文档库 最新最全的文档下载
当前位置:文档库 › 数学分析考研试题

数学分析考研试题

数学分析考研试题
数学分析考研试题

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

考研数学模拟测试题及答案解析数三

2017考研数学模拟测试题完整版及答案解析(数三) 一、 选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有 一项符合题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx =?, 01 [()()]2b a N b f x dx a f x dx =+??,则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞U 内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若2121 ()n n n u u ∞-=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设22 0ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==-;(B )0,2a b ==-;(C )50,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II ) T A x b =,对任何12(,,)T n b b b b =L (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; (C )12A B --; (D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X L 为来自X 的样本,X 为样本均值,则( ) (A )22 11()~(1)1n i i X X n n χ=---∑; (B )221 1(2)~(1)1n i i X n n χ=---∑; (C )22 12()~()2n i i X n χ=-∑; (D )221 ()~()2n i i X X n χ=-∑; (8)设随机变量,X Y 相互独立且均服从正态分布2(,)N μσ,若概率1 ()2 P aX bY μ-<=则( ) (A )11,22a b ==;(B )11,22a b ==-;(C )11,22a b =-=;(D )11 ,22 a b =-=-; 二、填空题:9~14小题,每小题4分,共24分。把答案填在题中的横线上。

2019年考研数学模拟试题(含标准答案)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________ 一、解答题 1. 有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力. 解:如图20,建立坐标系,直线AB 的方程为 y =-x 10 +5. 压力元素为 d F =x ·2y d x =2x ??? ?-x 10+5d x 所求压力为 F =??0202x ????-x 10+5d x =? ???5x 2-115x 3200 =1467(吨) =14388(KN) 2.证明本章关于梯度的基本性质(1)~(5). 证明:略 3.一点沿对数螺线e a r ?=运动,它的极径以角速度ω旋转,试求极径变化率. 解: d d d e e .d d d a a r r a a t t ???ωω?=?=??= 4.一点沿曲线2cos r a ?=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率. 解: 22cos 2cos sin sin 2x a y a a ???? ?=?==? d d d 22cos (sin )2sin 2,d d d d d d 2 cos 22cos .d d d x x a a t t y y a a t t ???ωω????ωω??=?=??-?=-=?=?= (20)

5.椭圆22 169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得 d d 32180d d x y x y t t ? +?= 由d d d d x y t t -=. 得 161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=± 即所求点为1616,3,3,33????-- ? ???? ?. 6.设总收入和总成本分别由以下两式给出: 2()50.003,()300 1.1R q q q C q q =-=+ 其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为: ()(300 1.1) 1.1.C q q ''=+= (2) 利润函数为 2()()() 3.90.003300() 3.90.006L q R q C q q q L q q =-=--'=- 令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82. 7.已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点ξ,使得 ()()0, (,)f f a b ξξξ'+=∈. 证明:令()()e ,x F x f x =?()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b ξ?∈,使得()0 F ξ'= ,即()e ()e f f ξξξξ'+=,即()()0, (,).f f a b ξξξ'+=∈ 8.求下列曲线的拐点: 23(1) ,3;x t y t t ==+

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

考研数学二模拟题(新)

考研数学二模拟题 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号中。 (1)当0x →时,设2 arctan x α=,11(0)a x a β=(+)-≠,2 arcsin x tdt γ=? ,把三个无 穷小按阶的高低由低到高排列起来,正确的顺序是( ) (A ),,αβγ;(B ),,βγα;(C ),,βαγ;(D ),,γβα; (2)设函数()f x 在(,)-∞+∞内连续,在(,0) (0,)-∞+∞内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)若()f x 是奇函数,()x ?是偶函数,则[()]f x ?( ) (A )必是奇函数 (B )必是偶函数 (C )是非奇非偶函数 (D )可能是奇函数也可能是偶函数 (4)设220ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)下列说法中正确的是( ) (A )无界函数与无穷大的乘积必为无穷大; (B )无界函数与无穷小的乘积必为无穷小; (C )有界函数与无穷大之和必为无穷大; (D )无界函数与无界函数的乘积必无解; (6)设线性无关的函数123,,y y y 都是二阶线性非齐次方程()()()y p x y q x y f x '''++=的解, 123,,C C C 为任意常数,则该方程的通解是( ) (A )112333C y C y C y ++; (B )1123123()C y C y C C y +++; (C )1123123(1)C y C y C C y +---;(D )1123123(1)C y C y C C y ++--; (7)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II )T A x b =,对任何12(,, )T n b b b b = (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

考研数学三模拟题

考研数学三模拟题 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx =?, 01[()()]2b a N b f x dx a f x dx =+??(中间的加号改成减号),则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞U 内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若 21 21 ()n n n u u ∞ -=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设220ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II )T A x b =, 对任何12(,,)T n b b b b =L (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; ( C )12A B --; ( D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X L 为来自X 的样本,X 为样本均值,则( )

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答 北京大学1996年数学分析考研试题参考解答 北京大学1997年数学分析考研试题参考解答 北京大学1998年数学分析考研试题参考解答 北京大学2015年数学分析考研试题参考解答 北京大学2016年高等代数与解析几何考研试题参考解答 北京大学2016年数学分析考研试题参考解答 北京大学2020年高等代数考研试题参考解答 北京大学2020年数学分析考研试题参考解答 北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答 大连理工大学2020年数学分析考研试题参考解答 赣南师范学院2012年数学分析考研试题参考解答 各大高校考研试题参考解答目录2020/04/29版 各大高校考研试题参考解答目录2020/06/21版 各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答 广州大学2013年数学分析考研试题参考解答 国防科技大学2003年实变函数考研试题参考解答 国防科技大学2004年实变函数考研试题参考解答 国防科技大学2005年实变函数考研试题参考解答 国防科技大学2006年实变函数考研试题参考解答 国防科技大学2007年实变函数考研试题参考解答 国防科技大学2008年实变函数考研试题参考解答 国防科技大学2009年实变函数考研试题参考解答 国防科技大学2010年实变函数考研试题参考解答 国防科技大学2011年实变函数考研试题参考解答 国防科技大学2012年实变函数考研试题参考解答 国防科技大学2013年实变函数考研试题参考解答 国防科技大学2014年实变函数考研试题参考解答 国防科技大学2015年实变函数考研试题参考解答 国防科技大学2016年实变函数考研试题参考解答 国防科技大学2017年实变函数考研试题参考解答 国防科技大学2018年实变函数考研试题参考解答 哈尔滨工程大学2011年数学分析考研试题参考解答

北京大学数学分析考研试题及解答复习进程

北京大学数学分析考研试题及解答

判断无穷积分1sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞, (m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列 0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

考研数学模拟模拟卷

全国硕士研究生入学统一考试数学( 三) 模拟试卷 一、选择题(1~8小题,每小题4分,共32分.) (1)已知当0→x 时,1)2 31(31 2 -+x 与 1cos -x 是 ( ) (A )等价无穷小 (B )低阶 无穷小 (C )高价无穷小 (D )同阶 但非等价无穷小 (2)设()f x 满足 ()(1cos )()()sin f x x f x xf x x '''+-+=,且 (0)2f =,0)0(='f 则( ) (A )0x =是函数()f x 的极小值点 (B )0x =是函数()f x 的极大值点 (C )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凹的 (D )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凸的 (3)设有两个数列 {}{},n n a b ,若lim 0n n a →∞ =,则正确的是 ( ) (A )当 1 n n b ∞ =∑收敛时, 1 n n n a b ∞ =∑收敛. (B )当 1 n n b ∞ =∑发散时, 1n n n a b ∞ =∑发散. (C )当 1 n n b ∞ =∑收敛时, 221 n n n a b ∞ =∑收敛. (D )当 1 n n b ∞ =∑发散时, 221 n n n a b ∞ =∑发散. (4)设22(,)xy z f x y e =-,其中(,)f u v 具有连续二阶偏导数,则z z y x x y ??+=?? ( ) (A )( ) v xy f e y x '+2 2 (B) v xy u f xye f xy '+'24 (C) ( ) u xy f e y x '+2 2 (D) v xy f xye '2 (5)设四阶方阵()1234,,,,A αααα=其中 12,αα线性无关,若1232αααβ+-=, 1234ααααβ+++=, 1234232ααααβ+++=,则Ax β=的通 解为( ) (A ) 123112213111012k k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ??????? (B ) 12012123201112k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ?-??????

浙大2000年-2002年数学分析考研试题及解答

浙江大学2000年数学分析考研试题及解答 一、(1)求极限()1 1lim t t t e t →+-; 解 ()1 1 1 ln(1) ln(1)1 11 lim lim lim t t t t t t t t t e e e e e t t t ++-→→→+---== 1 ln(1)1 ln(1)1 1lim ln(1) 1 t t t t e t e t t t +-→+--=+- 2 00 ln(1) 1 1 1 ln(1)1lim lim lim lim 22(1) 2 t t t t t t t t e t t e e e e t t t t t →→→→+--+--+=====- +; 或()1 ln(1) 1 1 ln(1) 2 1ln(1) ( ) 1(1) lim lim lim 1 t t t t t t t t t e t e e e t t t t t ++→→→+- +--+== 2 ln(1)1lim t t t t e t →-++=2 1 1 (1) 1lim 2t t t e t →- ++=2 lim 2(1) 2 t t e e t t →-==- +。 (2)设01,x a x b ==,211()2 n n n x x x --= -,求 n n x lim ∞ →. 解 由条件,得 12111211()()2 2 n n n n n n n x x x x x x x ------+=-+= +, 反复使用此结果 11 11011()()()()22 n n n n x x x x b a ---+=+=+, ,2,1=n ; 于是 21212221100()()()n n n n n x x x x x x x x ++-=+-++++- 221 11()()()()()22 n n a b a b a b a -=++-++++- 21 11() 222 () ()13 3 1() 2 n b a a b a a b a +-- -=+-→+-= -- ,)(∞→n ; 22212122100()()()n n n n n x x x x x x x x ---=+-++-++

(最新整理)上海交通大学年数学分析考研试题

(完整)上海交通大学2005年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2005年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2005年数学分析考研试题的全部内容。

上海交通大学2005年数学分析考研试题 一、 设函数)(x f 定义在R 上,满足R x ∈?,有2 )1()(2x x f x f -=-+,试求)(x f 的表达式; 二、 设}{n x 是收敛数列,}sup{},inf{n n x x ==βα,证明βα,中至少有一个属于}{n x 。 三、 设a>0,c 〉0,数列}{n a 定义如下: 2,1),(),(211211=+=+=+n a a a a n a c n n a c ,证明数列}{n a 收敛,并求其极限; 四、 设.0)0(,0,sin )(01=≠=?f x dt x f x t ,试求)0('f ; 五、 设)(x f 在),1[+∞上可导,1)1(=f ,且满足)(1)('22x f x x f += ,试证:A x f x =+∞→)(lim 存在,且41π +

2015北京大学考研专业课历年考研真题及参考答案

2015年北京大学702数学基础全套资料 温馨提示:点击蓝色字体访问原文||【Ctrl+H】搜索所需科目 ◇资料构成 本专业课考试科目的全套资料主要包括: 1.历年真题 本全套资料提供北京大学1996—2001、2005—2010年数学分析考研真题,供参考。 ·北京大学2010年数学分析考研真题 ·北京大学2009年数学分析考研真题 ·北京大学2008年数学分析考研真题 ·北京大学2007年数学分析考研真题 ·北京大学2006年数学分析考研真题 ·北京大学2005年数学分析考研真题(含答案) ·北京大学1996—2001年数学分析考研真题 注:考研真题或答案如有补充,会第一时间予以上传,并在详情中予以标注,请学员留意。 2.指定教材配套资料 北京大学702数学基础近年不指定参考书目,但根据往年指定教材情况,建议参考书目为:①《数学分析新讲》(张筑生,北京大学出版社);②《数学分析》(一、二、三册)(方企勤等,北京大学出版社)。 ·教材:方企勤《数学分析(第一册)》(PDF版) ·教材:方企勤《数学分析(第三册)》(PDF版) ·《数学分析习题集》(林源渠方企勤等著) ·教材:张筑生《数学分析新讲》(第一、二、三册)(PDF版) 3.北京大学老师授课讲义(含指定教材高校老师授课讲义) 本全套资料提供北京大学老师的授课资源,及建议参考书目的相关课件。具体包括: ·北京大学彭立中老师《数学分析》教学资源汇总(含电子教案、例题习题等,仅提供免费浏览网址) ·《数学分析》教学课件(上册) 4.兄弟院校考研真题详解 本全套资料提供的兄弟院校历年考研真题(含详解)部分,提供其他同等高校历年考研真题详解,以便学员复习备考。所列的高校考研真题非常具有参考性!这部分内容包括: ·中山大学数学分析与高等代数考研真题:2011 2010 2009 2008 2006 2005 2004 2003 ·华东师范大学数学分析与高等代数考研真题:2005 2004 ·华东师范大学数学分析考研真题:2010 2009 2008(含答案) 2007(含答案) 2006 2005(含答案) 2004 2003(含答案) 2002 2001(含答案) 2000(含答案) 1999 1998 1997 ·华东师范大学高等代数考研真题:2008(含答案) 2007 2006 2005 2004 2003 2002 2001 2000 ·北京师范大学数学分析与高等代数考研真题:2007 2006 ·浙江师范大学数学分析与高等代数考研真题:2011 2006 2005 2004 5.其他相关精品资料 ·数学分析同步辅导及习题全解(华东师大第三版)(上、下册)(PDF版,586页) 附注:全套资料尤其是真题会不断更新完善,待更新完善后会及时上传并予以说明标注,学员可下载学习!

考研数学二模拟题及答案

* 4.微分方程 y 2 y x e 2x 的特解 y 形式为() . * 2x * 2 x (A) y (ax b)e (B) y ax e (C) y * ax 2 e 2x (D) y * ( ax 2 bx)e 2 x 2016 年考研数学模拟试题(数学二) 参考答案 一、选择题(本题共 8 小题,每小题 4 分,满分 32 分,每小题给出的四个选项中,只有一 项符合题目要求,把所选项的字母填在题后的括号内) 1.设 x 是多项式 0 P( x) x 4 ax 3 bx 2 cx d 的最小实根,则() . (A ) P ( x 0 ) 0 ( B ) P ( x 0 ) 0 (C ) P ( x 0 ) 0 ( D ) P (x 0 ) 0 解 选择 A. 由于 lim P( x) x x 0 ,又 x 0 是多项式 P(x) 的最小实根,故 P (x 0 ) 0 . 2. 设 lim x a f ( x) 3 x f (a) a 1 则函数 f ( x) 在点 x a () . (A )取极大值( B )取极小值( C )可导( D )不可导 o o 解 选择 D. 由极限的保号性知,存在 U (a) ,当 x U (a) 时, f ( x) 3 x f (a) a 0 ,当 x a 时, f ( x) f (a) ,当 x a 时, f ( x) f (a) ,故 f ( x) 在点 x a 不取极值 . lim f ( x) f (a) a lim f ( x) f (a) a 1 x a x x a 3 x 3 ( x a) 2 ,所以 f ( x) 在点 x a 不可导 . 3.设 f ( x, y) 连续,且满足 f ( x, y) f ( x, y) ,则 f (x, y) dxdy () . x 2 y 2 1 (A ) 2 1 1 x 2 1 1 y 2 0 dx f ( x, y)dy ( B ) 2 0 dy 1 y 2 f ( x, y)dx 1 1 x 2 1 1 y 2 (C ) 2 dx 1 x 2 f ( x, y)dy ( D ) 2 dy f ( x, y)dx 解 选择 B. 由题设知 f ( x, y)dxdy 2 f ( x, y)dxdy 2 1 0 dy 1 y 2 1 y 2 f ( x, y)dx . x 2 y 2 1 x 2 y 2 1, y 0

相关文档
相关文档 最新文档