文档库 最新最全的文档下载
当前位置:文档库 › 齿轮接触有限元分析_杨生华

齿轮接触有限元分析_杨生华

齿轮接触有限元分析_杨生华
齿轮接触有限元分析_杨生华

第20卷第2期2003年4月

 计算力学学报 

C hinese Journal of Computational Mechanics

V ol.20,N o.2April 2003

文章编号:1007-4708(2003)02-0189-06

齿轮接触有限元分析

杨生华

(煤炭科学研究总院上海分院,上海200030)

摘 要:通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。关键词:接触单元;轮齿变形;接触应力;计算标准;仿真分析中图分类号:T P 391 文献标识码:A

收稿日期:2001-04-28;修改稿收到日期:2002-06-24.

基金项目:上海自然科学基金资助项目.

作者简介:杨生华(1963-),男,硕士生,工程师.

1 引 言

计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,自适应求解。新的单元计算精度更高,更有效,功能更强大。其中接触单元能非常有效地求解接触非线性问题,新的通用接触单元(包括点-面和面-面单元)特别适合于计算齿轮接触问题。在微机上能实现齿轮接触仿真分析,大大地促进了齿轮C AE 的形成和发展。

轮齿变形的有限元分析20世纪70年代已开始,但仅仅计算挠曲变形。接触变形和接触应力的有限元分析在20世纪90年代才真正开始。总之,过去的计算是基于试验的计算方法,计算方法是简化的、近似的,不够精确更不够可靠;没有使用有限元法研究轮齿接触变形和应力,并说明与赫兹变形和应力之间的差别,没有分析计算误差,没有考虑齿轮本体变形对轮齿变形的影响,没有计算摩擦力对接触应力的影响。

文中使用AN SYS 大型通用有限元分析软件,在个人计算机上建立齿轮接触仿真分析模型。通过两圆柱赫兹接触变形和应力验证其有效性和精度,分析计算了一对直齿轮的轮齿变形和接触应力,说

明了新的接触单元法的精确性、有效性和可靠性。建立了一个计算轮齿变形和接触应力的标准或基准,给力学研究和机械设计人员一个参考。

2 通用接触单元的赫兹计算

为了检验通用接触单元的有效性和精确性,赫兹计算验证是必要的。两无限长圆柱有限元计算网格模型如图1所示。结构单元是具有附加形状函数的四节点等参单元(一次单元)。图中接触处网格边长为二十分之一接触半宽,该模型节点为7444,单元为7280(其中接触单元为80个点-面单元)。计算参数和结果如表1所示,理论结果按公式(1)-(4)计算[1]。计算结果表明:有限元计算结果和理论计算结果一致,两圆柱变形计算误差仅分别为0.08%和0.045%。注意到公式(2)、(4)是按赫兹接触半无限空间推导的公式,因而是理论近似的(变形误差为 1.7%、0.6%,应力误差为0.6%、0.4%),在接触点不远处一点的变形和应力与有限元计算结果基本一致,有限元计算结果略大于公式(2)和(4)与理论一致[1]。

表1 两无限长圆柱接触分析Tab.1 Tw o cylinder co ntact a nalysis

参数

半径距离理论计算有限元计算

R(mm)d(mm)W H(m)W d H(m)f max(N/mm2)W H(m)W d H(m)f ma x(N/m m2)

圆柱138.0737.198 6.151 3.898229.578 6.146 3.966230.85

圆柱263.670 6.005 6.710 3.701229.578 6.707 3.722230.28

注:弹性模量:E1=E2= 2.06×105N/mm2,泊松比:ν1=ν2=0.3,k n=10E1

表2 有摩擦接触应力分析(单位:N/mm2)

Tab.2 Contact stress a nalysis with friction(Unit:N/mm2)

摩擦系数00(0.001)1(10)20.1(0.001)1(42)20.2(0.05)1(93)20.2(0.001)1(14)2

计算应力赫兹应力f max(误差)3误差f max(误差)3误差f max(误差)3误差f m a x(误差)3误差圆柱1229.578231.07(3.88) 1.0%234.58(4.04) 2.2%245.19(3.32) 6.8%245.55(0.42)7.0%圆柱2229.578230.40(3.93)0.5%233.82(4.15) 1.8%244.53(3.22) 6.5%244.93(0.36) 6.7%

注:上标1为力的计算收敛误差,上标2为迭代次数,上标3为误差估计[4]

罚参数大小与计算效率和精度有关,罚参数

越小计算误差越大[2],但罚参数太大计算效率降

低,而且由于单元离散本身有误差,计算精度不会

有明显提高。因此罚参数有最佳范围,通常取1-10

倍接触体的弹性模量。网格密度也与计算效率和精

度有关,网格越密计算精度越高而效率降低。使用

一次单元时摩擦力使得计算效率明显减低,需要更

多的迭代次数,摩擦系数越大效率和精度越低。表

2是摩擦力对接触应力影响计算,计算模型网格密

度接触处只有图1中一半,但需要另一半的对称模

型。无摩擦时,迭代次数为10,摩擦系数为0.1时,

力的收敛误差为0.001,迭代次数为42;摩擦系数

0.2时,收敛误差为0.05,迭代次数为93。摩擦系

数大于0.2时,计算难于进行。而使用同样网格二

次8节点等参单元和面—面接触单元,能有效计

算有摩擦接触问题。当摩擦系数为0.2时,收敛误

差为0.001,迭代次数为14。

a2=

4P R

πE*(1)

p0=2P

πa 其中

1 E*=

1-v21

E1

+

1-v22

E1

, 1

R

=1

R1

+1

R2

W d i H=P

(1-v2i)

πE*2ln(

2d i

a)-

v i

1-v i(2)

W H=P(1-v

2

i)

πE*2ln(

4R i

a

)-1(3)

f max=0.3003p

0(4)

a是赫兹接触半宽,p0是最大赫兹压力,W H是接触

变形,f max是最大赫兹应力,d、R如图2。

3 轮齿变形和接触应力的计算实例

3.1 齿轮参数

表1是计算轮齿变形和接触应力的一对齿轮

参数,所有参数通过精确计算,根据功率和转速计

算出单齿啮合时额定载荷沿齿向分布力大小为

F=386.5N/m m。

表3 计算一对齿形参数

Tab.3 Parameter of a pair o f gear

摸数压力角齿数变位系数顶圆半径齿数变位系数顶圆半径齿宽中心距功率转速

m T Z1X1r a1Z2X2r a2b A P(k w)n

820°290.1672125.25400.1687169.2634278.6060400

注:E= 2.06×105N/mm2,ν=0.3,刀具圆角半径d=0.38m,刀具齿顶高h ao= 1.25m.

190计算力学学报 第20卷 

3.2 轮齿变形和接触应力的有限元计算模型

轮齿变形包括挠曲变形和接触变形及基础变形:轮齿挠曲变形计算模型的边界范围通常取一齿宽,计算的变形是轮齿对称中心点G的载荷方向(齿面法向)的变形;轮齿接触变形是载荷作用点至轮齿对称点之间的变形;轮齿基础变形为轮齿根部的弹性倾斜对轮齿变形的影响。为了计算方便,把基础变形包括在挠曲变形中。轮齿挠曲变形的单齿有限元模型如图2所示,边界范围为PQRS(图中为二齿宽,轮缘厚度 1.5m)。

过去轮齿接触变形用赫兹接触理论公式近似计算,但轮齿接触变形和赫兹接触变形之间存在多大误差,考虑轮齿基础变形影响的轮齿挠曲变形有限元计算的边界范围应该取多大,需要建立一对啮合齿轮接触有限元仿真分析模型,图3是三齿啮合接触计算模型。接触分析还能计算接触应力和应力分布,并能考虑摩擦力的影响,计算齿轮接触应力与赫兹接触应力之间的误差。

3.3 计算模型的网格

对齿轮接触分析来说,为了有效地生成网格,模型划分为接触区域,接触轮齿和非接触轮齿三个部分,接触单元最后再产生。由于自动生成的接触单元较多,需要控制接触面和目标面范围,接触范围一般不超过两倍的赫兹接触长度。图4是三齿接触一个模型网格,为了得到精确的变形,接触轮齿的相邻轮齿的网格也需要适当加密。为了得到精确的接触应力,接触处网格要更密些,通常单元边长为赫兹半宽的十分之一或更小。图4中接触处单元边长为赫兹半宽的十分之一,接触区半径为赫兹半宽的 1.5倍,图中右下角为接触区网格放大图,该模型总节点数5632,单元数5325,其中接触单元为60个。对整轮接触仿真模型,接触模型的其余部分(即两齿轮本体)可用超单元表示[3]

3.4 轮齿变形分开计算和仿真分析结果比较

轮齿变形的计算方法有两种:一种是分开计算,即轮齿的挠曲变形按图2模型计算,接触变形按公式(2)计算;第二种方法,建立一对齿轮的啮合接触仿真分析模型,进行接触分析而得出轮齿变形。

表4为分开计算时和仿真分析计算结果,仿真分析时三齿接触网格模型如图4,整轮啮合接触计算模型两轮本体都为实心,两轮本体内圆直径(轴径)都为90mm。分开计算时轮齿挠曲变形单齿模型的边界范围PQ RS相对两个仿真模型分别取二齿宽和三齿宽。

仿真计算结果表明:接触变形按赫兹变形公式计算有误差,由于齿轮接触已经是非赫兹接触,按照公式(2)计算有-7%左右误差。单齿挠曲变形计算的误差来源于边界范围,轮齿挠曲变形边界范围PS、QR应在2~3齿宽之间,只要适当调整可以和仿真分析取得一致结果。轮齿变形受到齿轮本体变形的影响,局部和整轮仿真分析结果误差达-9.1%。

3.5 轮齿接触应力仿真分析结果与赫兹

应力计算比较

轮齿接触应力计算方法也有两种:赫兹接触应力公式计算和有限元接触仿真分析计算。由于齿轮是渐开线轮齿接触,赫兹接触应力肯定是近似的,特别在有摩擦时,必然存在误差,而接触仿真分析能计算其误差大小。表5是有无摩擦接触时整轮仿真分析计算结果和赫兹接触应力比较,齿轮啮合时由于摩擦力造成接触力增加。由表中看出:齿轮实际接触应力比赫兹接触应力大,均超过5%。当摩擦系数从0提高到0.2时,赫兹接触应力误差达10%,而齿轮接触应力也提高5%以上,当载荷增加时赫兹接触应力误差也增加,3倍载荷时达10%,而且接触应力分布计算结果最大应力深度大于赫兹理论0.786a(a为赫兹接触半宽)。

191

 第2期杨生华:齿轮接触有限元分析

表4 一对齿轮变形分析比较(单位:μm)

Tab.4 Co mpa ring the too th defo rmation analy sis of a pair o f gear(Unit:μm)

计算方法和误差

轮1

挠曲变形接触变形

轮2

挠曲变形接触变形

总变形

分开计算

仿真分析误差%分开计算仿真分析误差%三齿模型

整轮模型

4.382 3.8987.047 3.70118.991

3.792

4.1747.088 3.99119.045

(4.130)1 4.1767.088 3.993(19.387)1

14.8(- 2.2)1- 6.3- 1.4- 6.9-0.4(- 3.7)1

5.135 3.8987.818 3.70120.552

4.913 4.1767.886 3.99220.967

4.5- 6.7-0.9-7.3- 2.0

注:上标1为力分布作用在轮1的三个边界上,如图3所示。

表5 有摩擦接触仿真分析和赫兹接触应力比较(单位:N/mm2) Tab.5 Comparing the co ntact simulatio n analy sis with frictio n with Hertz stress(Unit:N/mm2)摩擦系数00.1(0.001)10.2(0.05)10(3倍载荷)

计算应力f max赫兹应力误差f ma x赫兹应力误差f max赫兹应力误差f max赫兹应力误差轮1242.05229.58 5.4%248.18233.70 6.2%259.23238.048.9%433.68397.699.1%轮2245.01229.58 6.7%254.39233.708.9%260.63238.049.5%438.91397.6910.4% 注:上标1为接触力收敛误差

4 轮齿变形和接触应力的计算

 误差分析

不考虑物理模型本身的误差,包括计算参数不确定性和随机性,轮齿变形和接触应力计算模型的误差主要包括单元本身、单元离散、几何、边界范围和计算模型处理方法、二维与三维之间的误差。由于个人计算机现在都是32位,正向64位转变,数值计算误差通常很小,一般能达5位精度以上。

单元本身、单元离散、几何误差可以使用更多的或更精确的单元、更大的接触刚度[3]、更精确的几何实体模型解决。在轮齿变形和接触应力计算中,这些误差现在可以肯定地减少到1%以下,而边界范围、二维与三维之间对轮齿变形的误差较大,需要建立仿真分析模型,即二维整轮接触仿真和三维整轮仿真分析模型,通过仿真分析计算误差也能达到1%以内。三维计算需要更多的花费,而且对计算机有更高的要求,通常不进行,三维模型产生的误差参考文献[2]。

一次等参单元模型结构时由于刚度变大[5],计算变形略小,赫兹变形实际计算误差可小于1‰(参考表1)。赫兹应力误差较大,表2中有1%。表2中的误差估计[4]说明了它的计算精度和可靠性。表6是不同接触刚度和网格及边界约束条件时三齿接触仿真分析模型计算结果,由接触刚度和几何误差产生的变形计算误差都很小(约0.2‰左右),三次样条曲线拟合渐开线(齿侧用18节点三次样条拟合)使计算变形略变小。接触处网格加密一倍计算结果与原来的比较相差0.9‰。使用不同边界约束(不同加载方式)产生的误差为 1.8%。

表7是使用一次和二次单元仿真分析计算变形的比较,一次单元和单轮仿真计算变形的误差。由表7可知表4中轮1挠曲变形有0.8‰计算误差,这个误差是因为轮1旋转非线性产生。单轮仿真时计算轮齿挠曲变形使用集中载荷有0.1%的误差,单轮仿真网格与接触仿真网格相同,由p单元计算出单轮仿真网格离散误差。

齿轮接触应力计算使用三对齿接触模型(图4)已足够,接触区网格边长为赫兹半宽的二十分之一(在赫兹长度上划分40个单元),如图4所示,接触处几何误差小于6.5微米。子模型是以接触点为原点,半径为1毫米的圆,网格密度为原网格的两倍,而粗网格仅为原网格密度一半。二次单元使用面接触单元,网格与一次单元相同。表8为不同加载和几何精度及计算方法下的接触应力,周向和切向载荷分别为作用在轮1底边,周向为轮1底边切线方向,切向是沿啮合线方向。对轮1旋转载荷非线性及几何非线性也进行了计算,几何精度按渐开线修正和子模型方法[2]计算得到更精确的值。表8计算表明,通用接触单元和其它单元一样对小变形分析对计算结果影响很小,子模型方法能与二次单元计算结果比较,所有计算模型相对误差都在1%内。根据表1赫兹应力计算比较,齿轮接触应力有限元计算结果误差估计在1%内。

192计算力学学报 第20卷 

表6 三对齿轮接触仿真变形分析(计算轮1齿顶干涉量)(单位:μm) Ta b.6 Contact sim ula tion analysis o f three pair of teeth(Unit:μm)

加载位置

轮1变形

对称点接触点干涉点

轮2变形

对称点接触点干涉点

总变形干涉量

底边115.99011.81619.7827.80811.7990.72019.045底边215.98311.80719.7757.80811.8030.72019.049底边315.99411.81819.7907.81611.8110.72119.062底边415.99311.81719.7857.80811.8010.72019.048左右底边15.99311.81720.1247.80811.8010.72019.387 注:上标1是接触刚度为10e,上标2是接触刚度为100e,上标3是更密网格,4是渐开线精确几何接触。

表7 轮齿变形仿真分析一次单元和二次单元比较(单位:μm)

Tab.7 Comparing sim ula tion analyses of the too th defo rmatio n(Unit:μm)

计算变形

接触变形

一次单元二次单元误差

挠曲变形(接触仿真)

一次单元(误差)二次单元

挠曲变形(单轮仿真)

二次单元(误差1)p单元(误差1)

轮1变形 4.17404 4.182390.20% 4.90931(0.4%) 4.92782 4.92847(0.13‰) 4.92854(0.15‰)轮2变形 3.99145 3.998790.18%7.88586(0.5%)7.925337.93385(0.1%)7.94308(0.2%) 注:上标1与接触仿真比

表8 几个计算模型的接触应力比较(单位:N/m m2)

Tab.8 Com pariso n of the co ntact stresses of sev eral mo del com puta tions(Unit:N/mm2)

计算模型

一次单元

整轮仿真周向载荷切向载荷旋转渐开线子模型粗网格K n=100E

二次单元

周向载荷

齿轮1244.17241.74241.68242.25241.89241.66242.92241.95241.92齿轮2244.10246.42246.51246.94246.59243.68243.72246.64243.75

通过接触仿真分析,接触单元法和计算技术能使轮齿变形和接触应力的计算误差从过去10%减少到1%以内,而且人为误差大大减少,模型的可靠性大大提高。通过随机和不确定分析将进一步提高模型的可靠性和分析精度,分析和仿真真实世界。

5 结 语

本文检验了通用接触单元的有效性。通过接触仿真分析,定义了轮齿变形(挠曲、接触和基础变形)和接触应力的有限元计算方法,说明了轮齿接触变形和应力传统赫兹理论存在的误差和齿轮本体变形对轮齿变形与摩擦力对轮齿接触应力的影响,证明了本文计算模型的有效性。分析了轮齿变形和接触应力计算的误差来源,建立了计算轮齿变形和接触应力的标准。为齿轮修缘和接触强度评价提供更可靠、更有价值的信息,齿轮接触过程的仿真分析,将为齿轮的动态设计、优化设计和可靠性设计打下新的基础。这样不仅能优化齿轮结构、齿形和齿廓,还能优化齿轮材料和工艺,能实现齿轮结构、材料和工艺的创新设计。

随着计算机和有限元软件的发展,新的更有效、更精确、更通用的接触单元将继续产生。二次接触单元能更精确更可靠计算接触应力和变形,更有效地计算摩擦接触问题。求解方法多样化,使用罚函数法和拉格朗日乘子法两种方法求解具有实际意义,能使求解接触问题可靠性更高和稳健性更强,且无需与赫兹理论比较。齿轮变形和应力的仿真分析是发展的必然趋势,仿真分析进入三维领域。分析内容除了静态外,还包括动态和啮合过程。计算模型将更真实、更精确、更全面,通过个人图形工作站,既能快速计算又能更加直观、仔细、迅速、精确地观察到计算结果。误差可控制在1%内,不仅是实验法无法相比而且也是实验法无法做到的,为齿轮C AE奠定了基础。

参考文献(References):

[1] J o hnso n K L.接触力学[M].徐秉业,等译.北京:高

等教育出版社,1992.(J oh nso n K L.Contact Me-

chanics[M].Cambridge Univ ersity Press,1985.(in

Chinese))

[2] 杨生华.子结构、子模型方法在齿轮应力和变形计算

中的应用[A].工程与科学中的计算力学[C].北京:

北京大学出版社,2001:701-707.(Yang Shenghua.

Applica tio ns o f Substructuring a nd Submodeling in

193

 第2期杨生华:齿轮接触有限元分析

Calculations o f the Gear Stress and Defo rma tio n

[A].Co mputa tio nal M echanics in Engineering and

Science[C].Beijing U niv er sity Press,2001:701-707.

(in Chinese))

[3] Bar lam D,Zahavi E.The reliability o f so lutions in

co nta ct pr oblem s[J].Comp&Struct,1999,70:35-

45.

[4] Zienkiewicz O C,Zhu J Z.A sim ple er ro r estimato r

and adaptiv e pr ocedure fo r practica l eng ineering ana l-ysis[J].Int N umber Methods Eng,1987,24:337-357.

[5] 库克R D.有限元分析的概念和应用[M].何 穷,

程耿东,译.北京:科学出版社,1981.(Co ok R D.

Concepts and Applications of Finite Element Analysis

[M].John Wiley,1974.(in Chinese))

Finite element analysis of gear contact

Ya ng Shenghua

(Sha ng hai Bra nch of China Coa l Resear ch Institute,Shanghai200030,China)

Abstract:By the contact simulatio n analysis the a pplicatio ns of the g eneral co ntact elem ents in the calcu-lations of th e too th deforma tion and co ntact stress o f g ears hav e been inv estig ated.The too th co ntact m odel of a pair of mesh g ea r has been crea ted,new finite elem ent m ethods are used for calcula ting the too th deforma tio n and co ntact stress of g ear,com paring with the hertz theo ry,a nd the co ntact stress w ith friction has been calcula ted.The errors in mesh discretization,g eom etry,boundary a rea and load-ing methods have been a naly zed by calculatio n,the com puta tion benchmark of the to oth defo rmatio n and contact stress is crea ted,the accurateness,effectiveness and reliability of new finite elem ent methods are described.

Key words:g eneral co ntact elem ent;toth defo rmatio n;co ntact stress;computation benchmark;sim ula-tion analysis.

194计算力学学报 第20卷 

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) … 名称: Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 | 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比。 }

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 ! 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1= 齿轮数据:= 齿轮分度圆半径:R2 =、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2

通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。 ; 键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈。取键槽均布载荷幅值为1260,齿轮载荷幅值为200. 由于键槽不是平面,所以需要切割,再施加均布载荷。 图3 键槽载荷施加 比较保守考虑,此处齿轮载荷只施加到一个齿轮上。 图4 齿轮载荷施加

齿轮接触强度与弯曲强度

1. 齿轮接触强度计算 1.1齿轮接触的计算应力 βανεννπσK K K K u u bd F Z Z Z MPa E E R L F H A t E H red H 1)(11112 2 2121±?=-+-= 式中: A K —工况系数; νK —动载系数; αH K —接触强度的端面载荷分配系数; βK —齿向载荷分布系数; H Z —节点域系数; E Z —弹性系数; εZ 一重合度系数; 1.1.1 工况系数A K 由于齿轮的载荷特性为工作稳定状况下,故取工况系数为A K =1.0. 1.1.2 动载系数νK 由于 =15.96m/s 齿轮重合度 再根据《机械设计手册》图8-32与8.33得;

)=1.48-0.44(1.48-1.22)=1.36 1.1.3 端面载荷分配系数αH K 查表8-120得 21εαZ C K H H ? = 其中H C 查图8-34为0.865. 1.1.4 齿向载荷分布系数βK 查图8.35可得βK =1.13. 1.1.5 节点域系数H Z 式中:错误!未找到引用源。为端面分度圆压力角; 错误!未找到引用源。 为基圆螺旋角; 错误!未找到引用源。 为端面啮合角; 经计算最后得到H Z =2.254 1.1.6 弹性系数E Z 带入各值后,得E Z =189.87错误!未找到引用源。。 1.1.7 重合度系数εZ 与1.13的分母约去,不需考虑。

最后得到理论接触应力为: MPa Z mm mm N Z MPa H 67.124413 .11 865.036.11208.2208.3776.1572.7627.5265287.189254.2=???????? ??=ε εσ 1.2 接触疲劳极限lim H σ' W R V L N H H Z Z Z Z Z lim lim σσ=' 式中: 'H l i m σ表示计算齿轮的接触疲劳极限; Hlim σ表示试验齿轮的接触疲劳极限; N Z 表示接触强度的寿命系数; L Z 表示润滑剂系数; V Z 表示速度系数; R Z 表示光洁度系数; W Z 表示工作硬化系数。 1.2.1 试验齿轮的接触疲劳极限lim 1H σ 由手册中图8-38d 查得lim 2lim 1H H σσ==1690MPa 。 1.2.2 接触强度的寿命系数N Z 查表8-123得6 0102?=N , nt N e γ60= 0N N e >,取121==N N Z Z 。 1.2.3 润滑剂系数L Z 取10050=υ,由图8-40查得21L L Z Z ==1. 1.2.4 速度系数V Z 由图8-41,按V=1米/秒和MPa H 1200lim >σ查得95.021==V V Z Z 。

渐开线直齿圆柱齿轮接触应力有限元分析

渐开线直齿圆柱齿轮接触应力有限元分析 摘要:本文针对ANSYS有限元齿轮接触仿真进行了探讨,计算齿轮的等效应力和接触应力,对齿轮的弯曲强度失效和接触疲劳失效研究具有重要的实际意义。利用有限元分析方法,得出了相互啮合齿轮在静态情况下,等效应力和接触应力的分布规律;同时分析了齿轮与不同直径齿轮接触时,等效应力和接触应力的变化情况。 关键词:齿轮接触有限元等效应力接触应力 ANSYS 引言 齿轮的接触问题是典型的接触非线性问题,在传统的计算设计方法中,我们通常将非线性问题进行一定的简化与假设,使之变为线性问题来求解,但是这种计算方法的结果不是十分精确。本文基于ANSYS软件建立渐开线直齿圆柱齿轮的二维有限元模型,对静载荷作用下齿轮接触问题进行有限元分析,求得齿轮接触问题更为精确的解,为解决齿轮接触问题提供了一定依据。 1 齿轮传动失效分析 齿轮传动的失效主要是轮齿的失效。根据齿轮传动工作和使用条件的不同,齿轮传动也就有不同的失效形式。主要的失效形式有轮齿的折断、齿面疲劳点蚀、磨损、胶合和塑性变形等。设计齿轮传动时,应对具体情况作具体分析,按可能发生的主要损伤或失效形式来进行相应的强度计算,有时以齿根弯曲疲劳强度为主,有时以齿面接触疲劳为主。这些问题采用有限元法来计算是十分方便的,下面我们将通过ansys对传动比不同的3组齿轮进行有限元分析。 2 有限元模型及其求解 2.1模型的建立 齿轮均选用标准渐开线直齿圆柱齿轮,模数m=3,压力角α=20°,齿数分别为Z1=35、Z2=25、Z3=20,传动比分别为35:35、25:35、20:35。在建模时考虑到齿轮具有轴对称结构,每个齿的受力情况基本相同,因此可以将齿轮模型简化为平面问题,这样可以节省大量计算时间。先在三维设计软件Pro/E中生成齿轮的三维模型,再将模型保存为iges格式,然后导入到ansys中,删除多余面,仅剩下齿轮端面,并复制一个齿轮并调整角度,可得如图1所示的齿轮实体模型。

基于CATIA的减速器齿轮轴的有限元分析_郭越

第32卷 第2期2010年06月 延 边 大 学 农 学 学 报Jo urnal o f Agricultural Science Yanbian University V ol.32No.2 Jun.2010 收稿日期:2010-01-15 作者简介:郭越(1973-),女,吉林舒兰人,延边大学工学院机械系讲师. 基于CAT IA 的减速器齿轮轴的有限元分析 郭 越 (延边大学工学院机械工程系,吉林延吉133002) 摘要:以CAT IA 为平台对减速器齿轮轴进行三维实体建模,并运用分析与模拟模块进行有限元分析,最后得 到齿轮轴的网格图、应力分布图及位移分布图,对后继齿轮轴的可靠性设计起重要作用. 关键词:齿轮轴;建模;有限元分析;应力分布图 中图分类号:T P391.9 文献标识码:A 文章编号:1004-7999(2010)02-0150-03 减速器是现代机械装备中使用较广的通用机械装备,具有结构紧凑、传动效率高、传递运动准确、可靠等优点.CATIA 是由法国达索飞机公司(Dassault Sy stem)推出的高级计算机辅助设计、制造和分析软件(CAD/CAE/CAM ),广泛应用于航天、汽车、造船和电子设备等行业,涵盖基础结构、机械设计、造型、分析与模拟、数控加工、数字化仿真等模块,并在三维特征建模方面功能强大,很方便地进行复杂三维零件的特征参数化造型,完成的参数化造型能根据按人机交互形式输入的设计变量来控制特征的有无,形成新的尺寸,从而再生出新的三维零件. 1 齿轮轴的三维建模 以二级直齿圆柱齿轮减速器的齿轮轴为例,进行三维建模(图1).此齿轮轴为高速轴,在CAT IA 软件设计中先生成齿轮,其基本参数如表1.齿轮的生成是通过渐开线方程创建齿轮齿廓[1],并运用/圆阵列0、/切割0、/合并0功能,得到标准渐开线圆柱齿轮的截面图,再通过/拉伸(Pad)0、/旋转(Rotate)0等命令生成齿轮 及齿轮轴[2].齿轮轴的简略尺寸如图2. 表1 渐开线圆柱直齿轮的设计参数 Table 1 Design parameter of the standard involute straight toothed spur gear 齿数(z) Number of teeth 模数(m)M odulus 压力角(A )Pr essure ang le 齿顶高系数(H a *)A ddendum coefficient 顶隙系数(C *)H eadspace co ef ficient 齿轮宽度(H )G ear w idth 22220b 10.25 45图1 齿轮轴 图2 齿轮轴的尺寸Fig.1 Gear shaf t Fig.2 Dim ension of gear shaft

行星减速器齿轮轴有限元的分析与优化

行星齿轮减速器齿轮轴的有限元分析和优化 镇江技师学院 蔡紫清 1. 齿轮轴几何参数的初选 通过常规设计方法设计计算出齿轮轴的几何参数,齿轮轴的齿形为渐开线直齿。分配减速器传动比,计算齿轮模数,并根据传动比条件、同心条件、装配条件和邻接条件确定齿轮的齿数。齿轮轴的齿轮基本参数如表1所示。 2. 齿轮轴的三维建模 利用ANSYS模块建立齿轮轴模型,如图1所示(去掉网格后的实体模型)。 2.1 网格划分 网格划分越密集,计算结果越精确,但是这会使计算时间加长。单元网格的划分采用ANSYS自带的3D四面体自动网格划分,单元尺寸为3mm。网格划分情况如图1所示。 图1:齿轮轴的网络划分 2.2 定义材料特性 齿轮轴材料选择20Cr,其材料属性如下:质量密度 7.850e3kg/m^3,杨氏模量205000N/mm^2(MPa),泊松比0.29,屈服强度等于540N/mm^2(MPa)。 2.3 施加约束和载荷

齿轮轴两端由两个滚子轴承支撑,限制了空间5个自由度,只允许转动。本论文只考虑齿轮轴齿轮处的应力进而对其进行优化,所以为齿轮轴加载荷及约束,安装轴承处加圆柱形约束,在轴端即与联轴器相连处施加大小为175.083N·m的扭矩。约束和载荷施加情况如图2所示。 图2 齿轮轴的载荷施加 2.4 求解和结果查看 ANSYS软件的结构分析模块提供了强大的后处理功能,可以自动生成计算分析报告。齿轮轴的Von Mises应力图如图3所示。单元节点最大应力为325.8MPa,基本接近材料屈服强度的60%。总体来说,输出轴在强度方面不仅满足了设计要求,而且还有很大的裕量,材料的承载能力并没有得到充分的利用,这为齿轮轴的优化提供了很大的空间。 图3 Von Mises应力图

齿轮有限元分析(过程详细)

基于ANSYS的齿轮传动有限元分析和优化 摘要 ANSYS是随着电子计算机的发展而迅速发展起来的一种在计算数学,计算力学和计算工程科学领域最有效的通用有限元分析软件。它是融结构,热,流体,电磁,声学于一体的大型通用有限元商用分析软件。利用ANSYS有限元分析,可以对各种机械零件,构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。 齿轮是机械中常用的一种零件,其在工作的过程中会产生应力,应变和变形,为保证其正常工作需要对齿轮的轮齿和整体受力进行分析,保证其刚度和强度的要求。本论文采用ANSYS软件对齿轮进行静力学分析和优化实现对齿轮的虚拟设计。 齿轮是最重要的零件之一。它具有功率范围大,传动效率高,传动比正确,使用寿命长等特点,但从零件失效的情况来看,齿轮也是最容易出故障的零件之一。据统计,在各种机械故障中,齿轮失效就占故障总数的60%以上。其中轮齿的折断又是齿轮失效的主要原因之一。 齿轮啮合过程作为一种接触行为, 因涉及接触状态的改变而成为一个复杂的非线性问题。传统的齿轮理论分析是建立在弹性力学基础上的, 对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础,在计算过程中存在许多假设,不能准确反映齿轮啮合过程中的应力以及应变分布与变化。相对于理论分析,有限元法则具有直观、准确、快速方便等优点。 齿廓曲面是渐开线曲面,所以建模的难点和关键在于如何确定精确的渐开线。通过PDL命令流直接在ANSYS中创建标准直齿圆柱齿轮,学习应用ANSYS软件进行零件的几何建模和网格划分,并进行静力加载和求解,对求解的结果进行查看,分析和优化。 关键词:ANSYS;有限元;齿轮;CAE

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 令狐采学 二. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E---弹性系数 2) Z H---节点区域系数 3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350 5) 许用应力:[H]=([H1]+[H2])/2 1.23[H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=Kt b) 计算dt c) 修正dt 三. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y Fa 、YSa---齿形系数和应力修正系数。Zv=Z/cos3YFa 、YFa 2) Y ---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=Kt e) 计算mnt [] H t H E H u u bd KF Z Z σεσα≤±=1 1[]32 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥[] 32 121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

f) 修正mn 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 2. 锥距 3. 齿数比: u=Z2/Z1=d2/d1=tan 2=cot 1 4. 齿宽中点分度圆直径 dm/d=(R-0.5b)/R=1-0.5b/R 记R=b/R---齿宽系数R=0.25~0.3 dm=(1-0.5R)d 5. 齿宽中点模数 mn=m(1-0.5R) 三. 受力分析 大小: Ft1=2T1/dm1(=Ft2) Fr1=Ft1tan cos Fa2) Fa1=Ft1tan sin 1(=Fr2) 方向: 四. 强度计算 1. 齿面接触疲劳强度计算 1)计算公式: 按齿宽中点当量直齿圆柱齿轮计算,并取齿宽为0.85b ,则: 以齿轮大端参数代替齿宽中点当量直齿圆柱齿轮参数,代入 n 1 n 2 相交轴 n 2 两轴夹角900 n 1 2 2 2122212 21Z Z m d d R +=+= d 1 d m b R d m2 d 2 δ1 δ2 O C 2 C 1 A 2 A 1 q Fr α δ Fa Fn Ft Fa1 Fr 2 2 1 n 1 Fa2 Fr 1 Ft 1 Ft 2 []H v v v v H E H u u bd KT Z Z σσ≤+=1 85.023 1 1

基于ANSYS的齿轮接触应力有限元分析【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于ANSYS的齿轮接触应力有限元分析 一、研究现状及研究主要成果 1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。 2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。 3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。 4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应

齿轮轴的静力学有限元分析.

课程论文封面 课程名称:结构分析的计算机方法 论文题目:齿轮轴3的静力学有限元分析学生学号: 学生姓名: 任课教师: 学位类别:学硕

目录 1. HyperMesh软件介绍 (1) 1.1 HyperMesh简介 (1) 1.2 HyperMesh的优势 (1) 2. 齿轮轴3的理论分析 (2) 2.1 齿轮轴3的平面简图 (2) 2.2 齿轮轴3的受力分析 (2) 3. 齿轮轴3的三维建模 (4) 3.1 插入斜齿轮 (4) 3.2 绘制轴的三维模型 (5) 4.齿轮轴3的有限元分析 (7) 4.1 几何模型的编辑 (7) 4.2 网格划分 (12) 4.3 材料属性和单元属性的创建 (19) 4.4 施加约束和载荷 (21) 4.5 求解计算和结果分析 (25)

1. HyperMesh软件介绍 1.1 HyperMesh简介 HyperMesh 是一个高质量高效率的有限元前处理器,它提供了高度交互的可视化环境帮助用户建立产品的有限元模型。其开放的架构提供了最广泛的CAD 、CAE 和CFD 软件接口,并且支持用户自定义,从而可以与任何仿真环境无缝集成。HyperMesh 强大的几何清理功能可以用于修正几何模型中的错误,修改几何模型,从而提升建模效率;高质量高效率的网格划分技术可以完成全面的杆梁、板壳、四面体和六面体网格的自动和半自动划分,大大简化了对复杂儿何进行仿真建模的过程:先进的网格变形技术允许用户直接更改现有网格,实现新的设计,无需重构几何模型,提高设计开发效率:功能强大的模型树视图能轻松应对各种大模型的要素显示和分级管理需要,特别适合复杂机械装备的整体精细化建模。HyperMesh 的这些特点,大大提高了CAE 建模的效率和质量,允许工程师把主要精力放在后续的对产品本身性能的研究和改进上,从而大大缩短整个设计周期。 HyperMesh 直接支持目前全球通用的各类主流的三维CAD 平台,用户可以直接读取CAD 模型文件而不需要任何其他数据转换,从而尽可能避免数据丢失或者几何缺陷。HyperMesh 与主流的有限元计算软件都有接口,如Nastran 、Fluent 、ANSYS 和ABAQUS 等,可以在高质量的网格模型基础上为各种有限元求解器生成输入文件,或者读取不同求解器的结果文件。 1.2 HyperMesh的优势 1 .强大的有限元分析建模企业级解决方案 ●通过其广泛的CAD!CAE 接U 能力以及可编程、开放式构架的用户定制接 口能力,HyperMesh 可以在任意工作领域与其他工程程软件进行无缝连接工作。 ●HyperMesh 为用户提供了一个强大的、通用的企业级有限元分析建模平台, 帮助用户降低在建模工具上的投资及培训费用。 2. 无与伦比的网格划分技术一一质量与效率导向 ●依靠全面的梁杆、板壳单元、四面体或六面体单元的自动网格划分或半自动 网格划分能力,HyperMesh 大大降低了复杂有限元模型前处理的工作量。 3. 通过批量处理网恪划分( Batch Mesher ) 及自动化组装功能提高用户效率 ●批处理网格生成技术无需用户进行常规的手工几何清理及网格划分工作,从 而加速了模型的处理工作。 ●高度自动化的模型管理能力,包括模型快速组装以及针对螺栓、定位焊、粘 接和缝焊的连接管理。 4. 交互式的网格变形、自定义设计变量定义功能 ●HyperMesh 提供的网格变形工具可以帮助用户重新修改原有网格即可自动 生成新的有限元模型。 5. 提供了由CAE 向CAD 的逆向接口 ●HyperMesh 为用户提供了由有限元模型生成几何模型的功能。

有限元分析论文

机械1003班孙祥和 3100301144 基于高速旋转齿轮的有限元分析 引言:齿轮泵是工程中较为常见的一种泵,在高速运转时齿轮受到多种力的作用,包括齿面受到的压力,啮合时的接触应力以及自身离心力。在此过程中,齿轮将发生形变,为此我们需要对其进行分析,确保其结构的稳定性,这对于齿轮泵安全有效地运行具有很重要的意义。 关键词:高速齿轮、平面静力分析、接触应力分析、离心力分析 一、分析对象 这里我们分析的对象是齿轮泵中高速运转的齿轮,在ANSYS中我们建立了标准齿轮模型,其各项数据如下表所示 齿顶直径24 mm 齿底直径20 mm 齿数10 厚度 4 mm 弹性模量 2.06E11 pa 密度7.8e3 kg/m3 最大转速62.8 rad/s 摩擦系数0.1 啮合齿轮中心距44 mm 表1 齿轮泵高速齿轮参数 二、平面静力分析 1、分析问题 为了考查齿轮泵在高速运转时,齿轮发生多大的径向位移,从而判断其变形情况,以及齿轮运转过程齿面受到的压力作用。在这里我们将齿轮的空间结构简化为平面模型,并分析其平面应力情况。 此处的静力分析为线性静力分析,求解步骤分为建模、施加载荷和边界条件并求解、结果分析和评价三个步骤,下面依序进行。 2、建立模型 2.1 定义单元类型 根据齿轮的平面几何对称性和此处分析类型,我们选择四节点矩形单元PLANE42。PLANE42不仅可以用于计算平面应力问题,还可以用于分析平面应变和轴对称问题。每个节点2个自由度:x,y方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。

设定好单元类型后,对选择的PLANE42单元进行设置,在Element behavior (单元行为方式)选择Plane stress w/wk。 2.2 定义实常数 本处选用带有厚度的平面应力行为方式的PLANE 42单元,需要设置器厚度实常数,只需在“Type1 PLANE 42”中将厚度设为4即可。 2.3 定义材料属性 考虑惯性力的静力分析中必须定义材料的弹性模量和密度。 2.4 建立齿轮面模型,如下图所示 图2 建立齿轮面模型 2.5对盘面划分网格 选择Main Menu:Preprocessor>Meshing>Meshing Tool(网格工具)命令,然后单击Line域选择所有线条(Pick All),之后用线控制单元网格划分,在No.of element division(划分单元的份数)中输入10,表示所有线条被划分为10份。本处选用PLANE 42单元对盘面划分映射网格。 3、定义边界条件并求解 建立有限元模型后,就需要定义分析类型和施加边界条件及载荷,然后求解。此处齿轮的载荷为62.8 rad/s转速形成的离心力,位移边界条件将内孔边缘节点的周向位移固定,具体分为以下几个步骤。 3.1施加位移边界 由于此处是对圆柱齿轮进行静态受力分析,为了获得较好的弯曲应力特性,

齿轮传动的强度设计计算

1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。 分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。 两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:

最大接触应力: ?F——接触面所受到的载荷

?ρ——综合曲率半径,(正号用于外接触,负号用于内接触) ?E1、E2——两接触体材料的弹性模量 ?μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。 参数直齿圆柱齿轮斜齿圆柱齿轮 节点处的载荷为

SolidWorks导入ansys齿轮接触分析

原料:SolidWorks,ansys, 1、SolidWorks建立三维实体模型如图1所示,要保证实体没有干涉。保存为***.X_T格式,注意用文件名不能出现中文字符。 2、打开ansys软件,设定储存目录,然后preference,勾选structural,点击OK。如图2. 3、添加两种单元类型,mass21和solid185.选中solid185,点options,将 K2改为Reduced integration。如图3。

4、点real constant 选中solid185,将下面的框键入4. 设置材料属性.弹性模量2.1E11,泊松比0.3. 摩擦系数设置为0.1. 5、file-import-PARA,找到***.X-T文件,打开。只有线框。点击plotCtrl-style-solid model face –normal faceing ,点plot-replot,即可出现三维

实体。如图6. 6、在两个齿轮的中心分别建立两个关键点,如图7.1所示,在两个齿轮的旋转中心分别点击鼠标,点OK,即可建立两个keypoint. 7、划分网格,用meshtool,如图8.1.然后给两个关键点划分网格。如图8.2.

8、设定接触, 8.1点击图标,然后点击图标,点pick target,选取小齿轮上的可能与大齿轮接触的齿面,——OK,

8.2 点击next,点击pick contact,选取大齿轮上可能与小齿轮接触的齿面,——OK,——next——create。_finish.

9、建立刚性区域 9.1 打开select entities ——OK,选择小齿轮侧的关键点,——OK, 9.2 建立一个主节点,name 设为为M1.

基于ANSYS软件的齿轮接触强度分析

10.16638/https://www.wendangku.net/doc/ec15802016.html,ki.1671-7988.2018.08.013 基于ANSYS软件的齿轮接触强度分析 季景方1,黎遗铃2 (1.汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院),湖北十堰442002; 2.比亚迪汽车工业有限公司,广东深圳518000) 摘要:齿轮传动是汽车传动的主要形式,其强度不足导致的失效问题给汽车企业造成巨大经济损失,文章基于ANSYS软件对齿轮接触强度进行分析。首先使用CATIA软件建立了一对渐开线直齿圆柱齿轮的三维模型,并将三维模型导入ANSYS软件中进行了齿轮强度接触分析,得到了齿面、齿根等处的应力分布规律。论文的研究为齿轮的设计提供了理论参考。 关键词:齿轮;接触强度;有限元 中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)08-36-03 Contact strength analysis of gear based on ANSYS Ji Jingfang1, Li Yiling2 ( 1.Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology), Hubei Shiyan, 442002; 2.BYD Automotive Industry Limited Company. Guangdong Shenzhen 518000 ) Abstract: The gear transmission is the main form of automobile transmission and the failure of gear causes great economic loss for automobile enterprise. Contact strength analysis of gear is researched based on ANSYS in this paper. The three- dimensional model of a pair of involutes spur gear is established by using CATIA and the three dimensional model is introduced into the ANSYS to carry out contact strength analysis, and the stress distribution law of the tooth surface and the tooth root is obtained. The research provides a theoretical reference for gear design in this paper. Keywords: gear; contact strength; finite element CLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)08-36-03 前言 齿轮传动以其工作可靠、寿命长等特点在汽车传动系中具有非常广泛的应用,其齿轮的质量和性能直接影响了产品的品质。齿轮在实际工作中要适应复杂的载荷工况,因强度不足导致的轮齿折断、齿面磨损等工作失效给企业造成了巨大的经济损失。本文基于ANSYS软件对齿轮的接触强度进行分析,为齿轮的科学化设计提供参考。1 直齿轮参数化建模 1.1 渐开线方程 根据几何关系,渐开线的极坐标方程式为: (1)其中r k为向径,r b为基圆半径,θk为展角,αk为压力角。 运用CATIA建模时,函数方程使用的坐标系为直角坐标系,需要将极坐标系方程式转化为直角坐标系方程式,即 (2) 作者简介:季景方,(1986-),男,汉族,河南濮阳人,硕士,助教,研究方向:汽车零部件设计和力学分析。项目基金:汽车动力传动与电子控制湖北省重点实验室创新基金项目(2015XTZX0430)。 36

齿轮接触有限元分析_杨生华

第20卷第2期2003年4月  计算力学学报  C hinese Journal of Computational Mechanics V ol.20,N o.2April 2003 文章编号:1007-4708(2003)02-0189-06 齿轮接触有限元分析 杨生华 (煤炭科学研究总院上海分院,上海200030) 摘 要:通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。关键词:接触单元;轮齿变形;接触应力;计算标准;仿真分析中图分类号:T P 391 文献标识码:A 收稿日期:2001-04-28;修改稿收到日期:2002-06-24. 基金项目:上海自然科学基金资助项目. 作者简介:杨生华(1963-),男,硕士生,工程师. 1 引 言 计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,自适应求解。新的单元计算精度更高,更有效,功能更强大。其中接触单元能非常有效地求解接触非线性问题,新的通用接触单元(包括点-面和面-面单元)特别适合于计算齿轮接触问题。在微机上能实现齿轮接触仿真分析,大大地促进了齿轮C AE 的形成和发展。 轮齿变形的有限元分析20世纪70年代已开始,但仅仅计算挠曲变形。接触变形和接触应力的有限元分析在20世纪90年代才真正开始。总之,过去的计算是基于试验的计算方法,计算方法是简化的、近似的,不够精确更不够可靠;没有使用有限元法研究轮齿接触变形和应力,并说明与赫兹变形和应力之间的差别,没有分析计算误差,没有考虑齿轮本体变形对轮齿变形的影响,没有计算摩擦力对接触应力的影响。 文中使用AN SYS 大型通用有限元分析软件,在个人计算机上建立齿轮接触仿真分析模型。通过两圆柱赫兹接触变形和应力验证其有效性和精度,分析计算了一对直齿轮的轮齿变形和接触应力,说 明了新的接触单元法的精确性、有效性和可靠性。建立了一个计算轮齿变形和接触应力的标准或基准,给力学研究和机械设计人员一个参考。 2 通用接触单元的赫兹计算 为了检验通用接触单元的有效性和精确性,赫兹计算验证是必要的。两无限长圆柱有限元计算网格模型如图1所示。结构单元是具有附加形状函数的四节点等参单元(一次单元)。图中接触处网格边长为二十分之一接触半宽,该模型节点为7444,单元为7280(其中接触单元为80个点-面单元)。计算参数和结果如表1所示,理论结果按公式(1)-(4)计算[1]。计算结果表明:有限元计算结果和理论计算结果一致,两圆柱变形计算误差仅分别为0.08%和0.045%。注意到公式(2)、(4)是按赫兹接触半无限空间推导的公式,因而是理论近似的(变形误差为 1.7%、0.6%,应力误差为0.6%、0.4%),在接触点不远处一点的变形和应力与有限元计算结果基本一致,有限元计算结果略大于公式(2)和(4)与理论一致[1]。

齿轮动态啮合有限元分析

齿轮动态啮合有限元分析 作者:陕西法士特齿轮有限公司孙春艳郭君宝 齿轮传动是机械传动中最重要、应用最广泛的一种传动。通常齿轮安装于轴上并通过键连接,转矩从驱动轴经键、齿轮体和轮齿最终传递到从动轮的齿轮。在这一过程中,齿轮承受应力作用。另外,为了润滑齿轮传动与减少齿轮传动时产生的热量,通常在齿轮轮体上开设润滑油孔(图1)。油孔的开设位置将影响齿轮的应力及其分布,进而影响齿轮疲劳寿命。 图1中的齿轮A在实际使用过程中,经常发生油孔附近轮齿断裂的现象。本文的目的在于计算齿轮动态啮合过程的应力分布,得到齿轮轮齿根部应力及接触应力的分布情况,从而为齿轮的结构优化提供理论依据。 传动齿轮在工作中速度高,所受载荷大,引起的应力情况复杂。传统的齿轮强度分析是建立在经验公式基础上的,其局限性和不确定性日益突出。有限元方法在齿轮仿真分析中的应用,提高了齿轮设计计算精度。目前,轮齿接触有限元分析多建立在静力分析基础上,未考虑动力因素的影响。而在齿轮轮齿啮合过程中,动力因素对轮齿的受力和变形状态会产生较大的影响,尤其在轮齿啮入和啮出时,由于轮齿受力变形,会产生较大的啮合冲击。本文应用参数化方法首先建立齿轮轮齿的精确几何模型,然后采用动力接触有限元方法,对齿轮轮齿啮合过程中的应力变化情况进行仿真分析,得到轮齿应力在啮合过程中随时间的变化情况。 本文主要针对图1中的齿轮A和与其配对齿轮在运转过程中的应力变化情况进行有限元分析。其主要参数为:主动齿轮齿数20,从动齿轮齿数19,模数4.5,压力角为20°,齿宽为23mm,从动齿轮上所受扭矩为400N·m。

如图2 所示,首先利用Pro/ENGINEER软件建立四齿对啮合的齿轮轮齿几何模型。这是因为,对于重合度大于1的齿轮副,需要考虑几对轮齿同时啮合的情况,建立多对轮齿的几何模型,在此基础上划分有限元网格,如图3所示。由于轮齿接触区域很小,需要对接触齿面的有限元网格加密。边界条件为约束齿轮内圈表面节点的径向和轴向位移,只保留沿轴向的转动自由度。在主动齿轮上施加轴向的角速度载荷,在从动齿轮上施加扭矩负载,然后应用显式非线性动力有限元方法进行求解。对于动力接触这种非线性问题,可采用拉格朗日增量描述法。设质点在初始时刻的坐标为Xi,任意时刻t,该质点坐标为xi,质点运动方程为:xi=xi(Xi,t), i=1,2,3。结合动量方程、质量守恒方程和能量方程,并考虑沙漏效应和阻尼影响,得到总体运动方程: 其中M为集中质量矩阵;P为总体载荷矢量;F为单元应力场的等效节点力矢量组集而成; H 为总体结构沙漏粘性阻尼矩阵;为总体节点加速度矢量; C为阻尼矩阵。对总体运动方程采用显式时间积分法求解。本文采用ABAQUS 有限元分析软件对上述模型进行有限元分析,得到该对齿轮的一对轮齿啮合全过程,及Von Mises应力变化,如图4 所示。

齿轮强度校核的新方法(图文)

齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力 0引言 齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能和寿命,然而在传统齿轮设计中,齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。 本文采用有限元分析法对渐开线标准圆柱直齿轮进行接触应力和齿根弯曲应力进行分析计算。并且在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自适应网格划分和有限元强度分析。 最后和传统经典方法进行了对比分析,证明了本方法的准确性。具有实际操作性和推广价值。论文发表。 1.齿轮强度分析的基本要求 在机械专业中,减速机是主要的重要的传动机构,而齿轮传动是其中最常见的实现方式。论文发表。因此齿轮零件的设计就显得尤为重要。

其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触和弯曲强度校核计算,才能进行齿轮结构设计。当然相互啮合的齿轮种类十分繁杂。这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。 传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包括图形和图表)。而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。因此借助计算机及相应软件完成对齿轮的优化设计十分必要。使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。 本文应用了APDL,即ANSYS参数化设计语言(ANSYS Parametric Design Language),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。 2.问题研究的主要方法及实例 本文以ANSYS软件为平台,以直齿圆柱齿轮为实例,研究了在ANSYS 环境下实现直齿轮精确建模和应力分析的方法,并与弹性力学和机械手册的计算结果进行了比较。 2.1ANSYS软件介绍 ANSYS是一个大型通用有限元软件。在机械结构系统中.主要在于分析机械结构系统受到负载后产生的力学效应.如位移、应力、变形等.根据该结果判断是否符合设计要求。

基于ANSYS的齿轮应力有限元分析

本科毕业设计 论文题目:基于ansys的齿轮应力有限元分析 学生姓名: 所在院系:机电学院 所学专业:机电技术教育 导师姓名: 完成时间:

摘要 本文主要分析了在ansys中齿轮参数化建模的过程。通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。 关键词:ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of Involute Spur Gear Based on ANSYS Abstract We have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishes gear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gear by using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy. Keywords: ANSYS; APDL;finite element analysis;involute line;contact stress

相关文档