文档库 最新最全的文档下载
当前位置:文档库 › 天体运动问题的基本模型与方法

天体运动问题的基本模型与方法

天体运动问题的基本模型与方法
天体运动问题的基本模型与方法

天体运动问题的基本模型与方法

天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。

一、基本模型

计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律

1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r

的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度

与周期关系,这一基本关系式还可表示为:或。

2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其

表面的重力加速度为g,由这一近似关系有:,即。这一关系式的

应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛

顿第二定律有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:

,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自

转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型

1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的

轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是

A.月球表面的重力加速度B.月球对卫星的吸引力

C.卫星绕月运行的速度D.卫星绕月运行的加速度

解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:

,由此式可求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律有:,由此式可求知

绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。

2.估算天体密度问题

若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。

例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=

6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为

A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2. 9×104kg/m3

解析:对于近地卫星饶地球的运动有:,而,代入

已知数据解得:ρ=2.9×104kg/m3。本题选D

3.运行轨道参数问题

对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。

例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有

A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比

C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

解析:由万有引力定律和牛顿第二定律有:,解得:,

由题意可知,能求出恒星质量与太阳质量之比。由及题意可知,能求出行星运行速

度与地球公转速度之比。本题选AD。

4.人造地球卫星问题

人造卫星运行轨道的中心与地球球心重合。同步通信卫星的轨道与赤道平面重合,运行的角速度(或周期)与地球的自传角速度(或周期)相同,距地面的高度一定。近地卫星的轨道半径与地球半径相等。

例4.已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响

(1)推导第一宇宙速度v1的表达式;

(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期解析:(1)第一宇宙速度等于近地卫星的环绕速度。设卫星的质量为m,地球的质量

为M,在地球表面附近满足,卫星做圆周运动的向心力等于它受到的万有引

力,即,解得:;

(2)对于卫星绕地球的运动,由万有引力定律及牛顿第二定律有:

,而,解得:

例5.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星。试问春分那天(太阳光直射赤道)在日落后12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。

解析:如图1所示,E为地球赤道,S表示卫星,A表示观察者,O表示地心。由图知春分那天日落后,当卫星由位置S运动到S/位置过程中,恰好处于地球的阴影区域,卫星无法反射阳光,观察者看不到卫星。设地球质量、卫星质量分别为M、m,卫星轨道及地球半径分

别为r、R,由万有引力定律及牛顿第二定律有:,由几何关系有:

,观察不到卫星的时间为:,在地球表面有:。解得:

5.“相遇”问题

若某天体有两颗轨道共面的卫星,从某次它们在天体中心同侧与天体中心共线(两卫星相距最近)到下次出现这一情形的时间与两卫星角速度、间满足关系:

,。

例6.如图2所示,A是地球的同步卫星。另一卫星 B的圆形轨道位于赤道平面内,离地面高度为h。已知地球半径为R,地球自转角速度为ωo,地球表面的重力加速度为g,O 为地球中心。

(1)求卫星B的运行周期。

(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?

解析:(1)对卫星B绕地球的运行,由万有引力定律和牛顿第二定律有:

,在地面有:,解得:。

(2)由题意应有:,而,由于卫星A是同步卫星,故:

,解得:

6.外星上的物理问题

若已知某天体的半径及质量,由黄金代换式可求出天体表面的重力加速度,此后可运用有关物理规律求解在外星表面的进行的与重力加速度有关的物理问题。

这类问题的另一形式是由运动学公式,根据运动量求解出天体表面的重力加速度,然后由黄金代换式及基本关系式求解天体的其它参量。

例7.在“勇气号”火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v o,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r o的均匀球体。解析:以M表示火星的质量,m表示火星表面处某一物体的质量,以g表示火星表面附近

的重力加速度,由于在火星表面的重力等于火星对它的万有引力,故有:;以m表示火星的卫星的质量,由万有引力定律和牛顿第二定律有:。

设着陆器第二次落到火星表面时的速度为v,它的竖直分量为v1,则水平分量仍为v o,由于着陆器第一次反弹后在最高点时的竖直分速度为零,故有:,。

解以上各式解得:。

7.变轨问题

飞船或卫星从地面发射时,一般先将其发射到距地球较近的轨道上做圆周运动,再在适当位置实施变轨,使其离开原来的圆周轨道,在半长轴较大的椭圆轨道运动,当运行至椭圆轨道的远地点时再次实施变轨,使其在以椭圆半长轴为半径的圆轨道上做圆周运动,这个轨道就是飞船或卫星的稳定运行或工作轨道。

还有一类变轨问题:在某确定轨道(半径一定)上圆周运动的卫星,由于某种原因的影

响,若速度发生了变化,由基本关系式可以得出:,由此可以看出,当卫星速度变化时,轨道半径随之变化。

例8.2008年9月25日至28日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱。如图3所示,飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是:

A.飞船在变轨前后的机械能相等

B.飞船在圆轨道上时航天员出舱前后都处于失重状态

C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度

D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后圆轨道运动的加速度

解析:飞船变轨前后,由于推进火箭的做功,飞船的机械能不守恒,A错;飞船在圆轨道上运动时时万有引力来提供向心力,航天员出舱前后都处于失重状态,B对;飞船在此圆轨

道上运动的周期90分钟小于同步卫星运动的周期24小时,根据可知,飞船在此圆

轨道上运动的角度速度大于同步卫星运动的角速度,C对。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,沿两轨道运动经过该点时,所受万有引力相等,有牛二定律知加速度相等,D错。本题选BC。8.自转天体不瓦解问题

天体自转时,天体表面的各部分随天体做匀速圆周运动,由于赤道部分所需向心力最大,赤道上质量为Δm的一部分将离未离天体的临界条件是:天体对该部分的支持力为零。此时

对Δm这部分运用万有引力和牛顿第二定律有:或

,若已知天体的质量和半径或天体的平均密度,可求出天体自转的最

大角速度;若已知天体的最大自转角速度或最小周期,可求出天体的最小平均密度。

例9.中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它

的自转周期为。问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转

而瓦解?计算时星体可视为均匀球体。

解析:设中子星的质量为M,赤道半径是R,对于中子星赤道上质量为m的部分物质,有关系式:,而,代入数据解得:

9.双星问题

天文学上,把两颗相距较近,以共同的角速度或周期绕它们连线上的某一固定点做圆周运动的天体称为双星。双星运行中,两星体间的万有引力提供每个星体圆周运动的向心力,两天体的周期、角速度相等。

例10.天文学家将相距较近,仅在彼此的引力作用下运行的两颗行星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运行特征可推算出他们的总质量。已知某双星系统中两颗恒星围绕他们连线上某一固定点分别作匀速圆周运动,周期为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。

解析:设两星的质量分别为m1、m2,轨道半径分别为r1、r2,运行周期为T。对m1的运行有:,对m2的运行有:,依题意有:

。解以上三式得:双星系统的总质量为。

10.黑洞问题

宇宙空间的大质量恒星演化到末期,在其自身引力作用下发生急剧塌缩,形成密度极大,引力场特强的特殊星体。它的引力场强得使外界物质也只能进入星体内而不可能逃离,就连射向它的光线也只能乖乖被俘无法反射,看上去它就像宇宙中的无底洞,天文学上称这类星体叫黑洞。若取无限远处为引力势能的零位置,在它的引力作用范围内,物体的引力势能总是负值。

例11.2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A”的质量与太阳质量的倍数关系。研究发现。有一星体S2绕人马座A做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A就处在该椭圆的一个焦点上。观测到S2星的运行周期是15.2年。

(1)若将S2星的运行轨道视为半径r=9.50102天文单位的圆轨道。试估算人马座A的质量M A是太阳质量M s的多少倍(结果保留一位有效数字);

(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚。由于引力的作用,黑洞表面处质量为m的粒子具有的势能为

(设粒子在离黑洞无限远处的势能为零),式中M、R分别表示黑洞的质量和

半径。已知引力常量G=6.710-11N·m2/kg2,光速c=3.0108m/s,太阳质量M s=2.01030kg,太阳半径R s=7.0108m,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A 的半径R与太阳半径之比应小于多少。

解析:(1)S2星绕人马座A*做圆周运动的向心力由人马座A*对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T,则:,,

设地球质量为m E,公转轨道半径为r E,周期为T E,则:。综合

上述三式得:,代入数据可得:

(2)引力对粒子作用不到的地方即为无限远,此时粒子的引力势能为零。“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动

能便减小为零,此时引力势能仍为负值,其能量总和小于零,则有:。依题意可知:,,可得:。代入数据得:,

高中天体物理公式总结

高中天体物理公式总结 高中天体物理公式 1. 开普勒第三定律:T2/R3=K(=4π2/GM){R: 轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2. 万有引力定律:F=Gm1m2/r2 (G=6.67×10- 11Nm2/kg2 ,方向在它们的连线上) 3. 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R{2R: 天体半径(m) , M 天体质量(kg) } 4. 卫星绕行速度、角速度、周期: V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5. 第一(二、三)宇宙速度V仁(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6. 地球同步卫星GMm/(r地+h)2=m4π2(r 地 +h)/T2{h≈36000km ,h: 距地球表面的高度,r 地: 地球的半径} 强调:(1) 天体运动所需的向心力由万有引力提供,F 向=F 万; (2) 应用万有引力定律可估算天体的质量密度等; (3) 地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4) 卫星轨道半径变小时, 势能变小、动能变大、速度变大、周期变小;(5) 地球卫星的最大环绕速度和最小发射速度

均为7.9km/s 。 高中物理易错知识点 1. 受力分析,往往漏“力”百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦 力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。还要说明的是在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一 个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。 2. 对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,建议同学们

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

幕墙立柱的几种常见力学计算模型

幕墙立柱的几种常见力学计算模型 幕墙立柱根据实际支撑条件一般可以按以下几种力学模型设计。 简支梁 简支梁力学模型是《建筑幕墙工程技术规范》(JGJ102-96)中推荐的立柱计算模型。在均布荷载作用下,其简化图形如图1.1。 图1.1 x ql x q M 222+-= 进而可解得:当2/l x =时,有弯矩最大 值:2max 125.0ql M =。 简支梁的变形可以按梁挠曲线的近似微分方程[1]: )22(22qx x ql dx y d EI --= 经过两次积分可得简支梁的挠度方程为: ) 242412(1343x ql qx qlx EI y ---= 由于梁上外力及边界条件对于梁跨中点都是对称的,因此梁的挠曲线也是对称的,则最大挠 度截面发生在梁的中点位置。即:当2/l x =时,代入上式有: EI l q f k 38454 max = 此种力学模型是目前我国幕墙行业使用的较广泛的形式,但由于没有考虑上下层立柱间的荷载的传递,因而计算结果偏于保守。 2、连续梁 在理想状态下,认为立柱上下接头处可以完全传递弯矩和减力,其最大弯矩和变形可查《建筑结构静力手册》中相关的内力表。 在工程实际中,上下层立柱间采用插芯连接,若让插芯起到传递弯矩的作用,需要插芯有相当长的嵌入长度和足够的刚度。即立柱接头要作为连续,能传递弯矩,应满足以下两个条件: (I) 芯柱插入上、下柱的长度不小于2hc, hc 为立柱截面高度; (II) 芯柱的惯性矩不小于立柱的惯性矩[4]。 计算时连续梁的跨数,可按3跨考虑。同时考虑由于施工误差等原因造成活动接头的不完全 连续,从设计安全角度考虑,按连续梁设计时,推荐采用的弯矩值为:2 )101 ~121(ql M =[2]。 在工程实际中,我们不提倡采用这种连续梁算法。主要原因是由于铝合金型材模具误差等不 可避免的因素,造成立柱接头处只能少部分甚至无法传递弯矩,根本无法形成连续梁的受力模型。 3、双跨梁(一次超静定) 在简支梁的计算中,由于挠度和弯矩偏大,为了提高梁的刚度和强度,就必须加大立柱截面,这样用料较大,在经济上也不太合算。在简支梁中间适当位置增加一个支撑,就形成了“双

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

天体运动模型

常见的天体运动模型 天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解四个基本模型是关键。 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 一、自转模型 1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力 由于地球的自转,因而地球表面的物体随地球自转时需 要向心力,向心力必来源于地球对物体的万有引力,重力实际 上是万有引力的一个分力,由于纬度的变化,物体作圆周运动 的向心力也不断变化,因而地球表面的物体重力将随纬度的变 化而变化,即重力加速度的值g 随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处, 。 2.忽略地球(星球)自转影响,则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力. 在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M ,半径为R ,其表面的重力加速度为g ,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加速度g 与的相互替代,因此称为“黄金代换”。 二、环绕模型 环绕模型的基本思路是:①把天体、卫星的环绕运动近似看 做是匀速圆周运动;②万有引力提供天体、卫星做圆周运动的向 心力:G Mm r 2=m v 2r =m ω2r =m ? ?? ??2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引 力等于重力:由G Mm R 2=mg 可得天体质量M =R 2g G ,这往往是题目中重要的隐含条件。 三、变轨模型 若卫星所受万有引力等于做匀速圆周运动的向心力,将 保持匀速圆周运动;当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力就不再等于 向心力,卫星将做变轨运行。①当v 增大时,所需向心力增 大,即万有引力不足以提供向心力,卫星将做离心运动,脱 离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道 运行,由v =r GM 知其运行速度要减小,但重力势能、

力学常见模型归纳

、 力学常见模型归纳 一.斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m 与M 之间的动摩擦因数μ=gtan θ. 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): (1)向下的加速度a =gsin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >gsin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <gsin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): (1)落到斜面上的时间t =2v0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;

(3)经过tc =v0tan θg 小球距斜面最远,最大距离d =(v0sin θ)2 2gcos θ . 6.如图9-4所示,当整体有向右的加速度a =gtan θ时,m 能在斜面上保持相对静止. 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨 光滑时,ab 棒所能达到的稳定速度vm = mgRsin θ B2L2 . 8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =m m +M L . ●例1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性. 举例如下:如图9-7甲所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =M +m M +msin2 θ gsin θ,式中g 为重力加速度. 对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他 进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是, 其中有一项是错误的,请你指出该项( )

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

天体运动中的双星问题

天体运动中的双星问题 1.我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察 测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此 可求出S2的质量为 C. D. 2.经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期 相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可 知 A.m1︰m2做圆周运动的角速度之比为2︰3 B.m1︰m2做圆周运动的线速度之比为3︰2 C.m1做圆周运动的半径为 D.m 2做圆周运动的半径为 3.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球 绕O点运动的线速度大小之比约为 A 1∶6400 B 1∶80 C 80∶1 D 6400∶1 8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线 上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的 A C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍 11.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O 的两侧。引力常数为G。 求两星球做圆周运动的周期; 1、设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,

力学中的三种力

目录 第一讲:力学中的三种力 第二讲:共点力作用下物体的平衡 第三讲:力矩、定轴转动物体的平衡条件、重心 第四讲:一般物体的平衡、稳度 第五讲:运动的基本概念、运动的合成与分解 第六讲:相对运动与相关速度 第七讲:匀变速直线运动 第八讲:抛物的运动 第一讲: 力学中的三种力 【知识要点】 (一)重力 重力大小G=mg ,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)当物体在外力作用下发生形变时,其内部产生的反抗外力作用而企图恢复形变的力叫弹力。胡克弹力的大小由F=k △x 确定。 (三)摩擦力 1、摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2、滑动摩擦力的大小由公式f=μN 计算。 3、静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4、摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0< f≤f m ,故接触面作用于物体的全反力F '同接触面法线的夹角?? ? ??=-N f tg 01α≤φ0, 这就是判断物体不发生滑动的条件。换句话说,只要全反力F '的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的 f

天体运动_规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有 其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提供向心力了。在不是赤道和极地的位置,万有引力是指向球心的,而所需要的向心力指向圆心(并不重合),所以我们说重力是竖直向下的,而不能说重力也是指向球心的。考虑实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2,所以有时候可以忽略不计。但是在有些自转比较快的星球上,这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到

高中物理公式以及化学方程式

1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=1 6.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

天体运动中重要的模型:公转、自转、天体的追及相遇问题

【例1】 火星的半径约为地球半径的一半,火星的质量约为地球质量的1/9。地球上质量为50kg的人,如果到火星去,他的质量和重力分别是( ) A.50kg 500N B.50kg 222N C.25kg 500N D.25kg 222N 【例2】 月球质量是地球质量的1/81,月球的半径是地球半径的1/4。月球上空高500m处有一质量为60kg的物体自由下落。它落到月球表面所需要的时间是多少? 【例3】 宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星∶R地=1∶4,地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,空气阻力不计。则( ) A.g′∶g=5∶1 B.g′∶g=5∶2 C.M星∶M地=1∶20 D.M星∶M地=1∶80 【例4】 一位善于思考的同学,为探月宇航员估算环绕月球做匀速圆周运动的卫星的最小周期想出了一种方法:在月球表面以初速度v0竖直上抛一个物体,若物体只受月球引力作用,忽略其他力的影响,物体上升的最大高度为h,已知该月球的直径为d,卫星绕月球做圆周运动的最小周期为( ) A B C D

【例5】 某一颗星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体, 水平射程为60m ,如果在该星球上,从相同高度以相同的初速度平抛同一物体,那么其水平射程应为 ( ) A .10m B .15m C .90m D .360m 【例6】 火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ) A .0.2g B .0.4 g C .2.5g D .5g 【例7】 万有引力定律和库仑定律都遵循平方反比律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比。例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F /q ,在引力场中可以有一个类似的物理量来反映各点引力场的强弱,设地球质量为M ,半径为R ,地球表面处的重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( ) A .2M G R B .2g C .2(2)Mm G R D . 4g 三颗卫星 【例8】 已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。则以下结论正确的是( ) A . 23v v = B . 231 7 v v = C . 131 7 a a = D . 13491 a a = 【例9】 如图所示,a 为地球赤道上的物体;b 为沿地球表面附近做匀速圆周运动的人造卫星;c 为地球同步卫星。关于a 、b 、c 做匀速圆周运动的说法中正确的是( ) A .角速度的大小关系为a c b ωωω=> B .向心加速度的大小关系为a b c a a a >> C .线速度的大小关系为a b c v v v => D .周期关系为a c b T T T => 同步卫星

力学常见模型归纳

力学常见模型归纳 一.斜面问题 在每年各地的鬲考卷中几乎都有关于斜面模型的试题?在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理淸解題思路和选择解题方法. 1. 自由释放的滑块能在斜面上(如13 9-1甲所示)匀速下滑时,m与M之间的动摩擦因数u =g t an 8 ? 图9-1甲 2. 自由释放的滑块在斜面上(如图9一1甲所示): (1 )静止或匀速下滑时,斜面M对水平地面的跻摩擦力为零; (2) 加速下滑时,斜面对水平地面的務摩擦力水平向右; (3) 减速下滑时,斜面对水平地面的静摩擦力水平向左. 3. 自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4?悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1 )向下的加速度a = g s in 6时,悬绳稳定时将垂直于斜面; ⑵向下的加「速度a>g s in 8时,悬绳稳定吋将僞离垂直方向向上; (3)向下的加速皮aVgsi n 6时,悬绳将偏离垂直方向向下. 5 ?在倾角为0的斜面上以速度vO平抛一小球(如图9-3所示): 图9一3 (1 )落到斜面上的时间t = \f(2vOtan 6, g); (2)落到斜面上时,速度的方向与水平方向的夹角a恒定,且tan a =2ta n 0 ,与初速度无关;

6.如图9—4所示,当整体有向右的加速度a =gtan 0时,m 能在斜面上保持相对静止. 7?在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光 滑时,ab 棒所能达到的稳定速度⑷二错误!. 8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位 移 s= \f (m, m+M) L ? ?例1有一些问題你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和 判斷?例如从解的物理董单位,解随某些已知量变化的趋势,解在一些特殊条件下的结呆等方 面进行分析,并与预期结果、实验结论等进行比较,从而判斷解的合理性或正确性. 举例如下:如图9-7甲所示,质量为M 、倾角为6的滑块A 放于水平地面上?需巴质量为口的 滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度 a= \ f (M+m, M+ m s i n2 0 ) gsin 6,式中 g 为重力加速度. 对于上述解,某同学首先分析了等号右側的量的单位,没发现问题?他 进一步 利用特殊条件对该解做了如下四项分析和判斷,所得结论都是“解可能是对的”?但 是,其中有一项是错误的,请你指出该项() A ?当0 =0°时.该解给出a=0,这符合常识,说明该解可能是对的 B. 当8 =90°时,该解给出a=g,这符合实验结论,说明该解可能是对的 C. 当M?m 时,该解给出avgsin 0 ,这符合预期的结果,说明该解可能是对的 D. 当m?M 时,该解给出a ~错误!,这符合预期的结果,说明该解可能是对的 ⑶经过tc = v 0 t an g 小球距斜面就远,最大距^d = v Osin 6)2 2gcos 6

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

相关文档
相关文档 最新文档