 4.74790550529237

6 50.3014086150389 -.84321963836236 2.30968702931073

-50.3014086150389 .84321963836236 1.06319152413871

122页例题3.2

plane frame structural analysis

*********************************

input data

= = = = =

structural control data

-----------------

nn ne nf nd ndf npj npe n

6 11 0 3 4 3 0 18 nodal coordinates

-----------------

node x y

1 16 6

2 16 0

3 8 6

4 8 0

5 0 6

6 0 0

element information

-----------------

ele.no. jl jr ea ei al

1 1

2 400000 0.002 6

2 1

3 400000 0.002 8

3 1

4 400000 0.002 10

4 2 3 400000 0.002 10

5 2 4 400000 0.002 8

6 3 4 400000 0.002 6

7 3 5 400000 0.002 8

8 3 6 400000 0.002 10

9 4 5 400000 0.002 10

10 4 6 400000 0.002 8

11 5 6 400000 0.002 6

nodal load

-----------------

i mj xd yd md

1 3 0 -35 0

2 4 0 -15 0

3 5 0 -10 0

boundary conditions

-----------------

i ibd bd

1 5 -0.015

2 1

3 0

3 16 0

4 17 0

output data

===============

nodal displacement

---------------

node no. u v fai

1 2.92473604935366E-03 -1.47081872168391E-0

2 9.80840451448748E-04

2 -2.75218702985603E-0

3 -0.015

1.01893884546149E-03

3 2.40595776835953E-03 -6.64560080225226E-03 8.85592674007333E-04

4 -2.18506787396444E-03 -6.5441302140501E-03 9.00772546752097E-04

5 1.75256410419263E-18 -7.68283371317775E-04 2.50118930988387E-04

6 -1.75256410419263E-18 -1.00721153907224E-18 3.40487793989763E-04

element no.&member-end force:

=========================

ele no. n(l) q(l) m(l) n(r) q(r) m(r)

-------------------------

1 -19.4541855440611 -3.58238679467797E-08 9.4772139169426E-08 19.4541855440611 3.58238679467797E-08 1.20171068511253E-07

2 -25.9389140497067 2.79775271607425E-08 -8.80981642826162E-08 25.9389140497067 -2.79775271607425E-08 -1.35722053003324E-07

3 32.4236425207567 4.53749515565149E-09 -6.67397488680941E-09 -32.4236425207567 -4.53749515565149E-09 -3.87011367654696E-08

4 -35.4449472030481 6.13797249832126E-09 -4.02060248317998E-09 35.4449472030481 -6.13797249832126E-09 -5.73590710648423E-08

5 28.355957794579

6 3.64230101763548E-08 -1.16150466028072E-0

7 -28.3559577945796 -3.64230101763548E-0

8 -1.75233615382767E-07

6 6.76470588014433 -8.53411133282582E-08 2.50963382403187E-0

7 -6.76470588014433 8.53411133282582E-0

8 2.61083297566363E-07

7 -120.297888417976 6.25533286383566E-08 -9.134487879869E-08 120.297888417976 -6.25533286383566E-08 -4.09081750308163E-07

8 82.5037706665494 1.51116602564727E-08 3.34626204636684E-08 -82.5037706665494 -1.51116602564727E-08 -1.84579331543359E-07

9 -68.6981522587136 4.2542386141653E-09 1.0885942596929E-07 68.6981522587136 -4.2542386141653E-09 -1.51402020336194E-07

10 109.253393698222 7.40197898944995E-08 -1.56007971387414E-07 -109.253393698222 -7.40197898944995E-08 -4.36150347768581E-07

11 51.2188914211849 -1.9686890832605E-07 5.60483770644357E-07 -51.2188914211849 1.9686890832605E-07 6.20729679311941E-07

其轴力图如下:

90页习题2.8

plane frame structural analysis

*********************************

input data

= = = = =

structural control data

-----------------

nn ne nf nd ndf npj npe n

4 3 0 2

5 3 2 12

nodal coordinates

-----------------

node x y

1 0 0

2 0 4

3 6 4

4 6 0

element information

-----------------

ele.no. jl jr ea ei al

1 1

2 7200000 300000 4

2 2

3 10500000 1200000 6

3 3

4 7200000 300000 4

nodal load

-----------------

i mj xd yd md

1 1 10 0 0

2 3 20 0 0

3 4 0 0 -180

element loads

-----------------

i mf ind aq bq q1 q2

1 1 1 3 0 15 0

2 2 2 0 6 -10 -10

boundary conditions

-----------------

i ibd bd

1 2 0

2 3 0

3 10 0

4 11 0

5 12 0

output data

===============

nodal displacement

---------------

node no. u v fai

1 3.02552213868004E-04 -2.63882863340569E-19 -1.2759483103094E-19

2 2.34521553341054E-04 -1.4660159074476E-05

3.40402252920805E-05

3 2.37378696198197E-0

4 -1.86731742588579E-0

5 -1.46439852342352E-05

4 1.5E-19 -3.36117136659442E-19 2.89017011074324E-19

element no.&member-end force:

=========================

ele no. n(l) q(l) m(l) n(r) q(r) m(r)

-------------------------

1 26.3882863340564 -10 15.5719831030939 -26.3882863340564 -5 9.42801689690604

2 -4.99999999999998 26.3882863340564 -9.42801689690605 4.99999999999998 33.6117136659436 31.0982988925677

3 33.6117136659436 15 -31.0982988925677 -33.6117136659436 -15 -28.9017011074323

91页习题2.9

plane frame structural analysis

********************************* input data

= = = = =

structural control data

-----------------

nn ne nf nd ndf npj npe n

10 12 4 0 0 2 6 18

nodal coordinates

-----------------

node x y

1 0 4

2 6 8

3 6 4

4 14 8

5 14 4

6 20 4

7 0 0

8 6 0

9 14 0

10 20 0

element information

-----------------

ele.no. jl jr ea ei al

1 1

2 4200000 55000 7.21110255092798

2 1

3 4200000 55000 6

3 1 7 4200000 55000 4

4 2 3 4200000 55000 4

5 3 5 4200000 55000 8

6 2 4 4200000 55000 8

7 3 5 4200000 55000 8

8 4 5 4200000 55000 4

9 5 9 4200000 55000 4

10 4 6 4200000 55000 7.21110255092798

11 5 6 4200000 55000 6

12 6 10 4200000 55000 4

nodal load

-----------------

i mj xd yd md

1 1 25 0 -30

2 6 0 0 40

element loads

-----------------

i mf ind aq bq q1 q2

1 1

2 0 7.2 -8.

3 -8.3

2 1 7 0 7.2 5.5 5.5

3 6 2 0 8 -10 -10

4 7 1 4 0 -50 0

5 10 1 3.

6 0 -16.6 0

6 10 6 3.6 0 11.1 0

output data

===============

nodal displacement

---------------

node no. u v fai

1 4.15711208305482E-03 -7.81200512262899E-05 9.5571097885711E-04

2 5.2377981362127E-0

3 -2.1230328915674E-03

2.23971269912958E-04

3 4.27270040650289E-03 -2.14269945421784E-03 2.75660618073929E-04

4 4.95360087958342E-03 5.62119318951597E-0

5 -4.96899051333331E-04

5 4.35009484818455E-03 1.65238231630666E-05 8.91876352315351E-05

6 4.50674101676327E-03 -1.0766********E-04 1.04385424999696E-03

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

element no.&member-end force:

=========================

ele no. n(l) q(l) m(l) n(r) q(r) m(r)

-------------------------

1 117.116576111773 26.4895068174796 -17.9948698194957 -156.716576111773 33.2704931825204 42.7758080786006

2 -80.9118264136504 -4.97913590717146 21.1712026953602 80.9118264136504 4.97913590717146 8.70361274766854

3 82.026053787604

4 23.1586794175749 -33.176332875864

5 -82.0260537876044

-23.1586794175749 -59.458384794435

4 -20.6498907829612 -.352337352097093 -6.0538330191621E-03

20.6498907829612 .352337352097093 1.41540324140753

5 -40.6320818828738 -4.66462256210512 19.940492005462 40.6320818828738 4.66462256210512 17.376488491379

6 149.203559730372 38.5981010927041 -42.7697542455815 -149.203559730372 41.4018989072959 53.9849455039487

7 -40.6320818828738 20.3353774378949 -30.0595******** 40.6320818828738 29.6646225621051 67.376488491379

8 -41.6725141686978 14.6327039059004 -37.3240997520677 41.6725141686978 -14.6327039059004 -21.2067158715339

9 -17.3500143212199 43.0208581452528 -84.8153863060719 17.3500143212199 -43.0208581452528 -87.2680462749392

10 158.0511******** 5.52439028020721 -16.660845751881 -169.151113432596 11.0756097197928 36.7682032553623

11 -109.6523180051 -10.0067452767325 21.2691251948477 109.6523180051 10.0067452767325 38.7713464655472

12 113.050365416835 24.9462728291838 -35.5395497209095 -113.050365416835 -24.9462728291838 -64.2455415958259

二、思考题

(a)若将单元○1、○3编码互换,总刚和综合结点荷载列向量有无变化?为什么?

答:总刚和综合结点荷载列向量都无变化。单元○1、○3编码互换,单刚发生变化,但组集总刚并没发生变化,而综合结点荷载列向量跟结点有关,由于各结点均未改变,所以综合结点荷载列向量不发生变化。

(b)若将结点2、3编码互换,总刚和综合结点荷载列向量有无变化?为什么?

答:总刚和综合结点荷载列向量均发生变化。结点2、3编码互换,相应的单刚位置变化,对应的组集总刚发也生了变化,;而综合结点荷载列向量是由各结点的受力情况决定的,现在结点2、3编码互换了,变化后的结点2、3对应的受力情况和原来结点2、3已经不同,对应的综合结点荷载列向量变化。

三、程序修改(选作)

四、结合工程实际题

plane frame structural analysis ********************************* input data

波士顿矩阵分析法

波士顿矩阵分析法 波士顿矩阵是由波士顿咨询集团(Boston Consulting Group, BCG)在上世纪70年代初开发的。BCG矩阵将组织的每一个战略事业单位(SBUs)标在一种2维的矩阵图上,从而显示出哪个战略事业单位提供高额的潜在收益,以及哪个战略事业单位是组织资源的漏斗。BCG矩阵的发明者、波士顿公司的创立者布鲁斯认为“公司若要取得成功,就必须拥有增长率和市场分额各不相同的产品组合。组合的构成取决于现金流量的平衡。” 波士顿矩阵通过市场增长率和市场占有率两个维度对业务单位进行分析 ? 横坐标表示相对市场份额,表示各项业务或产品的市场占有率和该市场最大竞争者的市场占有率之比。比值为1就表示此项业务是该市场的领先者。 ? 纵坐标为市场成长率,表明各项业务的年销售增长率。具体坐标值可以根据行业的整体增长而定; ? 图中圆圈表示企业现有的各项不同的业务或产品,圆圈的大小表示它们销售额的大小,圆圈的位置表示它们的成长率和相对市场份额所处的地位。 通过分析不同的业务单位在矩阵中的不同位置可以将业务单位分解为出4 种业务组合。 (1)问题型业务(Question Marks,指高增长、低市场份额) 处在这个位置中的是一些投机性产品,带有较大的风险。这些产品可能利润率很高,但占有的市场份额很小。这通常是一个公司的新业务,为发展问题业务,公司必须建立工厂,增加设备和人员,以便跟上迅速发展的市场,并超过竞争对手,这些意味着大量的资金投入。“问题”非常贴切地描述了公司对待这类业务的态度,因为这时公司必须慎重回答“是否继续投资,发展该业务?”这个问题。只有那些符合企业发展长远目标、企业具有资源优势、能够增强企业核心竞争力的业务才得到肯定的回答。得到肯定回答的问题型业务适合于采用战略框架中提到的增长战略,目的是扩大SBUs的市场份额,甚至不惜放弃近期收入来达到这一目标,因为要问题型要发展成为明星型业务,其市场份额必须有较大的增长。得到否定回答的问题型业务则适合采用收缩战略。 (2)明星型业务(stars,指高增长、高市场份额) 这个领域中的产品处于快速增长的市场中并且占有支配地位的市场份额,但也许会或也许不会产生正现金流量,这取决于新工厂、设备和产品开发对投资的需要量。明星型业务是由问题型业务继续投资发展起来的,可以视为高速成长市场中的领导者,它将成为公司未来的现金牛业务。但这并不意味着明星业务一定可以给企业带来源源不断的现金流,因为市场还在高速成长,企业必须继续投资,以保持与市场同步增长,并击退竞争对手。企业如果没有明星业务,就失去了希望,但群星闪烁也可能会闪花企业高层管理者的眼睛,导致做出错误的

人力资源结构分析理论介绍

人力资源结构分析 人力资源规划首先要进行人力资源结构分析。所谓人力资源结构分析也就是对企业现有人力资源的调查和审核,只有对企业现有人力资源有充分的了解和有效的运用,人力资源的各项计划才有意义。人力资源结构分析主要包括以下几个方面: (一)人力资源数量分析 人力资源规划对人力资源数量的分析,其重点在于探求现有的人力资源数量是否与企业机构的业务量相匹配,也就是检查现有的人力资源配量是否符合一个机构在一定业务量内的标准人力资源配置。在人力资源配置标准的方法运用上,通常有以下几种: 1、动作时间研究。动作时间研究指对一项操作动作需要多少时间,这个时间包括正常作业、疲劳、延误、工作环境配合、努力等因素。定出一个标准时间,再根据业务量多少,核算出人力的标准。 2、业务审查。业务审查是测定工作量与计算人力标准的方法,该方法又包括两种: (1)最佳判断法。该方法是通过运用各部门主管及人事、策划部门人员的经验,分析出各工作性质所需的工作时间,在判断出人力标准量。 (2)经验法。该方法是根据完成某项生产、计划或任务所消耗的人事纪录,来研究分析每一部门的工作负荷,再利用统计学上的平均数、标准差等确定完成某项工作所需的人力标准。 3、工作抽样。工作抽样又称工作抽查,是一种统计推论的方法。

它是根据统计学的原理,以随机抽样的方法来测定一个部门在一定时间内,实际从事某项工作所占规定时间的百分率,以此百分率来测定人力通用的效率。该方法运用于无法以动作时间衡量的工作。 4、相关与回归分析法。相关与回归分析法是利用统计学的相关与回归原理来测量计算的,用于分析各单位的工作负荷与人力数量间的关系。 有了人力标准的资料,就可以分析计算现有的人数是否合理。如不合理,应该加以调整,以消除忙闲不均的现象。 (二)人员类别的分析 通过对企业人员类别分析,可现实一个机构业务的重心所在。它包括以下两种方面的分析: 1、工作功能分析。一个机构内人员的工作能力功能很多,归纳起来有四种:业务人员、技术人员、生产人员和管理人员。这四类人员的数量和配置代表了企业内部劳力市场的结构。有了这项人力结构分析的资料,就可研究各项功能影响该结构的因素,这些因素可能包括以下几个方面:企业处在何种产品或市场中,企业运用何种技能与工作方法,劳力市场的供应状况如何等。 2、工作性质分析。按工作性质来分,企业内部工作人员又可分为两类:直接人员和间接人员。这两类人员的配置,也随企业性质不同而有所不同。最近的研究发现,一些组织中的间接人员往往不合理的膨胀,该类人数的增加与组织业务量增长并无直接联系,这种现象被称为“帕金森定律”。

SVC&TCSC的原理及应用

Chapter23 Improvement of system stability margins using coordination control of Static Var Compensator(SVC)and Thyristor Controlled Series Capacitor(TCSC) Venu Yarlagadda,K.R.M.Rao and B.V.Sankar Ram Abstract The Thyristor Controlled Series Compensator(TCSC)and Static Var Compensator(SVC)are variable impedance Flexible AC Transmission Systems (FACTS)Controllers.A combination of the TCSC and the SVC installation is proposed to acquire superior performance for the power system.The coordination between the two pieces of equipment is designed with the SVC treated as the supplement of the TCSC.When operation of the TCSC is constrained by the inherent limitation of equipment,such as due to the?ring-angle limitation of the thyristors,the adjustable SVC can supply the auxiliary support to improve the overall performance.The voltage and angle stability margins can be greatly improved with the compatible control schemes of the TCSC and the SVC. Keywords TCSCáSVCáCo-ordination control of SVC and TCSCáDesign of small scale TCSC modeláVariable impedance FACTS controllersáSingle machine two bus systemáVoltage stabilityáP–V curves and P-d curves V.Yarlagadda(&) EEE Department,VNR VJIET,Hyderabad,India e-mail:venuyar@https://www.wendangku.net/doc/e18631810.html, K.R.M.Rao EEE Department,MJCET,Hyderabad,India B.V.Sankar Ram EEE Department,JNTUH,Hyderabad,India 207 V.V.Das(ed.),Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing,Lecture Notes in Electrical Engineering150, DOI:10.1007/978-1-4614-3363-7_23,óSpringer Science+Business Media New York2013

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

结构矩阵分析原理与程序设计上机心得

结构矩阵分析原理与程序设计上机心得 在结构分析中,把各项计算公式表达称矩阵形式,进行矩阵运算,称为矩阵方法。再利用计算机对矩阵进行运算,就可以很快得到计算结果。我们所编写的程序就是进行这项工作。 整个程序由各个子块组成:数组变量的定义,原始数据的输入、输出(input1),组集总刚(wsiff)、综合结点荷载的计算(load)、支承条件的引入(bound)、解方程的结点位移(gauss)、各单元最后杆端力的计算(nqm)。这些就是结构矩阵分析的总体思路和流程. 在程序编写中,首先是要细致,要在理解程序的基础上输入程序,知道每个变量的定义,每个子块的作用及其运算原理,结合PAD图理解,程序输错时可以在电脑提示下修改,最后使程序运行成功。再者就是数据输入时的问题。数据输入前要对结构中的节点单元进行编号,结构中的单元划分必须使个单元均质,等截面直杆;结点编号先编可动支座,再编不可动支座,这主要是因为程序使用前后处理结合法。单元局部坐标系由小号到大号。输入荷载时,若荷载与杆件成一定夹角,则需要把荷载分解成沿杆轴方向和垂直于杆轴方向的荷载,变成一个杆件上的两个荷载,按照表2.3进行两次输入,局部坐标系下荷载的正负也需要注意,例如例4.1中从结点左到右的单元上的荷载向上但是负值。在输入直接结点荷载时若某非固定支座上有结点荷载,则该结点上与约束相对应的荷载分量可以输入任意值。该结点上数据输入时需把各字母代表的含义搞清楚按照input1中的程序编写的输入顺序输入。最后,我所做的修改程序题中一个是改为主一付零法,首要是知道其原理,即先把总刚中主元素换为1,使用r(k,k)数组,使用循环语句时i,j的循环范围,例如i是从1 到n,n是总刚阶数,在前面程序中已给出,可以直接使用。修改弹性支座的过程中,关键是弹性支座输入时的处理,要先撤去弹性支座,使该支座在弹性约束方向上自由移动;第二步则需要把弹性支座信息输入,输入其弹性支座个数,编号(i),对应的位移变量编号(ibd(i)),刚度系数(sk(nk)),最后在结构刚度矩阵中【k】中与⊿i相对应的主元素kii加上弹性刚度系数k。在程序中体现为由循环对数组r(k,k)每个加上sk(j)相应的值。 整个上机过程中遇到了一些困难,但只要静下心来,慢慢研究程序和原理,并与老师和同学交流,就可以发现问题所在并一步步解决。通过这几周的学习,我对结构矩阵的原理和程序有了深入的理解,学会了它在各种结构中的应用。同时我发现利用计算机可以很快的解出结构内力等,对超静定次数较多的结构抵用时很方便,但也有其缺陷,程序比较死板,我们在输入数据时自己首先要做好编号等工作,针对程序,编号与我们手算也是不同的。总之,通过这几周的学习我获益匪浅,对程序由了深入理解。最后感谢老师的指导和帮助。

矩阵式组织结构及相关案例

矩阵式管理的形式、优缺点及实施矩阵式管理时应注意的问题矩阵式管理是相对于那种传统的按照生产、销售、服务等设置的一维式管理而言的。矩阵式管理主要是将管理部门分为两种,一种是传统的职能部门,另一种是为完成某项专门任务而由各职能部门派人联合组成的专门小组,并指定专门负责人领导,任务完成后,该小组成员就各回原单位。从广义上讲,施工企业以职能部门组成的公司总部,以项目实施为核心的项目经理部,按不同专业、领域成立的子(分)公司为二级组织的管理结构,相对于公司而言,就是个矩阵式的管理体制。 矩阵式管理模式就是以产品线为纵轴,区域机构为横轴的交叉组织管理模式,是多产品线、跨区域或跨国企业经营的基本模式。矩阵式管理模式具有灵活、高效、便于资源共享和组织内部沟通等优势,可以适应多元化产品、分散市场以及分权管理等复杂条件。在矩阵组织中,强调区域本地化及产品业务垂直化,各地分公司和产品线负责人都可以更好地了解客户需求,提供差异化的产品及服务,赢得更多订单和市场。通过横向联系和纵向联系的管理方式,企业能够平衡运营中分权化与集权化问题,使各个管理部门之间相互协调和相互监督,更加高效地实现企业的经营目标。 矩阵式管理的优势 从企业运营的角度看,矩阵式管理有三大优势:一是人力资源得到充分利用;二是工作效率得到很大提高。企业可以在最短的时间内调配人力,组成一个团队,把不同职能的人才集中在起,解决些复杂的高难度问题;三是员工的综合才能得到锻炼。 从提高企业的市场竞争力的角度看,矩阵式管理具有以下优势:一是具有良好的前瞻性和扩展性。随着公司的不断发展,经营不断进入新的产品领域和竞争领域,企业迫切需要一种易于扩展的组织结构模式,避免每次结构调整都需要伤筋动骨,给经营带来损失。矩阵式结构可以很容易地以产品或区域的方式扩充新的建制,而不必对企业整体架构做出调整。因此具有良好的前瞻性;二是面向产品市场设计的组织架构具有强烈的市场导向意识。不同的产品进入不同的市场,采用不同的经营方式,可以有效地避免集团公司因突出主业产品而制定的经营策略和市场策略的一般化、简单化;三是经营目标的制定、执行情况的监控、考核办法的制定都比较简单,具有针对性,便于企业总体目标的实现。 矩阵式管理的缺陷 矩阵式管理模式存在的不足:矩阵式管理框架的节点太多,管理成本上升;人力资源紧张、人员素质跟不上导致区域机构管理不善;各业务线节点工作量不均,可能造成局部人力资源浪费;纵向、横向多管理线条交叉,管理难度加大。企业管理层次多,机构设置多造成的内部管理失控,基层执行力下降;管理流程设计复杂化。企业管理流程程序化是确保矩阵式管理取得成功的关键措施,与金字塔组织结构不同的是矩阵管理存在纵向与横向流程交叉的问题,因此,矩阵结构的管理流程设计相当复杂;资源共享和内部工作效率问题。企业的资源是有限的,合理的使用会降低使用成本,提高利用率,在矩阵式管理模式下,资源存在分散配置,资源共享问题比较突出。

结构功能分析法

结构功能分析法 结构功能分析方法是社会研究中常用的一种理论分析方法。它的理论依据来源于社会学的一大理论流派——结构功能理论。在现代社会调查研究中,结构功能分析已成为一种广泛应用的理论分析方法。 结构功能理论认为,任何社会事物都是由一定组成部分或要素构成的,这些部分或要素组成了一个社会系统,它们之间的相对稳定的联系就是这一系统的结构。每一个系统要存在和发展下去,就必须满足一些基本的条件或需求,这些条件或需求是由系统的某一特定部分来满足的,换句话说,系统组成部分担负着特定的社会功能。例如,在民族国家这个社会大系统中,生产组织的主要功能是提供物质产品;军事组织的功能是对外保卫国家、对内维持社会的稳定;政治组织的功能是确定国家的基本目标并组织各种力量以实现这些目标,等等。并且每一个民族国家的生存和发展,也离不开它的这些组成部分所发挥的社会功能。 总之,结构是构成事物各个要素之间所固有的相对稳定的组织方式或联结方式。功能是指构成事物的各个要素之间所发生的相互作用和影响。结构功能法就是通过考察事物的结构和功能来认识事物和分析事物的方法。 结构功能分析法的实施步骤: [1] 明确结构和功能的承载物,即分析对象 如犯罪问题中犯罪团伙,人事管理制度改革问题中的人事管理制度等等,并且应该进一步明确是就哪些方面进行分析。 [2]内部结构分析 即考察各组成要素间在形式上的排列和比例。例如分析犯罪团伙的内部结构,就要弄清谁是骨干,谁是随从;谁是唆使者,谁是被唆使者;谁是策划者,谁是执行者,考察罪犯在团伙中的地位排列,分清犯罪轻重,据此绳之以法。 [3]内部功能分析 即考察各组成要素之间的相互影响和相互作用。包括三项基本内容:一是稳定功能关系的性质,即分析一下有没有相互影响和作用,如果有,是一方影响和作用另一方,还是双方相互影响和作用。例如犯罪团伙的成员之间有没有相互间的利益满足,相互的制约和影响。 二是挖掘功能存在和建立的必要条件,即分析在满足什么样的条件时,要素间的相互影响和作用才能存在和建立起来。例如犯罪团伙之间的相互利益满足是在怎样的社会条件和犯罪团伙的内部条件的前提下才发生的。 三是找出满足功能的机制,即分析促使各个要素之间相互影响和作用的手段和方法。例如犯罪团伙中唆使者往往以许愿、表扬、斥责、恐吓等心理手段和分赃、赏赐、殴打、杀害等行为手段对被唆使者进行控制。 [4]外部功能分析 即考察现象整体对社会的影响和作用,也就是把研究对象和现象放在社会之中,考察

电饭锅的构造与工作原理

电饭锅的构造与工作原理 电饭锅可分为自动保温式电饭锅、定时保温式电饭锅、压力电饭锅等三种。各类电饭锅的常见规格和工作能力见表1。 (一)自动保温式电饭锅图1是一种双层自动保温式电饭锅的结构图,主要由锅盖、外壳、 内胆、开关、发热板和温度控制装置组成。下面介绍它的主要部件:1.内胆内胆系采用纯铝板拉伸成型,底部加工呈球面状,使与发热板很好吻合,以提高热效率。胆的内壁上有刻度,可指示出放米量和放水量。内胆的边向外翻口,既可增加强度,又可使溢出的饭水流到壳外,以防损坏内部电器零件。2.外壳外壳是用冷轧薄钢板拉伸成型,外面喷涂装饰性漆层。外壳与内胆之间有一层空气间隔,起保温作用,同时可以安装开关、发热板和温度控制装置。3.锅盖有的锅盖中央部位嵌有一块玻璃,能观察烹饪情况;有的装有压紧锅盖用的手柄,兼具便携作用。4.发热板发热板是将环形金属管状电热元件铸造在铝合金体中,再经加工而成,它具有较好的热传导性能和较大的机械强度,板面形状要求与锅底相吻合,在其中心处装有磁性温度控制元件,如图2所示。 5.温度控制装置电饭锅所以能够自动断电和保温,是因为它内部装有磁钢限温器和热双金属片恒温器两个自动装置。 磁钢限温器的动作原理,见图3。它是利用感温磁钢(软磁体)的磁性

随温度的高低而变化的特性来设计的。当低温时,感温磁钢是顺磁性物质,具有磁性;当温度升到某一界限时,感温磁钢变成逆磁性物质,因而失去磁性。这个温度界限,叫做居里点。通常,居里点的温度略高于。在饭煮熟前,锅内有水,所以电饭锅的内胆温度不会超过,感温磁钢仍然具有磁性。当饭熟后,内胆没有水,温度便会上升超过。此时,紧贴于内胆底面的感温磁钢温度,也随之上升到居里点而失去磁性。这样,永磁体在重力或弹簧弹力的作用下,使感温磁钢不能继续吸住它而跌落。下跌时,永磁体通过连杆作用把触点分离,于是电饭锅断电,表明米饭已经煮熟。热双金属片恒温器的动作原理,见图4。它由两种膨胀系数不同的金属片制作,当电饭锅的温度升向时,热双金属片受热,使它向膨胀系数小的一面弯曲。弯曲时,它把两个触点分离,于是电饭锅断电,温度下降。而当温度下降到一定程度时,双金属片就收缩回复原状,两个触点重新闭合通电,如此反复作用,使电饭锅的温度,能够自动维持在65±的范围。 图5是单按键开关的自动保温电饭锅的电气线路,这种电饭锅的工作程序:①插上电源插头,双金属片保温器接通电路,指示灯亮,加热器升温,但不能升到煮饭所需要的温度。②揿下按键开关,磁钢限温器按通电路,温度上升,开始煮饭;当饭煮熟后,磁钢限温器动作把电路切断,电饭锅处于自动保温状态。③若不需要保温,可拔下电源插头,切断电路。图6是双开关自动保温式电饭锅控制线路。K1为煮饭开关;K2为限温器,即磁性温控元件,动作温度为103±;K3 为保温开关,K4为恒温器,即双金属温控元件,调定为65±煮饭时,

国网考试总结-高等电力系统分析

电力系统静态安全分析的基本概念 电力系统静态安全分析是电力系统规划和调度的常用手段,用以判断在发生预想事故(输变电设备强迫退出运行)后系统是否会过负荷或电压越限的功能。 电力系统动态安全分析用于判断在发生预想事故后系统是否会失稳的功能。 静态安全分析的基本方法:补偿法,直流潮流法,灵敏度分析法。 直流输电的基本原理及稳态数学模型 1、直流输电线路输送的电流和功率由线路两端的直流电压所决定,与两端的交流系统的频率和电压相位无关。直流电压的调节是通过调节换流器的触发角和交流系统的电压来实现的,换流器输出直流电压的改变,将决定直流电流的大小。(直流潮流的控制) 2、由于交流变压器等值电感的存在,相电流不能突变,因而换流器的供电电源从一相换到另一相时不能瞬时完成,需要经过一个换相期,换相期所对应的电角度称为换相角。(换相角定义,范围) 3、由于换相角的存在,直流电压的平均值将随直流电流的增大而减小;换流器正常工作的触发角的变化范围减小。(换相角对直流系统的影响) 4、换相电流中包含两个分量,分别为常数分量和正弦分量。其中,常数分量随着触发角的增大而减小,正弦分量滞后于换相电压90°。常数分量是短路电流中的自有分量,其产生机理是电感回路中的电流不能发生突变;正弦分量是短路电流中的强迫分量,由于短路回路是纯电感回路,所以正弦分量的相位滞后于电源电压90度。因此,换流器的稳态工况是在换相期使交流系统两相短路,在非换相期使交流系统单相断线。(换相电流的理解) 5、直流潮流的基本方程:整流器、逆变器、交流基波电流和直流电流、直流电压和交流电压的关系。 6、直流稳态运行方程中引入了等值换相电阻,等值换相电阻并不具有真实电阻的全部意义,它不吸收有功功率,其大小体现了直流电压平均值随直流电流增大而减小的斜率。等值换相电阻是一个网络参数,不随系统运行状态的改变而改变。由于等值电阻的引入,换相角不显含在直流潮流公式中,换相效应完全由换相电阻与直流电流的乘积表征。(等值换相电阻,表达式) 7、多桥换流器通常采用偶数个桥在直流侧相串,在交流侧相并的接线方法。双桥换流器采用YY接线和Y△接线,使交流侧电压相位相差30°。(多桥换流器) 8、一般的控制过程是,首先由自由控制系统调整触发角(整流侧为触发角,逆变侧为熄弧超前角)而使整个电力系统快速地达到合适的运行状态;然后通过调整换流变压器的变比使换流器的触发角运行在合适的值域;最后通过交流系统的优化调整(电压)使全系统运行在理想状态。(换流器的控制) 9、直流系统稳定运行控制注意事项:(1)交流系统电压的微小变化会引起直流电流的巨大变化,为防止直流电流的波动,快速调整换流器的触发角以跟踪交流电压的变化是直流系统正常运行的必要条件;(2)换流器的稳态运行调整应尽可能使其直流电压在额定电压附近,过低的直流电压将伴随较大的直流电流,较大的直流电流直接增大直流线路上的功率损耗,同时还增大交流系统的功率损耗。此外,直流电流越大,电流衰减越慢,导致换相角越大,大的换相角会使触发角的变化范围减小;(3)

跨国公司经营案例分析:ABB矩阵式组织结构分析

ABB公司-创立并管理全球矩正组织 一、案例描述: (一)公司简介 ABB是电力和自动化技术领域的领导厂商,位列全球500强企业。集团总部位于瑞士苏黎世。ABB由两个历史100多年的国际性企业瑞典的阿西亚公司(ASEA)和瑞士的布朗勃法瑞公司在1988年合并而成。现在ABB集团业务遍布全球100多个国家,拥有11.7万名员工。 (二)战略环境 ●ABB公司最大的业务是生产用于发电、输电和配电的设备并提供相关服务。 ●ABB公司在铁路运输业是世界领先的。 ●ABB公司的第三系列产品主要是面对非常特殊的一类顾客。 ● (三)战略定位 1988年1月,巴尼维克发表他对ABB公司所面临的经营环境的分析,他宣布了新公司的战略方向(致力于电力行业,采取快速变革以求更加面向客户和提高反应效率),介绍了新组织设计的详细内容,提出了公司的财务和发展目标、对电力行业的战略和通过一系列兼并和联盟实现公司的全球战略。1988年10月,ABB公司收购了AEG的蒸汽涡轮公司和在1989年2月收购了西屋电气公司的电力分配和传递公司,获得了美国生产导弹和核能设备的Conbustion Engineering公司,快速拓展了ABB公司在北美和东欧的市场。 (四)建立新的组织设计 1.1988年7月,在管理人员的会议中,巴尼维克描述了新的矩阵组织的主要特征,他强调行动的重要性。 2.创建管理队伍 3.规定议事日程 4.交流全新哲学理论和价值 5.重组业务 6.新的组织结构和流程 7.新的战略过程 8.新的系统和控制 (五)面临的挑战 1、成员位置不固定,有临时观念,责任心不够强 2、人员受双重领导,有时不易分清责任 3、矩阵当中地区和业务主管之间不同利益冲突 4、权力下放与集中管理之间的矛盾 5、资源在各部门之间的分配,技术共享的障碍

关于概念结构理论与构式语法说比较分析.

关于概念结构理论与构式语法说比较分析 作者:夏晓蓉时间:2010-1-19 11:19:00 论文关键词:概念结构理论构式语法论元结构体验哲学 论文摘要:本文在比较概念结构理论与构式语法说的基础上,指出:作为认知语言学的两个理论体系,它们有着各自鲜明甚至对立的观点,但是认知的共性使得它们解释语言现象时具有一定的相似之处。因此,两大理论并非截然对立,存在着合作的可能性。 1.引言 Jackendoff(1990)的词汇概念结构理论与Goldberg(1995)的构式语法是上个世纪九十年代认知语言学的重要理论体系,都运用了论元结构来说明语言中的一些特殊现象,动词和句式之间的关系是他们讨论和研究的中心。Jackendoff并没有明确提出“动词中心”的说法,但从他对句子的论元结构的描述不难看出,他的概念结构并没有摆脱生成语法的影子,句子的生成依然是论元插入动词的概念结构,再转化为句法结构的结果。与Jackendoff不同的是,Goldberg以构式(construction)的论元结构为研究中心,认为动词不能决定句子的生成,构式的意义才是构式生成的关键。 虽然他们研究的内容不同,一个是动词概念,一个是构式概念,但是这两者之间的关系是非常紧密的,在一定程度上,动词可以选择它能够出现的构式,同样构式也可以选择满足它的动词。而且,表明句子中动词和名词关系的论元结构在概念结构理论和构式语法中的运用都颇有新意。因此,本文想通过比较Jackendoff和Goldberg的理论方法和哲学基础,讨论这两个分别代表概念语义学和构式研究的理论之间的关系。 2.理论方法 Jackendoff用形式化的语言描述内在概念的空间关系,在生成语法学派中对语义的研究做出了很大的贡献。他的概念结构相当于语义结构,与句法和音系结构并行。Jackendoff摈弃了由表层结构映射到音系和语义结构的句法中心说,认为这三个层次是自主的结构,都具有同等的创造性,不存在从一个层次到另一个层次的派生,它们之间是对应关系而非派生关系,由对应规则(correspondence rules)联系起来。 构式是形式-意义的对应,不依赖动词,基本的句型都是构式的实例。每个

《灵活输电系统》教学大纲

《灵活输电系统》教学大纲 课程编号:2002302 学时数:24 适用专业:电气工程及其自动化学分:1.5 编写者:郎兵编写日期:2002。5 一、课程的性质及主要任务 《灵活输电系统》是“电气工程及其自动化”专业的一门重要专业课,其主要任务是使学生了解并掌握灵活性输变电系统的基本概念以及灵活性输变电技术的应用对现代电力系统重大意义、掌握灵活性输变电技术中几种主要元件的结构、工作原理及其对电力系统的调控作用。从而使学生对灵活性输变电技术的应用有较深刻的认识。 二、课程内容 第一章电力系统稳定概述 内容: 1、提高电力系统静态稳定及暂态稳定的原理及主要措施; 2、传统串补电容器、并联电容器对提高电力系统稳定所起的作用; 3、传统移相器的结构、工作原理及对改变系统参数所起的作用; 目的要求: 1、加强对电力系统稳定概念的理解,掌握提高电力系统稳定的原理及主要措施; 2、掌握一些主要的电力系统控制元件(如串补电容器、并联电容器、移相器等)的 工作原理及作用; 第二章灵活性输变电系统(FACTS)的概念及其应用 内容: 1、灵活性输变电技术产生的背景,灵活性输变电系统的概念及其研究的新进展; 2、灵活性输变电技术的基本术语、定义及其控制器分类; 3、静止无功补偿器(SVC)的结构及工作原理; 4、可控硅控制的串联补偿器(TCSC)的结构及工作原理; 5、可控硅控制的移相器(TCPS)的结构和工作原理; 6、统一潮流控制器(UPFC)的结构和工作原理; 目的要求: 1、重点掌握灵活性输变电系统的基本概念及发展概况; 2、重点掌握灵活性输变电系统中的几种主要元件(SVC、TCSC、TCPS及UPFC等)的 结构和工作原理; 第三章含灵活性输变电系统元件的电力系统潮流计算 内容: 1、TCPS在潮流计算中的模拟方法; 2、UPFC在潮流计算中的模拟方法; 目的要求:掌握含灵活性输变电系统元件的电力系统潮流计算方法。 第四章灵活性输变电系统元件在电力系统中的作用 内容: 1、灵活性输变电系统元件对电力系统潮流的控制作用; 2、UPFC对电力系统暂态稳定的控制作用; 3、TCSC对电力系统次同步振荡的抑制作用; 目的要求:掌握灵活性输变电系统元件对电力系统的调控作用;

第九章 结构的矩阵分析

第九章 结构的矩阵分析 1. 单元刚度矩阵中元素 的物理意义是: ( ) A. 当且仅当位移分量 =1时引起的与 相应的杆端力; B. 当且仅当位移分量 =1时引起的与 相应的杆端力; C. 当且仅当力分量 =1时引起的与 相应的杆端力; D. 当且仅当力分量=1时引起的与 相应的杆端力 2.在结构矩阵分析中如遇到有斜支座,其处理方法可以是建立结点坐标系,引入沿斜支座支撑方向的位移等于零的约束条件。( ) 3.在直接刚度法的先处理法中,定位向量的物理意义是: ( ) A.变形连续条件; B.变形连续条件和位移边界条件; C.位移边界条件 D.平衡条件 4.用矩阵位移法求解图示结构时,已求得单元由杆端位移引起的杆端力为: 问结点端的约束反力 为: ( ) A.-10KN·m B. 10KN·m C. 0 D. 20KN·m 5.在结构矩阵分析中,将跨间荷载处理成等效结点荷载时用到静力等效和反力互等两个基本原理。( ) 6.已知图示结构的单元等效结点荷载,试求结构荷载列阵

7.图示结构,不考虑轴向变形,求引入支撑条件后的结构刚度矩阵[k]中的元素 各为____________。 8.图示结构单元的固端弯矩列阵为,则等效结点荷载列阵为:____________ A.= B.= 9.用矩阵位移法求解图示结构时,已求得单元由杆端位移引起的杆端力 为:问结点3处的约束反力 为: A. 8.25KN B.-8.25KN C.1.25KN D.-1.25KN

10.图示结构中结点号后括号内为结点位移分量编码,为单元码,求单元的定位向量 =______________ 11.在矩阵位移法中,单元刚度矩阵中对角线两侧的元素符合哪种说法? ( ) A.可能为0 B.不可能为负值 C.不可能为正值 D.一定为0 12.单元刚度矩阵均具有对称性和奇异性。( ) 13.图a连续梁各单元杆端力列阵(单位:KN·m)依次 为:.则单元左端弯矩为5.37 KN·m,下侧受拉。( ) 14.矩阵位移法正,结构在等效结点荷载作用下的内力与结构在原有荷载作用下的内力相同。( ) 15.图示刚架各杆E,I,L均为常数,当忽略轴向变形时,可动结点位移列阵已求 出为{△}={147L,-77,-91} [q /(1008EI)]则单元杆端力列阵为: . ( )

重庆大学机械原理结构分析习题3第二章 平面机构的结构分析

第二章平面机构的结构分析 1.填空题: (1)机构具有确定运动的条件是;根据机构的组成原理,任何机构都可看成是由和组成的。 (2)由M个构件组成的复合铰链应包括个转动副。 (3)零件是机器中的单元体;构件是机构中的单元体。 (4)构件的自由度是指;机构的自由度是指。 (5)在平面机构中若引入一个高副将引入个约束,而引入一个低副将引入个约束,构件数、约束数与机构自由度的关系是。 (6)一种相同的机构组成不同的机器。 A.可以 B.不可以 (7)Ⅲ级杆组应由组成。 A.三个构件和六个低副; B.四个构件和六个低副; C.二个构件和三个低副。(8)内燃机中的连杆属于。 A.机器 B.机构 C.构件 (9)有两个平面机构的自由度都等于1,现用一个有两铰链的运动构件将它们串成一个平面机构,这时自由度等于。 A .0 B.1 C.2 (10)图1.10所示的四个分图中,图所示构件系统是不能运动的。 2.画出图1.11所示机构的运动简图。

3.图1.12所示为一机构的初拟设计方案。试求: (1)计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。(2)如此初拟方案不合理,请修改并用简图表示。 4.计算图1.13所示机构的自由度,判断是否有确定运动;若不能,试绘出改进后的机构简图。修改的原动件仍为AC杆(图中有箭头的构件)。 5.计算图1.14所示机构的自由度。 6.计算图1.15所示机构的自由度。

7.计算图1.16所示机构的自由度。 8.判断图1.17所示各图是否为机构。 9.计算图1.18所示机构的自由度。 10.计算图1.19所示机构的自由度。

可控硅控串联电容补偿器(TCSC)的结构、原理及应用研究报告

可控硅控串联电容补偿器(TCSC)的结构、原理及应用研究报告

摘要 可控串联电容器(TCSC)补偿装置是在常规串联补偿技术上发展而来的一种新型电力装置。由于采用晶闸管快速控制,其基频等值阻抗可以在较大范围内连续调节,既可以呈现容性电抗,也可以呈现感性电抗。TCSC的出现为电网运行控制提供了新的手段。除了具有常规串联补偿技术的优点之外,TCSC可以用于电力系统暂态稳定控制、阻尼功率振荡控制、SSR抑制以及动态潮流控制等。 TCSC装置是一种结构简单、控制灵活以及容易实现的器件。正因为TCSC具有这些特点,因此在工业中较早投入应用。本文将通过简单介绍TCSC装置的结构及其工作原理,详细讨论TCSC装置的阻抗调节特性,以及考虑装置额定运行参数约束时TCSC装置的工作特性,从而归纳出TCSC装置的控制模式。其中,TCSC 作为一项高可靠性和经济性的电力系统调节技术,在现代电网中的应用正在逐渐推广,口前全世界有多个TCSC工程在投人运行。本文还将针对TCSC装置在现代电网中的工程应用做出简要介绍,为从事TCSC的工程人员提供参考。 关键字:可控串联电容补偿器;结构原理;工作特性;控制模式;工程应用 1 绪论 可控串联补偿技术是在常规固定串联补偿技术的基础上为适应电力系统运行控制的需要而发展起来的。早期的可控串联补偿器采用机械开关投切串联电容器(Mechanically Switched Series Capacitor,简称MSSC)来实现,它采用分段投切方式改变对线路阻抗的补偿程度。由于机械开关动作速度较慢,因此,这种补偿装置只主要用于电网潮流控制。随着大功率电力电子器件技术的成熟和发展,出现了利用晶闸管控制的串联补偿技术,包括晶闸管控制串联电容补偿器(Thyristor Controlled Series Capacitor,简称TCSC)和晶闸管投切串联电容补偿器(Thyristor Switched Series Capacitor,简称TSSC)。与机械开关控制的补偿装置相比,晶闸管控制补偿装置可以实现串联补偿度的快速调节,其性能可以满足电力系统稳定控制和快速潮流控制的需要。与MSSC和TSSC相比,TCSC具有阻抗连续可调节的优秀性能,因此,该项技术一经提出,就受到了电力工业界和电力系统研究人员的广泛关注。 2 TCSC装置的结构原理及其工作特性 本章将介绍TCSC装置的基本结构及其工作原理,对TCSC电路的阻抗调节特性、装置工作特性进行了深入分析。 2.1TCSC装置的基本结构 TCSC具有结构简单、控制灵活和容易实现的特点,因此是较早投入工业应

结构矩阵分析及程序设计习题

如图所示,已知弹模E=2.1×105MPa,各杆截面面积A=10.0 cm2,截面惯性距I=21.0 cm4 ,用平面刚架分析程序计算其内力,要求给出单元划分图,输入数据及分析结果。(注意单位的统一。将分析结果发送到civil2007@https://www.wendangku.net/doc/e18631810.html,邮箱) 答案: 10 9 4 1 0.0 0.0 1 1 1 2 0.0 4.2 0 0 0 3 0.0 8. 4 0 0 0 4 3.6 8.4 0 0 0 5 3. 6 4.2 0 0 0 6 3.6 0.0 1 1 1 7 7.5 8.4 0 0 0 8 7.5 4.2 0 0 0 9 7.5 0.0 1 1 1 1 1 2 3 2 2 3 2 3 3 4 1 4 2 5 4 5 5 6 3 6 4 5 2 7 4 7 1 8 5 8 4 9 8 9 3 10 7 8 2 1 2.1E8 0.001 2.1E-7

2 2.1E8 0.001 4.2E-7 3 2.1E8 0.001 6.3E-7 4 2.1E8 0.001 3.15E-7 2 3 2 1 6 3 1 9 3 2 1.8 -10 7 1 3.9 -3 8 1 3.9 -5 运行结果: INPUT FILENAME:11.txt OUTPUT FILENAME:22.txt NUMBER OF ELEMENT= 10 NUMBER OF NODE= 9 NUMBER OF ELEMENT TYPE= 4 NODAL MESSAGE NODE X Y XX YY ZZ 1 0.0000 0.0000 1 1 1 2 0.0000 4.2000 0 0 0 3 0.0000 8.4000 0 0 0 4 3.6000 8.4000 0 0 0 5 3.6000 4.2000 0 0 0 6 3.6000 0.0000 1 1 1 7 7.5000 8.4000 0 0 0 8 7.5000 4.2000 0 0 0 9 7.5000 0.0000 1 1 1 ELEMENT MESSAGE ELEMENT NODE-I NODE-J TYPE 1 1 2 3 2 2 3 2 3 3 4 1 4 2 5 4 5 5 6 3 6 4 5 2 7 4 7 1 8 5 8 4 9 8 9 3 10 7 8 2 ELEMENT TYPE MESSAGE NUMBER E A I 1 0.2100E+09 0.1000E-0 2 0.2100E-06

相关文档