文档库 最新最全的文档下载
当前位置:文档库 › Burton et al. - 2006 - The design of simulation studies in medical statistics

Burton et al. - 2006 - The design of simulation studies in medical statistics

Burton et al. - 2006 - The design of simulation studies in medical statistics
Burton et al. - 2006 - The design of simulation studies in medical statistics

STATISTICS IN MEDICINE

Statist.Med.2006;25:4279–4292

Published online31August2006in Wiley InterScience

(https://www.wendangku.net/doc/f015613361.html,)DOI:10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton1,2,?,?,Douglas G.Altman1,Patrick Royston1,3and Roger L.Holder4 1Cancer Research UK/NHS Centre for Statistics in Medicine,Oxford,U.K.

2Cancer Research UK Clinical Trials Unit,University of Birmingham,Birmingham,U.K.

3MRC Clinical Trials Unit,London,U.K.

4Department of Primary Care and General Practice,University of Birmingham,Birmingham,U.K.

SUMMARY

Simulation studies use computer intensive procedures to assess the performance of a variety of statistical methods in relation to a known truth.Such evaluation cannot be achieved with studies of real data alone. Designing high-quality simulations that re?ect the complex situations seen in practice,such as in prognostic factors studies,is not a simple process.Unfortunately,very few published simulation studies provide suf?cient details to allow readers to understand fully all the processes required to design a simulation study.When planning a simulation study,it is recommended that a detailed protocol be produced,giving full details of how the study will be performed,analysed and reported.This paper details the important considerations necessary when designing any simulation study,including de?ning speci?c objectives of the study,determining the procedures for generating the data sets and the number of simulations to perform.

A checklist highlighting the important considerations when designing a simulation study is provided.

A small review of the literature identi?es the current practices within published simulation studies. Copyright2006John Wiley&Sons,Ltd.

KEY WORDS:simulation study;design;protocol;bias;mean square error;coverage

1.INTRODUCTION

Simulation studies use computer intensive procedures to test particular hypotheses and assess the appropriateness and accuracy of a variety of statistical methods in relation to the known truth.These techniques provide empirical estimation of the sampling distribution of the parameters of interest that could not be achieved from a single study and enable the estimation of accuracy measures, such as the bias in the estimates of interest,as the truth is known[1].Simulation studies are increasingly being used in the medical literature for a wide variety of situations,(e.g.References

?Correspondence to:Andrea Burton,Cancer Research UK/NHS Centre for Statistics in Medicine,Wolfson College Annexe,Linton Road,Oxford OX26UD,U.K.

?E-mail:andrea.burton@https://www.wendangku.net/doc/f015613361.html,

Contract/grant sponsor:Cancer Research U.K.

Received15June2006 Copyright2006John Wiley&Sons,Ltd.Accepted6July2006

4280 A.BURTON ET AL.

[2–4]).In addition,simulations can be used as instructional tools to help with the understanding of many statistical concepts[5,6].

Designing high-quality simulations that re?ect the complex situations seen in practice,such as in randomized controlled trials or prognostic factor studies,is not a simple process.Simulation studies should be designed with similar rigour to any real data study,since the results are expected to represent the results of simultaneously performing many real studies.Unfortunately,in very few published simulation studies are suf?cient details provided to assess the integrity of the study design or allow readers to understand fully all the processes required when designing their own simulation study.Performing any simulation study should involve careful consideration of all design aspects of the study prior to commencement of the study from establishing the aims of the study,the procedures for performing and analysing the simulation study through to the presentation of any results obtained.These are generic issues that should be considered irrespective of the type of simulation study but there may also be further criteria speci?c to the area of interest,for example survival data. It is important for researchers to know the criteria for designing a good quality simulation study. The aim of this paper is to provide a comprehensive evaluation of the generic issues to consider when performing any simulation study,together with a simple checklist for researchers to follow to help improve the design,conduct and reporting of future simulation studies.The basic concepts underpinning the important considerations will be discussed,but full technical details are not pro-vided and the readers are directed towards the literature(e.g.References[7,8]).General considera-tions are addressed rather than the speci?c considerations for particular situations where simulations are extremely useful,such as in Bayesian clinical trials designs(e.g.Reference[9]),sample size determination(e.g.References[3,10]),or in studies of missing data(e.g.Reference[4]).A small formal review of the current practice within published simulation studies is also presented.

2.ISSUES TO CONSIDER WHEN DESIGNING A SIMULATION STUDY

When planning any simulation study,as with randomized controlled trials,a detailed protocol should be produced giving full details of how the study is to be performed,analysed and reported. The protocol should document the speci?c objectives for the simulation study and the procedures for generating multivariate data sets and,if relevant,with censored survival times.The choices for the different scenarios to be considered,for example different sample sizes,and the methods that will be evaluated should also be included in the protocol together with the number of simulations that will be performed.It is also important to give careful consideration to which data and results will be stored from each run,and which summary measures of performance will be used.If an aim of the study is to judge which is the best of two or more methods,then the criteria should be pre-speci?ed in the protocol,where possible.The rationale behind all the decisions made throughout the design stage should be included in the protocol.

Each of the preceding considerations will be discussed in more detail in the following sections.

A checklist of the important issues that require consideration when designing a simulation study is provided in Figure1.

2.1.Clearly de?ned aims and objectives

Establishing clearly de?ned aims for the simulation study prior to its commencement is an essential part of any research.This focuses the study and avoids unnecessary repetition and time wasting from having to repeat simulations when new aims are conceptualized.

Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES4281

0. Detailed protocol of all aspects of the simulation study

a. Justifications for all the decisions made

1. Clearly defined aims and objectives

2. Simulation procedures

a. Level of dependence between simulated datasets

b. Allowance for failures

c . Software to perform simulations

d. Random number generator to use

e . Specification o

f the startin

g seeds

3. Methods for generating the datasets

4. Scenarios to be investigated

5. Statistical methods to be evaluated

6. Estimates to be stored for each simulation and summary

measures to be calculated over all simulations

7. Number of simulations to be performed

8. Criteria to evaluate the performance of statistical methods for different

scenarios

a. Assessment of bias

b. Assessment of accuracy

c . Assessment of coverage

9. Presentation of the simulation results

Figure1.Important considerations when designing any simulation study.

2.2.Simulation procedures

Once the aims and objectives have been formalized,the procedures for performing the simulations can be considered including the level of dependence between simulations,the allowance for failures, the choice of random number generator,starting seeds and the software package to be used.The statistical software package must be able to handle the complexities involved in the proposed simulation study and have a reliable random number generator.

All simulation studies involve generating several independent simulated data sets.These gener-ated data sets should also be completely independent for the different scenarios considered,such as different sample sizes.However,when more than one statistical methodology is being inves-tigated,there is an added complication of determining the level of dependence of the simulated data sets for the different methods,although still retaining independent data sets for each scenario studied.Two feasible simulation strategies are possible.Firstly,fully independent simulated data sets involve generating a completely different set of independent data sets for each method and scenario considered.Secondly,moderately independent simulations use the same set of simulated Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

4282 A.BURTON ET AL.

independent data sets to compare a variety of statistical methods for the same scenario,but a different set of data sets is generated for each scenario investigated.These moderately dependent samples are like a matched pair design where the within sample variability is eliminated and therefore are sensitive to detecting any differences between methods.The relationship between the generated samples should form an important consideration when designing the study.

The simulation procedures should have some allowance for failing to estimate the outcome or parameter of interest,e.g.due to rare events or lack of convergence of models,to avoid premature stopping of the study.The simulations can be set up so that a failed sample is discarded and the whole process is repeated.The number of failures that occur should be recorded to gauge how likely this could happen in practice in order to judge whether the applied statistical procedure can reliably be used in the situation being investigated.If many failures occur for a particular scenario causing the early termination of the simulation study,researchers must consider whether in their situation the failures would lead to bias,and hence unacceptable results,or unbiased but imprecise results in order to determine the usefulness of the results from the partial set of completed simulations.Failures for some simulations may result in a post hoc change of the protocol to omit scenarios,which cannot be simulated reliably.

2.2.1.Random number generation.A fundamental part of any simulation study is the ability to generate random numbers.The many different types of random number generator have been detailed elsewhere[11,12].Any random number generator should be long in sequence before repetition and subsets of the random number sequence should be independent of each other[13].

A variety of statistical tests for randomness exist,including Marsaglia’s Diehard battery of tests for randomness[14],which each random number generator must pass before it can be reliably adopted as a means of generating random numbers.

A random number generator must be able to reproduce the identical set of random numbers when the same starting value,known as a seed,is speci?ed[13].This is also essential when performing simulation studies to enable the generated data sets and hence results to be reproduced, if necessary,for monitoring purposes.The speci?cation of the starting seed also facilitates the choice of simulation strategy.The simulations will be fully independent if completely different starting seeds are used to generate the data sets for each scenario and method combination con-sidered or moderately independent if the same starting seeds are used to compare various methods for the same scenario but different seeds are employed for alternative scenarios.Any simulation strategy involves running several independent simulations for the same scenario,known as par-allel simulations,which require independent sequences of random numbers.Random numbers can be generated for parallel simulations by setting different starting values for the individual simulations that are greater than the number of random numbers required for each simulation, which reduces the possibility of correlations between samples[13].For example,if each sim-ulated data set had a sample size of500,then each of the250,say,simulations would require 500random numbers,therefore the starting seed for each simulation should be separated by at least500.

2.3.Methods for generating the data sets

The methods for obtaining simulated data sets should be carefully considered and a thorough description provided in both the protocol and any subsequent articles published.Simulating data sets requires an assumed distribution for the data and full speci?cation of the required parameters. Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES4283 The simulated data sets should have some resemblance to reality for the results to be generalizable to real situations and have any credibility.A good approach is to use a real data set as the motivating example and hence the data can be simulated to closely represent the structure of this real data set.The actual observed covariate data could be used and only the outcome data generated or just certain aspects,such as the covariate correlation structure,could be borrowed.Alternatively,the speci?cations could be arbitrary,but the generated data set may be criticized for not resembling realistic situations.The rationale for any choices made regarding the distributions of the data, parameters of any statistical models and the covariate correlation structure used to generate the data set should accompany their speci?cations.The generated data should be veri?ed to ensure they resemble what is being simulated,for example using summary measures for the covariate distributions,Kaplan–Meier survival curves for survival data or?tting appropriate regression models.

2.3.1.Univariate data.Simple situations may involve generating a vector of random numbers sampled from a known distribution.Demirtas[15]provides procedures for obtaining a variety of univariate distributions from initial values generated from the uniform distribution,if the required distribution is unavailable within the statistical package.

2.3.2.Multivariate data.Generating multivariate data involves the additional speci?cation of cor-relations between covariates unless the covariates are assumed fully independent,which is unlikely in practice.The speci?cation of the means and associated covariance matrix is more straightforward if based on real data,especially with a large number of covariates,and the generated data will re?ect reality.Conversely,the choice of the correlations between covariates can be arbitrary but it is often problematic to determine what are valid relationships.The simplest approach to generate multivariate covariate data with a speci?ed mean and correlation structure is to assume a multi-variate normal distribution.Any continuous but non-normally distributed variables in the real data should be transformed to make the assumption of normality more appropriate.Binary variables can be generated as latent normal,i.e.generated as continuous variables and then dichotomized,but the covariate correlation structure used to generate the continuous variable needs to be adjusted to provide the correct correlation with the resulting binary variable[16].For example,the correction factor for a continuous variable that is to be dichotomized with a50:50split is0.80,suggesting that the correlation between a continuous variable and a binary variable is20per cent less than the correlation between two continuous variables[16].

2.3.3.Time to event data.When the outcome is time to an event,such as in prognostic modelling, several additional considerations must be addressed.The simulations require the speci?cation of a model for the multivariate covariate data and a distribution for the survival data,which may be censored.In order to simulate censored survival data,two survival distributions are required,one for the uncensored survival times that would be observed if the follow-up had been suf?ciently long to reach the event and another representing the censoring mechanism.

The empirical survival distribution from a similar real data set would provide a reasonable choice for the survival distribution.The uncensored survival distribution could be generated to depend on a set of covariates with a speci?ed relationship with survival,which represents the true prognostic importance of each covariate.Time-dependent covariates could also be simulated and incorporated following the procedures described by Mackenzie and Abrahamowicz[17].Bender et al.[18]discuss the generation of survival times from a variety of survival distributions including Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

4284 A.BURTON ET AL.

the exponential for constant hazards,Weibull for monotone increasing or decreasing hazards and Gompertz for modelling human mortality,in particular for use with the Cox proportional hazards model.

Random non-informative right censoring with a speci?ed proportion of censored observations can be generated in a similar manner to the uncensored survival times by assuming a particular distribution for the censoring times,such as an exponential,Weibull or uniform distribution but without including any covariates.Determining the parameters of the censoring distribution given the censoring probability is often achieved by iteration.However,Halabi and Singh [10]pro-vide formulas for achieving this for standard survival and censoring distributions.The censoring mechanism can also be extended to incorporate dependent,informative censoring [19].

The survival times incorporating both events and censored observations are calculated for each case by combining the uncensored survival times and the censoring times.If the uncensored survival time for a case is less than or equal to the censored time,then the event is considered to be observed and the survival time equals the uncensored survival time,otherwise the event is considered censored and the survival time equals the censored time.

2.4.Scenarios to be investigated and methods for evaluation

Simulation studies usually examine the properties of one or more statistical methods in several scenarios de?ned by values of various factors such as sample size and proportion of censoring.These factors are generally examined in a fully factorial arrangement.The number of scenarios to be investigated and the methods for evaluation must be determined and justi?cations for these choices provided in the protocol.The scenarios investigated should aim to re?ect the most common circumstances and if possible cover the range of plausible parameter values.The number of scenarios and statistical methods to investigate will depend on the study objectives but may be constrained by the amount of time available,the ef?ciency of the programming language and the speed and availability of several computers to run simulations simultaneously [20].

2.5.Estimates obtained from each simulation

It is essential to plan how the estimates will be stored after each simulation.Storing estimates enables consistency checks to be performed and allows for the identi?cation of any errors or outlying values and the exploration of any trends and patterns within the individual simulations that may not be observed from the summary measure alone.Storing estimates also allows different ways of summarizing the estimates to be calculated retrospectively,if necessary,without the need to repeat all the simulations.A thorough consideration at the design stage of the possible estimates that may be of interest can ensure that all the required estimates are included,analysed and the results stored,and will avoid the risk of needing to repeat simulations.The estimate of interest,? i ,could include the mean value of a variable,the parameter estimate after ?tting a regression model,the log hazard ratio for survival models or the log odds ratios for logistic regression models.An associated within simulation standard error (SE)for the estimate of interest,SE (? i ),is generally required.

It is also important to establish how to summarize these estimates once all simulations have been performed.Many published simulation studies report the average estimate of interest over

the B simulations performed,e.g.? = B i =1? i /B as a measure of the true estimate of interest.Simulations are generally designed to mimic the results that could have been obtained from a

Copyright 2006John Wiley &Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES 4285

single study and therefore an assessment of the uncertainty in the estimate of interest between simulations,denoted SE (? ),is usually the empirical SE,calculated as the standard deviation of the estimates of interest from all simulations, [1/(B ?1)] B i =1(? i ?? )2.Alternatively,the average of the estimated within simulation SE for the estimate of interest B i =1SE (? i )/B could be used.The empirical SE should be close to the average of the estimated within simulation SE if the estimates are unbiased [21]and therefore,it may be sensible to consider both estimates of uncertainty.Alternatively,if using the mean and SE of the estimates over all simulations is not considered appropriate then non-parametric summary measures using quantiles of the distribution could be obtained.

2.6.Number of simulations required

The number of simulations to perform can be based on the accuracy of an estimate of interest,e.g.a regression coef?cient,as with determining the sample size for any study [22,23].The number of simulations (B )can be calculated using the following equation:

B =

Z 1?( /2)

2(1)

where is the speci?ed level of accuracy of the estimate of interest you are willing to accept,i.e.the permissible difference from the true value ,Z 1?( /2)is the 1?( /2)quantile of the standard normal distribution and 2is the variance for the parameter of interest [22,23].A realistic estimate of the variance may be obtained from real data if the simulations are based on a real data set and are trying to maintain the same amount of variability.If the variance is unknown or cannot be estimated reliably then it may be possible to perform an identical simulation study to obtain realistic estimates for the variance or consider the measure of accuracy as a percentage of the SE.For example,if the variance from ?tting a single covariate in a Cox regression model was 0.0166,then the number of simulations required to produce an estimate to within 5per cent accuracy of the true coef?cient of 0.349with a 5per cent signi?cance level would be only 209.To estimate the regression coef?cient to within 1per cent of the true value would require 5236simulations.Alternatively,the number of simulations could be determined based on the power (1? )to detect a speci?c difference from the true value as signi?cant [22],such that

B =

(Z 1?( /2)+Z 1? )

2

In fact,this formula is equivalent to equation (1)if the power to detect a speci?ed difference is assumed to be 50per cent.

The number of simulations to perform is thus dependent on the true value of the estimate of interest,the variability of the estimate of interest,and the required accuracy.For example,more simulations are needed if the regression coef?cient is small or the estimate has little variability.Increasing the number of simulations will reduce the SE of the simulation process,i.e.SE (? )/√B ,but this can be computational expensive and therefore variance reduction techniques could be employed [24].The rationale for the number of simulations to perform should be included in the protocol.

Copyright 2006John Wiley &Sons,Ltd.Statist.Med.2006;25:4279–4292

4286 A.BURTON ET AL.

2.7.Evaluating the performance of statistical methods for different scenarios

After the simulations have been performed,the required estimates stored after each replication and summary measures calculated,it is necessary to consider the criteria for evaluating the performance of the obtained results from the different scenarios or statistical approaches being studied.The comparison of the simulated results with the true values used to simulate the data provides a measure of the performance and associated precision of the simulation process.Performance measures that are often used include an assessment of bias,accuracy and coverage.Collins et al.[4]emphasized the importance of examining more than one performance criterion such as mean square error (MSE),coverage and width of the con?dence intervals in addition to bias,as results may vary across criteria.In general,the expectation of the simulated estimates is the main interest and hence the average of the estimates over all simulations is used to calculate accuracy measures,such as the bias.When judging the performance of different methods,there is a trade-off between the amount of bias and the variability.Some argue that having less bias is more crucial than producing a valid estimate of sampling variance [25].However,methods that result in an unbiased estimate with large variability or conversely a biased estimate with little variability may be considered of little practical use.The most commonly used performance measures are considered in turn.Table I provides a summary of the most applicable performance measures and formulas.

Table I.Performance measures for evaluating different methods.

Evaluation criteria Formula BIAS

Bias

=? ? Percentage bias ??? ?

???100Standardized bias

??? ? SE (? )???100ACCURACY

Mean square error (? ? )2+(SE (? ))2COVERAGE Proportion of times the 100(1? )%con?dence interval ? i

±Z 1? /2SE (? i )include ,for i =1,...,B .Average 100(1? )%

B i =12Z 1? /2SE (? i )

B con?dence interval length

Key : is the true value for estimate of interest,? = B i =1? i /B ,B is the number of simulations performed,? i is the estimate of interest within each of the i =1,...,B simulations,SE (? )is the empirical SE of the estimate of interest over all simulations,SE (? i )is the SE of the estimate of interest within each simulation and Z 1?( /2)is the 1?( /2)quantile of the standard normal distribution.

Copyright 2006John Wiley &Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES 4287

2.7.1.Assessment of bias.The bias is the deviation in an estimate from the true quantity,which can indicate the performance of the methods being assessed.One assessment of bias is the difference

between the average estimate and the true value,i.e. =? ? (Table I).The amount of bias that is considered troublesome has varied from 12SE (? )[21]to 2SE (? )[26].Another approach is to calculate the bias as a percentage of the true value (Table I),providing the true value does not equal

to zero.The percentage bias could have a detrimental effect on the results if the bias is greater than the amount speci?ed when determining the number of simulations required.Alternatively,the bias as a percentage of the SE (? )(Table I)can be more informative,as the consequence of the bias depends on the size of the uncertainty in the parameter estimate [4].A standardized bias of greater than 40per cent in either direction has been shown to have noticeable adverse impact on the ef?ciency,coverage and error rates [4].

Testing the signi?cance of the amount of bias in the estimates [27]or obtaining a 95per cent

con?dence interval using the average parameter estimate,? ,seem counterintuitive,since these statistics are based on the number of simulations through the SE (? )=SE (? )/√and hence these statistics can be improved or penalized by changing the number of simulations performed (see

Section 2.6).Collins et al.[4]warned that with a large number of simulations,the bias may be deemed statistically signi?cant but not be practically signi?cant.Therefore do not rely solely on the p -value but consider the amount of bias as well.

2.7.2.Assessment of accuracy.The MSE provides a useful measure of the overall accuracy (Table I),as it incorporates both measures of bias and variability [4].The square root of the MSE transforms the MSE back onto the same scale as the parameter [4].

2.7.

3.Power,type I and II errors.The empirical power of a test,where relevant,can be determined as the proportion of simulation samples in which the null hypothesis of no effect is rejected at the nominal,usually 5per cent,signi?cance level,when the null hypothesis is false (e.g.References [3,28]).Hence the empirical type II error rate is 1-power.The empirical type I error can be calculated as the proportion of p -values from testing the null hypothesis of no difference on each simulated sample that are less than the nominal 5per cent signi?cance level,when the null hypothesis is true (e.g.Reference [29]).

2.7.4.Assessment of coverage.The coverage of a con?dence interval is the proportion of times that the obtained con?dence interval contains the true speci?ed parameter value (Table I).The coverage should be approximately equal to the nominal coverage rate,e.g.95per cent of samples for 95per cent con?dence intervals,to properly control the type I error rate for testing a null hypothesis of no effect [4].Over-coverage,where the coverage rates are above 95per cent,suggests that the results are too conservative as more simulations will not ?nd a signi?cant result when there is a true effect thus leading to a loss of statistical power with too many type II errors.In contrast,under-coverage,where the coverage rates are lower than 95per cent,is unacceptable as it indicates over-con?dence in the estimates since more simulations will incorrectly detect a signi?cant result,which leads to higher than expected type I errors.A possible criterion for acceptability of the coverage is that the coverage should not fall outside of approximately two SEs of the nominal coverage probability (p ),SE (p )=√p (1?p )/B [27].For example,if 95per cent con?dence intervals are calculated using 1000independent simulations then SE (?p )is Copyright 2006John Wiley &Sons,Ltd.Statist.Med.2006;25:4279–4292

4288 A.BURTON ET AL.

0.006892and hence between936and964of the con?dence intervals should include the true value.

The average length of the95per cent con?dence interval for the parameter estimate? (Table I) is often considered as an evaluation tool in simulation studies(e.g.References[4,30]).If the parameter estimates are relatively unbiased then narrower con?dence intervals imply more precise estimates,suggesting gains in ef?ciency and power[30].

2.8.Presentation of the simulation results

Simulation studies can generate a substantial amount of results that need to be summarized and displayed in a clear and concise manner for the conclusions to be understood.The appropriate format is highly dependent on the nature of the information presented and hence there is a lack of a consistency in the literature.Structuring a report of any simulation study using separate subheadings for the objectives,methods,results and discussion provides clarity and can aid interpretation.

3.REVIEW OF CURRENT PRACTICE

A small formal review of articles published during2004in the Statistics in Medicine journal that included‘simulation’in the title,abstract or as a keyword was carried out to identify the current practices within published simulation studies.Of all270articles published in2004,58(21per cent) were identi?ed as reporting a simulation study;their characteristics are summarized in Table II. The speci?cs of the random number generator and the choice of starting seeds were generally omitted from the publications.Only one of the58articles explicitly stated the random number generator that was used;drand48on the Unix/LINUX system[31].Twenty-two articles gave some indication of the software package that was being used to generate the data or for the analysis, but it was unclear in the remaining36articles what statistical package was used to conduct the simulations.The relationship between generated samples was rarely stated within published simulation studies.Only one article stated that the simulations started with different seeds[32], whilst two other articles reported that independent samples were generated but did not explicitly mention anything about the starting seeds.

The number of simulations performed varied from100to100000replications,with the most common choices being1000(19articles)and10000(12articles)replications.It was unclear in four articles how many simulations were performed.Only six of these58articles provided any justi?cation for the number of simulations performed.Three articles based their justi?cations on the expected SE given the number of simulations[33–35].Two articles provided a justi?cation in terms of the power to detect differences of a speci?ed level from the true value as statistically signi?cant[36,37].The last considered the chosen number of simulations to be suf?cient,as they were not aiming to estimate any quantities with high accuracy[38].

The distributions and parameter speci?cations for generating the data were based on a real data set in eight of the simulation studies.In a further16articles,the simulated data intended to be typical of real data,although not explicitly based on a particular data set.The remaining34articles had no clear justi?cation for the choices of parameters for the speci?ed models used to generate the simulated data sets.

Generally the results from only a small proportion of the scenarios investigated were reported in an article,probably due to the limited space available.The choice of results to publish is fairly

Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES4289

Table II.Summary of results from review of58articles.

Criteria Frequency

Random number generator

drand48on the Unix/LINUX system1

Not stated57

Statistical Software used for analysis

Splus6

SAS6

R3

STATA1

Mathematica1

BUGS1

MLWIN1

MATLAB1

Standalone package2

Not stated36

Dependence of samples/starting seed

Samples independent2

Different seeds used1

Not stated55

Number of simulations

1006

2003

4001

5008

100019

50002

1000013

500001

1000001

Unclear4

Any justi?cation for number of simulations

Yes6

No52

Justi?cation for data generation

Based on a real data set8

Typical of real data16

Not stated34

arbitrary and can depend on the important conclusions to be portrayed.However,one article has made available the full set of simulation results,which can be downloaded from a website speci?ed in the article[3].

4.DISCUSSION

The advances in computer technology have allowed simulation studies to be more accessible. However,performing simulations is not simple.In any simulation study,many decision are required Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

4290 A.BURTON ET AL.

prior to the commencement of simulations,but there is generally no single correct answer.The choices made at each stage of the simulation process are open to criticism if not supplemented with thorough justi?cations.

Monte Carlo methods encompass any technique of statistical sampling employed to give approximate solutions to quantitative problems.They include,in addition to simulations,the Monte Carlo Markov chain methods such as Gibbs sampling,which are explicitly used for solving com-plicated integrals[39,40].This paper discusses simulation studies where data sets are formulated to imitate real data.Resampling studies[41,42],where multiple data sets are sampled from a large real data set,require the same rigorous planning as simulation studies,differing from simulation studies only in terms of the generation of the data sets.Hence,similar considerations as discussed throughout this manuscript are relevant.Simulations are also useful in decision-making and engi-neering systems,where computer experiments are used to model dynamic processes in order to assess the effects over time and of varying any inputs(e.g.Reference[43]).Speci?c considerations for designing these studies in terms of formulating the problem,de?ning and designing the model and the choice of inputs and outputs have been discussed elsewhere(e.g.References[43,44]). This paper has discussed the important considerations when designing a simulation study.They include the choice of data to simulate and the procedures for generating the required data.Choices of distributions,parameters of any models,and covariate correlation structures used to generate the data set should be justi?ed.Before commencing simulations,careful consideration should be given to the identi?cation of the estimates of interest,the appropriate analysis,the methods for comparison,the criteria for evaluating these methods,the number of situations to consider,and the reporting of the results.In addition,every simulation study should have a detailed protocol, documenting the speci?c objectives and providing full details of how the study will be performed, analysed and reported.Modi?cations of the simulation processes,such as altering the number of simulations or collecting additional parameters or choices of scenarios,as a consequence of emerging data are possible,but can be time-consuming if they require all simulations to be rerun. Therefore,thorough planning at the start of any simulation study can ensure that the simulations are performed ef?ciently and only the necessary criteria and scenarios assessed.This paper has provided a concise reference(Figure1)for researchers to follow when designing simulation studies.

A small review of published articles in one journal has suggested that the majority of simulation studies reported in the literature are not providing suf?cient details of the simulation process to allow exact replication or clear justi?cations for the choices made.Future published simulation studies should include details of all the simulation procedures to enable the results to be https://www.wendangku.net/doc/f015613361.html,ing separate subheadings for the objectives,methods,results and discussion,irrespective of whether it is the main focus of the article,as in Reference[33],provides clarity and can aid interpretation. In addition,encouraging researcher to consider the suggested criteria(Figure1)might encourage more sound and reliable simulation studies to be performed and reported with credible results.

ACKNOWLEDGEMENT

Andrea Burton was supported by a Cancer Research U.K.project grant.

REFERENCES

1.De Angelis D,Young GA.Bootstrap method.In Encyclopedia of Biostatistics,Armitage P,Colton T(eds).

Wiley:New York,1998;426–433.

Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

DESIGNING SIMULATION STUDIES4291 2.Kristman V,Manno M,Cote P.Loss to follow-up in cohort studies:how much is too much?European Journal

of Epidemiology2004;19:751–760.

3.Vaeth M,Skovlund E.A simple approach to power and sample size calculations in logistic regression and Cox

regression models.Statistics in Medicine2004;23:1781–1792.

4.Collins LM,Schafer JL,Kam CM.A comparison of inclusive and restrictive strategies in modern missing data

procedures.Psychological Methods2001;6:330–351.

5.Mooney C.Conveying truth with the arti?cial:using simulated data to teach statistics in social sciences.SocInfo

Journal1995;1(Part7):1–5.

6.Hodgson T,Burke M.On simulation and the teaching of statistics.Teaching Statistics2000;22:91–96.

7.Morgan BJT.Elements of Simulation.Chapman&Hall:London,U.K.,1984.

8.Ripley BD.Stochastic Simulation.Wiley:New York,1987.

9.Whitehead J,Zhou YH,Stevens J,Blakey G,Price J,Leadbetter J.Bayesian decision procedures for dose-

escalation based on evidence of undesirable events and therapeutic bene?t.Statistics in Medicine2006;25:37–53.

10.Halabi S,Singh B.Sample size determination for comparing several survival curves with unequal allocations.

Statistics in Medicine2004;23:1793–1815.

11.L’Ecuyer P.Random number generation.In Handbook of Computational Statistics,Gentle JE,Haerdle W,

Mori Y(eds).Springer-Verlag:New York,2004;35–70.

12.Marsaglia G.Random number generators.Journal of Modern Applied Statistical Methods2003;2:2–13.

13.Masuda N,Zimmermann F.PRNGlib:a parallel random number generator library.Technical Report:TR-96-08,

Swiss Center for Scienti?c Computing,Switzerland,1996.

14.Marsaglia G.The Marsaglia Random Number CDROM with the DIEHARD Battery of Tests of Randomness.

Florida State University:Florida,U.S.A.,1995.

15.Demirtas H.Pseudo-random number generation in R for some univariate distributions.Journal of Modern Applied

Statistical Methods2005;3:300–311.

16.MacCallum RC,Zhang S,Preacher KJ,Rucker DD.On the practice of dichotomization of quantitative variables.

Psychological Methods2002;7:19–40.

17.Mackenzie T,Abrahamowicz M.Marginal and hazard ratio speci?c random data generation:applications to

semi-parametric bootstrapping.Statistics and Computing2002;12:245–252.

18.Bender R,Augustin T,Blettner M.Generating survival times to simulate Cox proportional hazards models.

Statistics in Medicine2005;24:1713–1723.

https://www.wendangku.net/doc/f015613361.html,oslavsky M,Keles S,van der Laan MJ,Butler S.Recurrent events analysis in the presence of time-dependent

covariates and dependent censoring.Journal of the Royal Statistical Society Series B—Statistical Methodology 2004;66:239–257.

20.Sevcikova H.Statistical simulations on parallel computers.Journal of Computational and Graphical Statistics

2004;13:886–906.

21.Schafer JL,Graham JW.Missing data:our view of the state of the art.Psychological Methods2002;7:147–177.

https://www.wendangku.net/doc/f015613361.html,chin JM.Sample size determination.In Encyclopedia of Biostatistics,Armitage P,Colton T(eds).Wiley:

New York,1998;4693–4704.

23.Diaz-Emparanza I.Is a small Monte Carlo analysis a good analysis?Checking the size,power and consistency

of a simulation-based test.Statistical Papers2002;43:567–577.

24.Rubinstein RY.Simulation and the Monte Carlo Method.Wiley:New York,1981.

25.Little RJA,Rubin DB.Statistical Analysis with Missing Data(2nd edn).Wiley:New York,2002.

26.Sinharay S,Stern HS,Russell D.The use of multiple imputation for the analysis of missing data.Psychological

Methods2001;6:317–329.

27.Tang LQ,Song JW,Belin TR,Unutzer J.A comparison of imputation methods in a longitudinal randomized

clinical trial.Statistics in Medicine2005;24:2111–2128.

28.Leffondr′e K,Abrahamowicz M,Siemiatycki J.Evaluation of Cox’s model and logistic regression for matched

case-control data with time-dependent covariates:a simulation study.Statistics in Medicine2003;22:3781–3794.

29.Rempala GA,Looney SW.Asymptotic properties of a two sample randomized test for partially dependent data.

Journal of Statistical Planning and Inference2006;136:68–89.

30.Chen HY,Little RJA.Proportional hazards regression with missing covariates.Journal of the American Statistical

Association1999;94:896–908.

31.Kaiser JC,Heidenreich https://www.wendangku.net/doc/f015613361.html,paring regression methods for the two-stage clonal expansion model of

carcinogenesis.Statistics in Medicine2004;23:3333–3350.

32.Kenna LA,Sheiner LB.Estimating treatment effect in the presence of non-compliance measured with error:

precision and robustness of data analysis methods.Statistics in Medicine2004;23:3561–3580.

Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

4292 A.BURTON ET AL.

33.Higgins JPT,Thompson SG.Controlling the risk of spurious?ndings from meta-regression.Statistics in Medicine

2004;23:1663–1682.

34.Chen YHJ,Demets DL,Lan KKG.Increasing the sample size when the unblinded interim result is promising.

Statistics in Medicine2004;23:1023–1038.

35.Song JW,Belin TR.Imputation for incomplete high-dimensional multivariate normal data using a common factor

model.Statistics in Medicine2004;23:2827–2843.

36.Austin PC,Brunner LJ.In?ation of the type I error rate when a continuous confounding variable is categorized

in logistic regression analyses.Statistics in Medicine2004;23:1159–1178.

37.Klar N,Darlington G.Methods for modelling change in cluster randomization trials.Statistics in Medicine2004;

23:2341–2357.

38.Royston P,Sauerbrei W.A new measure of prognostic separation in survival data.Statistics in Medicine2004;

23:723–748.

39.Gilks WR,Richardson S,Spiegelhalter DJ.Introducing Markov chain Monte Carlo.In Markov Chain Monte

Carlo in Practice,Gilks WR,Richardson S,Spiegelhalter DJ(eds).Chapman&Hall:London,U.K.,1996;

1–19.

40.Robert CP,Casella G.Monte Carlo Statistical Methods.Springer-Verlag:New York,2004.

41.Lunneborg CE.Data Analysis by Resampling—Concepts and Applications.Duxborg:Australia,2000.

42.Efron B,Tibshirani RJ.An Introduction to the Bootstrap.Chapman&Hall:New York,1993.

43.Santner TJ,Williams BJ,Notz WI.The Design and Analysis of Computer Experiments.Springer-Verlag:

New York,2003.

44.Balci O.Guidelines for successful simulation studies.In Proceedings of the1990Winter Simulation Conference,

Balci O,Sadowski RP,Nance RE(eds).IEEE:Piscataway,NJ,1990;25–32.

Copyright2006John Wiley&Sons,Ltd.Statist.Med.2006;25:4279–4292

2019版新人如何选择滑雪板精品文档23页

滑雪新人如何挑选滑雪双板 2015修正版 主要是给新人普及大众滑雪所用器材的相关知识,随着雪具技术的更新和滑雪方式的变更,2010版帖子中的很多观点现在看有点过时了,这里更新一下,欢迎一起探讨。 目录 1、滑雪运动和个人滑雪器材的概述 滑雪被称为是绅士运动之一(滑雪、网球、马术、高尔夫),是冬季最为贴近大自然的一种运动休闲方式。集速度、力量、勇气、技巧融于一体,但最重要的精神始终是自信与参与。冬季周末,离开烟尘(PM2.5)污染严重的都市,和饭局、酒局、车流、麻将桌暂时分别一下,在群山环绕的银色世界中飘逸的滑行是很多时尚人士选择。滑雪者在滑雪运动中将感受强烈的、其它户外运动项目所无法比拟的成功感、征服感和刺激感,洗洗肺顺便想静静,也是一种都市生活的重启方式。 国内的冬季滑雪运动开展时间也不短了,但是受天气和地域的限制颇多,滑雪场的建设对比欧美、日韩等要落后一些。国内玩粉状雪(野雪)、自由式的场地很少,大多都是机压雪道,很多雪场不能保证每天都进行雪道平整。个别的U槽道、越野道只是对比赛和专业运动队开放,很多项目开展受限,很多类型的雪板在国内没有用武之地,如FREESKI自由式、Cross-country skiing越野滑雪、Ski jumping跳台滑雪、Nordic combined 北欧两项、Biathlon现代冬季2项等根本无法在国内普及。 那么在国内比较适合的就是高山Alpine ski 滑雪板。在国内销售和出租

的滑雪板的也大都是这个类型的板子。 首先要确定自己滑雪的目的,这就解决了方向性问题。简单的说就是我想要玩什么?玩竞技追求最快的速度?还是顺山而下、征服最极限的坡度?或者就是随心而欲的回转,享受在银色世界滑行的感受。老王始终推崇的就是:“慢滑高级道,充分去体会在银白世界中滑行的感受。”另外高级道的初级滑雪者少,安全系数也要高很多,大众滑雪是娱乐享受,时刻要牢记安全第一。 国内雪场的出租雪板这几年档次有所提升,长白万达,北大湖万科等新开的雪场出租雪具投资的规模都还可以,雪具对得起缆车票的价格了。 租用雪具还是有两个需要解决的问题: 一、公用的出租雪鞋,周末和节假日滑雪者多的时候,不能及时的消毒和烘干,非常不利于个人卫生,甚至会导致某些疾病的传染,还有雪鞋是否完全合脚的问题。 二、很难保证滑雪者每次去都能用自己专用的滑雪板,不同的雪板的磨损和性能都不同,每次都要重新去适应雪板,不利于个人基本滑雪动作的规范养成。 随着大众滑雪的普及和滑雪爱好者的增加,一些滑雪者想到了应该购买自己的滑雪器材。什么情况下到了该买自己专用雪具的时候呢?有雪友计算过,如果每个雪季能保证滑雪次数大于8天/次,就到了拥有自己的雪具的时候了。如果每年就是凑热闹的去几次雪场,还是算了,租用雪具比较适合。 选购滑雪板并不是一件难事,最最关键的就是要选择适合自己的,这个是

板式楼梯计算实例

板式楼梯计算实例 "OU 1OT 用U ----------------------------------------- ------------------------------------- r

58C 11X300=3500 1800 - 240 1------------ :——:——:------------- 7 5800 B2J有承就戕碱板式儀粕桝f 【例题2.1《楼梯、阳台和雨篷设计》37页,PDF版47页】图 2.1为某实验楼楼梯的平面图和剖面图。采用现浇板式楼梯,混凝土强度等级为 C25, f c -11.9N/mm2, f t -1.27N/mm2钢筋直径d> 12mm9寸采用HRB40(级钢筋,f y =360N/mm2; d< 10mrtJ寸采用HPB300级钢筋,f y =270N / mm2,楼梯活荷载为 3.5KN/m2。 楼梯的结构布置如图 2.8所示。斜板两端与平台梁和楼梯梁整 结,平台板一端与平台梁整结,平台板一端与平台梁整结,另一端则与窗过梁整结,平台梁两端都搁置在楼梯间的侧墙上。

580 11X3003300 1800 120 d 1——11 ---------------------------------------------------------- p *--------------------------------- 屮 5800 02.8 试对此现浇板式楼梯进行结构设计。 解: 1)斜板TB1设计 除底层第一跑楼梯的斜板外,其余斜板均相同,而第一跑楼梯斜板的下端为混凝土基础,可按净跨计算。这里只对标准段斜板TB1进行设计。 对斜板TB1取1m宽作为其计算单元。 (1) 确定斜板厚度t 斜板的水平投影净长为I in=3300mm 斜板的斜向净长为 -= ------------ = 3691mm cosa 300 / J150+002

板式楼梯设计典型例题

3.4.5 楼梯设计例题 设计资料 ?某公共建筑标准层层高为3.6m,采用现浇板式楼梯,其平面布置见图3.53。

?楼梯活荷载标准值为q =2.5KN/m2,踏 k 步面层采用30mm厚水磨石面层(自重为0.65 KN/m2),底面为20mm 厚混合砂浆(自重为17 KN/m3)抹灰。 ?采用C25混凝土,梁纵筋采用HRB335级钢筋,其余钢筋均采用HPB235级钢筋。 梯段板设计 估算斜板厚h=lo/30=3500/30=117(mm),取=120mm。 板倾斜角为tanα=150/300=0.5 (由踏步倾斜得来)

取1m 宽板带进行计算。 (1)荷载计算 恒荷载标准值 水磨石面层: (0.3+0.15)×0.65×3.01 =0.98(KN/m) 三角形踏步: 2 1×0.3×0.15×25×3.01 =1.88(KN/m) 混凝土斜板: 0.12×25×1/0.894=3.36(KN/m) 板底抹灰: 0.02×17×1/0.894=0.38(KN/m) 恒荷载标准值 g k =6.60 KN/m 恒荷载设计值g =1.2×6.60=7.92 KN/m 活荷载设计值q =1.4×2.5=3.5 KN/m 合计 p =g+q =11.42 KN/m (2)截面设计 水平投影计算跨度为 lo=ln+b =3.3+0.2=3.5m

弯矩设计值 2 0)(101l q g M +==25.342.1110 1?? =13.99(KN ·m) 斜板有效高度: ho=120-20=100(mm) 2 01bh f M c s αα= =26 10010009.110.110 99.13???? =0.188, 937.0=s γ 0h f M A s y s γ= =100937.02101099.136 ???=711(mm 2) 选配φ10@110,As=714mm 2 ,梯段板的配筋见图3.54。 配筋要求见P89。 ?受力钢筋:沿斜向布置。 ?构造负筋:在支座处板的上部设置一定数量,以承受实际存在的负弯矩和防止产生过宽的裂缝。一般取φ8@200,长度为l n /4。 本题取φ8@200,3300/4=825mm ,取850mm 。 ?分布钢筋:在垂直于受力钢筋方向按构造配置,每个踏步板内至少放置一根分布钢筋。放置在受力钢筋

各种滑雪装备选择使用详解

各种滑雪装备选择使用(详解) 滑雪装备滑雪板 滑雪板一般分为高山板、越野冬季两项板、跳台板、自由式板、单板等。高山板由多层结构组成,主要包括弹性反材、搞扭较往年盒形结构、板芯、玻璃纤维复合材料、高分子材料底板、金属边刃等。在先择滑雪板的长度时,最长应以不超过本人手臂上举手腕部高度为限,最短不应短于胯部。选择长的浮雕雪板,使用起来速度快,稳定性好,短的滑雪板速度慢,易颤动,稳定性差。对于初学者来说,太长的滑雪板不容易控制,转弯较困难不利于提高自己的技术水平,初学者最好以自己的身高再加5厘米左右即可。初学者还应选用弹性较大的滑雪板。因为这种滑雪板遇到不平的雪面时不易颠簸,制动效果也较好,操作起来比较容易。技术好的滑雪者可以选择长一点。弹性小一点,稍微重一些的滑雪板,它可以增加滑行中的稳定性,使滑雪板的金履带边刃紧紧地卡在雪面上,有利于滑雪者充分地操纵滑雪板,滑出漂亮的弧形,滑雪板底板的材料主要由塑料或高分子尼龙材料制成,高分子材料的底板摩擦系数小,比塑料底坂要好,滑雪板的边刃要随时保持锋利,这样在你对它施加重力时,不会产生侧滑,据说专业滑雪运动员使用的滑雪板其边刃可以刮胡子。 滑雪装备滑雪鞋 滑雪鞋一般分为高山鞋、越野鞋、跳台鞋和单板鞋等。高山鞋一般由内外两部分构成,外壳是由塑料或ABS注塑而成,较硬不易变形,内层由化纤织物和保温材料组成,鞋的踝关节角度和鞋的肥瘦等可根据需要进行调节,具有保护功能。越野鞋一般分为尼龙和皮革制品,鞋腰矮软且轻便。跳台鞋一般是用皮革制成,鞋腰较高且前倾大,有利于运动员跳跃和空中习行前倾姿势。滑雪鞋的选择要使人感到即舒适又很合脚,脚趾在鞋中能活动自如,但脚掌、脚背、脚弓、脚跟应能紧紧的被裹住,外壳上的卡子要卡得恰到好处,使踝关节可以向前屈膝,只有这样才能控制滑雪板和滑雪速度。初学者应选择轻便、灵活、富有弹性的滑雪鞋,它的可操纵余地较大。而技术好的滑雪者,可选择能将脚与滑雪鞋紧紧连为一体的滑雪鞋,从而使滑雪者任何一点微

板式和梁式楼梯手算及实例

1. 板式楼梯 例8-1 某公共建筑现浇板式楼梯,楼梯结构平面布置见图(8-6)。层高3.6m ,踏步尺寸150× 300mm 。采用混凝土强度等级C25,钢筋为HPB235 和 HRB335。楼梯上均布活荷载标准值=3.5kN /m 2,试设计此楼梯。 1. 楼梯板计算 板倾斜度 ,5.000150==αtg 894.0cos =α 设板厚h=120mm ;约为板斜长的1/30。 取lm 宽板带计算 (1) 荷载计算 图8-6 例8-1的楼梯结构平面 荷载分项系数 2.1=G γ 4.1=Q γ 基本组合的总荷载设计值 m kN p /82.124.15.32.16.6=?+?= 表8-1 梯段板的荷载 (2) 截面设计

板水平计算跨度m l n 3.3= 弯矩设计值 m kN pl M n ?=??== 96.133.382.1210110122 mm h 100201200=-= 117.010010009.111096.132 62 01=???== bh f M c s αα 614.0124.0117.0211211=<=?--=--=b s ξαξ 2 01703210124 .010010009.11mm f bh f A y c s =???= = ξ α %27.021027 .145.045.0%59.01201000703min 1===>=?== y t s f f bh A ρρ 选配?10@110mm, A s =714mm 2 分布筋?8,每级踏步下一根,梯段板配筋见图(8-7)。 表8-2 平台板的荷载 2. 平台板计算 设平台板厚h=70mm, 取lm 宽板带计算。 (1) 荷载计算 总荷载设计值 m kN p /19.85.34.174.22.1=?+?= (2) 截面设计 板的计算跨度 m l 76.12/12.02/2.08.10=+-= 弯矩设计值 mm h 5020700=-= m kN pl M ? = ? ? = = 54 . 2 76 . 1 19 . 8 10 1 10 1 2 2 0

滑雪板知识

如何挑选滑雪板——双板 购买一套滑雪板真个是头痛的问题。进入滑雪器材商店,看到琳琅满目的产品,感觉哪一个都很吸引人。可是面对诸如长度、转弯半径、三围尺寸、弹性、硬度等等各种数据,以及不同的滑雪板分类,相信多数人的头都会大上一号了。实选购滑雪板并不是一件难事,最最关键的就是要选择适合自己。 首先明确了自己的目的就解决了方向性问题。简单的说就是我想要玩什么?是追求速度?还是最求灵活性?或者就是想简单的回转,体验滑行的乐趣。们先来确定长度: 现代的滑雪板都是经过改良的“大头板”,比较灵活也很好控制。所以,我们现在选购滑雪板不必按照传统直板时代身高加10厘米的方法来确定长度。一般情况下,我们应该选择身高减去5到15厘米这个长度的滑雪板。 比如说你的身高是170厘米,那么你适合的滑雪板长度就是在155到165厘米之间。如果你想追求灵活的操控性,那就选155厘米的板长。如果就是想简单的体验滑雪乐趣,那160厘米的板长是你最好选择。另外,你想追求刺激的速度,那就选择165厘米,甚至与身高相等的都可以。在速度的大回转比赛中,有些运动员使用比自己身高长很多的滑雪板,不过劝各位玩家还是小心谨慎的好,他们都是经过严格训练的,我们可不能和他们相比。 长度确定了,再来看看转弯半径和三围: 这几个数据是标在滑雪板尾部的,例如106-72-97=14m。这是说

板头最宽的地方是106毫米,板腰最窄的地方是72毫米,板尾最宽的地方是97毫米,转弯半径是14米。什么是转弯半径?由于现代“大头板”的边刃是弧形的,将滑雪板放到雪地上,使一侧边刃完全接触雪面向前滑行,滑雪板自然就会转一个圆圈,这个圆圈的半径就是转弯半径。转弯半径越小,表示这款滑雪板越灵活,速度相对较慢。反之转弯半径越大,滑雪板越不灵活,速度相对较快。一般滑雪者选择转弯半径在13到17米的板就可以了。有其他追求的滑雪者可以根据自己的喜好选择不同转弯半径的滑雪板。转弯半径最小的有10米左右,最大的有20多米甚至30米以上的。 三围有什么讲究呢?当然有了。简单的说,滑雪板的板体越宽,接触雪地的面积越大,反之则面积小。如果你经常在没有压雪机压过的自然喧雪上滑行,那就需要板体面积大的,以防止滑雪板陷到雪中。如果只在滑雪场里玩,选择正常三围的滑雪板就能够满足你的需要了。一般看板腰的尺寸就可以,板腰宽度超过80毫米的那肯定是为了喧雪设计的。 还有就是滑雪板的硬度和弹性。这没有一定之规。总的来说,体重大、力量足、技术好的滑雪者要选弹性好,硬度大的。女性或者初雪者最好选择硬度低些的这样控制起来相对较容易,也比较有利于学习滑雪技术。 下面来说说脱离器。 脱离器就是在滑雪时将靴子固定在滑雪板上,在摔倒或出现意外时能够将靴子脱开滑雪板,保护滑雪者腿部不会收到伤害的装置。其实脱

梁式和板式楼梯设计

《混凝土结构设计原理》实验报告 实验三楼梯设计 土木工程专业10 级 3 班 姓名 学号 指导老师 二零一三年一月 仲恺农业工程学院城市建设学院

目录 一、主体介绍 (4) 二、现浇板式楼梯设计 (5) 1. 梯段板TB2设计 (5) 1) 荷载计算 (5) 2) 截面设计 (6) 2. 平台板PTB2设计 (6) 1)荷载计算 (7) 2)截面设计 (7) 3. 平台梁TL4设计 (8) 1)荷载计算 (8) 2)截面设计 (9) 3)斜截面受剪承载力计算 (9) 4)配筋图 (10) 4. 平台梁TL5设计 (10) 1)荷载计算 (10) 2)截面设计 (10) 3)斜截面受剪承载力计算 (12) 4) 配筋图 (12) 5.构造柱GZ设计 (12) 三、现浇梁式楼梯设计 (13)

1.踏步板设计 (13) 1)荷载计算 (13) 2)截面设计 (14) 3) 配筋图 (14) 2.斜梁TL2设计 (15) 1)荷载计算 (15) 2)截面设计 (15) 3)斜截面受剪承载力计算 (16) 4)构造钢筋 (17) 3.平台板PTB1设计 (17) 1)荷载计算 (17) 2)截面设计 (18) 4.平台梁TL3设计 (18) 1)荷载计算 (19) 2)截面设计 (19) 3)斜截面受剪承载力计算 (21) 5.梯梁TL1设计 (21) 1)荷载计算 (21) 2)截面设计 (22) 3)斜截面受剪承载力计算 (23) 四. 总结 (24)

仲恺农业工程学院实验报告纸 城市建设学院(院、系) 土木工程 专业103 班 组 混凝土结构设计原理 课学号: 姓名: 实验日期:2012/12/23 教师评定: 实验三 楼梯设计 一、主体介绍 1. 广州市某商住楼楼梯结构设计,采用现浇整体式钢筋混凝土板式楼梯或梁式楼梯。混凝 土采用C25级,梁中的纵向受力钢筋采用HRB335,板及其他钢筋采用HPB300。楼梯间活荷载标准值为2 /5.2m KN q =。 2. 主体结构类型:框架结构 3. 建筑资料:楼面做法(自上而下) 10mm 厚耐磨地砖(3/22m KN =γ); 1:3水泥砂浆找平20mm 厚(3 /20m KN =γ) 现浇钢筋混凝土楼板(3 /25m KN =γ); 板底混合砂浆抹灰20mm 厚(3 /17m KN =γ); 混凝土采用25C (c f =11.9N/mm 2,t f =1.27N/mm 2),板的保护层厚度20mm ,梁的保护层厚度为25mm ;

滑轨双板滑雪板固定器安装方法

双板滑雪板滑轨固定器安装 雪板安装固定器后,固定器四个角支撑在外面,运输过程中很容易因为内暴力快递磕碰。为了使您完美的收到宝贝,滑轨固定器请亲按下列步骤安装。时间在2分钟以内,很简单的,SO EASY~ 下面我们开始吧!如有问题请咨询。 1,首先包装内含有四部分内容:1,雪板(滑轨固定在雪板上)、前固定器、后固定器、雪耙。

结构图 实物图 上视图

2,将后固定器和雪耙组合在一起,形成一个平面的连接。(关键点:正确的连接是形成一个平面,雪耙和后固定器有连接的锚点) 3,打开前固定器的锁止按钮,从滑轨前部分划入前固定器并锁定。(关键点:锁止按钮每个厂家不一样,但是大同小异,是一个小拇指家大的扳手,能抬起来的。)(对于金鸡雪板是从中间往两边滑动安装) 4,打开后固定器的锁止按钮,从滑轨后部分划入雪耙和后固定器的组合体,并且锁定。(关键点:从后部滑入)(对于金鸡雪板是从中间往两边滑动安装)5,找到雪鞋外壳尺寸,并按外壳尺寸调节前后固定器位置。(关键点:调节到包含雪鞋外壳尺寸的档位,例如雪鞋外壳尺寸是305mm,那么档位应该打到例如300-310mm这个包含305mm数字的档位,前后固定器都是如此,切记,是雪鞋的外壳尺寸,不是您的脚长)

6,把雪鞋踩入固定器,试试是否合适,合适的标准是能正好掐住雪鞋,雪鞋不晃。 7,DIN值调整。刚开始适应一个雪板不要滑的太快,头2次使用固定器也不要调节的太高,摸清楚雪板特性再调节到国际DIN值比较合适,刚开始用最好降低1-1.5个din标准。(金鸡的雪板调节螺丝要在锁定雪鞋状态调节)

祝您享受滑雪的愉快,安全,健康滑雪!

板式楼梯计算实例

板式楼梯计算实例

【例题 2.1《楼梯、阳台和雨篷设计》37页,PDF 版47页】 图2.1为某实验楼楼梯的平面图和剖面图。采用现浇板式楼梯,混凝土强度等级为C25,2211.9/, 1.27/c t f N mm f N mm ==钢筋直径d ≥12mm 时采用HRB400级钢筋,2360/y f N mm =;d ≤10mm 时采用HPB300级钢筋, 2270/y f N mm =,楼梯活荷载为3.5KN/m 2。 楼梯的结构布置如图2.8所示。斜板两端与平台梁和楼梯梁整结,平台板一端与平台梁整结,平台板一端与平台梁整结,另一端则与窗过梁整结,平台梁两端都搁置在楼梯间的侧墙上。

试对此现浇板式楼梯进行结构设计。 解: 1)斜板TB1设计 除底层第一跑楼梯的斜板外,其余斜板均相同,而第一跑楼梯斜板的下端为混凝土基础,可按净跨计算。这里只对标准段斜板TB1进行设计。 对斜板TB1取1m宽作为其计算单元。 (1)确定斜板厚度t 斜板的水平投影净长为l1n=3300mm

斜板的斜向净长为113691cos n n l l mm α= == 斜板厚度为t 1=(1/25~1/30)l 1n =(1/25~1/30)×3300=110~120mm,取t 1=120mm 。(根据“混凝土结构构造手册(第四版)”384页) (2)荷载计算,楼梯斜板荷载计算见表2.3。 表2.3楼梯斜板荷载计算 水磨石面层的容重为0.65KN/m 2(GB50009-2012,附录A-15,84页);纸筋灰容重16KN/m 3(GB50009-2012,附录A-6,75页,实际工程中已被水泥砂浆代替)以上计算的荷载设计值是由可变荷载控制的组合,计算由永久荷载控制的组合 1.357.160.98 3.513.10/p KN m =?+?=,综合取p=13.50KN/m (3)计算简图 如前所述,斜板的计算简图可用一根假想的跨度为l 1n 的水平梁

高山滑雪初级教程

2005年12月第6期冰雪运动China Wi nter Sports No16Dec1,2005 高山滑雪初级教程 (中国滑雪协会审定) (接上期) 第四章高山滑雪的器材与装备 一、高山滑雪器材、装备的内容 高山滑雪的基本器材有:滑雪板、滑雪鞋、固定器、滑雪杖。 高山滑雪着装为:滑雪服、滑雪手套、滑雪帽(或头盔)、滑雪镜。 高山滑雪的器材装备种类与型号很复杂,五花八门,使人眼花缭乱。 滑雪者使用的器材及着装状况对其滑雪的情趣及学习、提高滑雪技术有重大的影响,不能轻视。 二、高山滑雪板 11高山滑雪板的结构 高山滑雪板组成的材质及制作工艺都很复杂。滑雪板由前部、中部(腰部)、后部组成,中部安装固定器的部分称为/重量台0。滑雪板两侧镶有硬钢边。高山滑雪板的外型是前部宽、中部窄、后部居中,侧面形成很大的弧线。近年出现的/卡宾0板(俗称/大头板0)的外型更是如此,这种外型设计就是为了便于转弯,特别是有利于小转弯。 21高山滑雪板的分类 高山滑雪板的种类很多,由于功能及种类的不同,高山板间的档次及价位差别很大。 (1)按竞技滑雪项目分有:回转板、大回转板、超级大回转板、滑降板; (2)按滑雪水平分有初学者板、中级板、高级板、竞赛板等; (3)按雪质分有适于滑硬质雪的板、适于滑粉状雪的板、适于特技的滑雪板等; (4)按年龄、性别分有男性雪板、女性雪板、儿童雪板等。 31选用滑雪板的注意事项 初学者最好选用弹性好、长度短、雪板头较大些、轻便的滑雪板。 如果经济条件允许,滑雪者应考虑选购一套自己专用的滑雪器材(包括滑雪板、固定器、滑雪鞋、滑雪杖)。选购器材时主要应考虑厂家与商家的诚信度、雪板的质量与性能、售后的维护服务等方面。 三、高山滑雪板的维护 11维护滑雪板的滑行面 维护滑雪板应在专用修板/板夹0上进行,其维护的程序: (1)先清理滑行面(底面)。 (2)如果滑行面有划痕,需要用专用补条燃化后补在划痕处。 (3)凉却后用钢刮板刮平。 (4)用锉将滑行面和钢边同时整修,将钢边毛刺也一起锉去,最后达到光平。磨修边刃、涂蜡等。在损伤较重或参加竞赛之前,最好请专业人员全面检修维护。 21修磨钢边角度 对钢边角度的要求: 雪板滑行面经维护达到光平后,要对钢边进行修磨。雪板的两侧钢边不应与滑行面在同一平面上,而应向外形成一个微小的坡度,雪硬或需要立刃大时,角度可小点(如87b~88b),如果雪软或一般滑行时角度

板式楼梯设计及实例

板式楼梯设计及实例 ——摘自2013版《毕业设计指导书》 3. 4 楼梯设计 钢筋混凝土楼梯按楼梯段结构形式可分为板式、梁式、剪刀式、螺旋式和有中柱的盘旋式等。选择楼梯的结构形式,应根据楼梯的使用要求、材料供应、施工条件等因素,本着适用、经济、适当照顾美观的原则确定。板式楼梯具有楼梯下表面平整、施工方便、外观轻巧等优点。当梯段板水平方向跨度小于3.3m ,活荷载不大时,宜采用板式楼梯。 3. 4. 1 现浇板式楼梯 现浇板式楼梯由梯段板、平台板和平台梁组成。可分为斜板式和折线形板式两种。斜板式楼梯跨度较小,经济、构造简单,应优先采用;当建筑上有要求,不便于设置支承平台梁的小柱时,也可以做成折线形板式楼梯,其跨度为斜梯段及平梯段之和。 一、 梯段板 斜板式楼梯的梯段板是一块支承在上、下平台梁上并带有踏步的斜板,如图3-4a 所示。梯段板的厚度一般取L h )301~251(=,L 为支承梁中心投影的水平距离,当荷载较大时,h 应选用较大值。作用于梯段板上的活荷载是沿水平方向分布的,因此斜板的恒荷载一般也换算 成水平方向上的均布荷载,计算简图如图3-4c 所示。考虑到平台梁、平台板对斜板的弹性约束作用,可使斜板跨中弯矩减小,因而斜板跨中最大弯矩和支座最大剪力可取: 2max )(10 1o l q g M += (3-6) θcos )(2 1max n l q g V += (3-7) 图3-4 斜板式梯段板及计算简图

式中: q g 、——梯段板沿水平方向上的恒荷载 和活荷载设计值; n l l 、0——梯段板的计算跨度及净 跨度的水平投影长度;θ ——梯段板的倾角。 斜梯板一般采用分离式配筋,截面计算高度应取 垂直于斜板的最小高度。一般用HPB300级钢筋,也 可选用HRB400钢筋。考虑到斜板与平台梁、板的整 体性,斜板两端支座的负钢筋用量可取跨中截面配筋 的1/2,负筋长度应伸入跨内不少于1/4板净跨度。在 垂直于受力钢筋方向按构造设置分布钢筋,每个踏步 下放置1φ8。 折线形板式楼梯由带有踏步的斜梯段和平梯段组 成,如图3-5所示。斜梯段和平梯段的板厚相等,可 取L h )30 1~251(=,L 为斜梯段和平梯段的总投影长度。受力计算也是将斜梯段上的荷载化成沿水平方向 分布的荷载,和平梯段一起组成水平方向的简支板,然后用静力学的方法,求出跨中最大弯矩及支座剪力。 折线形板式楼梯在上、下端弯折处的配筋相同但构造不同。在上端弯折处,为避免受拉钢筋产生向外的合力使混凝土保护层剥落,或者钢筋被拉出,应将纵向钢筋断开并分别予以锚固,锚固长度不少于La ,此时梯板的负筋长度应从支座算起不少于1/3总跨度。在下端弯折处,则受拉钢筋不断开而连续配置。 楼梯扶手计算:可在扶手下的梯板内另加2φ12钢筋以专门承受扶手荷载,在梯段板计算中不再考虑扶手重。但在计算平台梁时,扶手荷载则应考虑。 楼梯的混凝土强度等级宜与各层楼盖的强度等级相同,以方便施工。 梯板的跨高比一般较大,不必作斜截面受剪承载力验算,且梯板不超过不需作挠度验算的最大跨高比时,也不必作变形和裂缝验算。 二、 楼梯梁 楼梯梁可按简支的倒L 形梁计算。作用于梁上的荷载除梁自重和梯段板、平台板传来的均布荷载外,还有梯扶手传来的集中力。梁截面高度应不小于跨度的1/12。 位于层间的楼梯梁,除在两端有框架柱或剪力墙支承的情况外,也可以在下层楼盖梁用梁上柱或在上层楼盖梁用吊柱的方法支承。 图3-5 折线形板式楼梯

教你如何滑雪分解

教你如何滑雪分解

怎样滑雪 A 级初学者 1. 正确穿戴并熟悉雪具 在滑雪教练或工作人员帮助下选用合适自己的滑雪靴(自己平时的尺码即可)、滑雪板、滑雪杖(参见滑雪器材页面),在滑雪场的初级练习场先做热身活动。很多初学者穿上滑雪靴会觉得双脚被箍的很紧,宁愿脚在里面松快一些,到底怎样的滑雪靴合适呢? 正确的选择是:合适的靴子的应该是让你的胫骨、脚后跟、脚面被紧握而不感压迫,踝关节要能弯曲,脚趾能活动抓地,总之要让靴子和脚成为一个整体,因为滑雪过程中滑雪者主要通过滑雪板控制速度,没有合脚的靴子就无法有效做出各种动作。 在雪地上的站立姿势 切记不要为了舒服而让你的脚在靴子里晃悠,那样可能会扭伤脚。穿雪靴在雪地行走时步子适中,用后跟先着地。 在穿滑雪板之前,先把两支雪板放在平地(初学者不要在斜坡上穿鞋),在双手执杖支持下先后穿板:先将前脚掌置入滑雪板固定器,上滑雪板时,只需将后部的固定器抬起,将滑雪靴的前端插入前部固定器的凹槽内,用力向下压滑雪靴的后跟,听见“啪”的一声,固定器已将滑雪靴的前后端紧紧的卡在滑雪板上了。 雪杖的正确握法是:先将手穿过雪杖的佩带,然后将佩带握在手中,这样万一摔倒后,雪杖不会下意识地扔出去。 穿好板后,双手执杖插在身体两侧雪地上帮助平衡,同时两脚踩板前后移动,适应滑雪板。 2. 着板平地行走、在平地和斜坡上保持平衡、横向蹬坡、外八字蹬坡 平地行走技术包括前后方向行走、横行、原地行走转圈。 平地前后行走时注意保持双板平行,两支雪板的板头和板尾不能交叉,步幅要小。 横向行走是为上坡打基础,要领是步幅小,保持双板平行。 原地转圈360度时,每一步的角度不要大,以向左转圈为例,左板每走一步,右板跟上的一步要保持与左板平行,板头和板尾不能交叉,否则将会失去平衡以至于摔跤。 平地保持平衡比较容易,少有滑动可以顺其自然,不要紧张挣扎导致自己失去平衡。 在斜坡上保持平衡首先要明白“滚落线”的概念,“滚落线”是指一个圆球从斜坡上滚落的线路,要想在斜坡上保持平衡,必须使你的滑雪板与滚落线保持垂直,并且要让山下雪板的内刃和山上雪板的外刃嵌入山体,并形成夹角,身体的中心要放在山下板上,以抗拒身体重量的自然下滑。 可以在斜坡上保持平衡后就能尝试横向蹬坡,即由山下雪板的内刃和山上雪板的外刃做支撑,轮流交换重心横着向山上蹬行,双手执雪杖自然地在身体两侧点地帮助保持平衡,记住要领:上身要直立,膝盖微弯顶住靴子的前沿以支持身体的重量,双板要平行并与滚落线垂直(要时刻观察滚落线的走向——滚落线要靠你的脑袋去想象,雪道上并不会画出来的),身体的姿势——想象自己是一个球嵌在斜坡上——双膝和髋部往山上方向倾斜、腰部和肩部向山下倾斜,身体呈反弓形。

现浇板式楼梯设计实例

板式楼梯设计 一、板式楼梯 板式楼梯是指梯段板为板式结构的楼梯。板式楼梯由梯段板、平台板和平台梁组成,如图 2.43所示。板式楼梯荷载传递路线为:梯段板T平台梁T墙(柱)。板式楼梯的梯段板为带有踏步的斜板,两端支承 在平台梁上。平台板一端支承在平台梁上,另一端支承在楼梯间的墙(或梁)上,平台梁两端支承在楼梯间的墙(或梁、柱)上。板式楼梯梯段板底面平整,外形轻巧、美观,施工方便,但当梯段跨度较大时,斜板较厚,材料用量较多,所以一般用于梯段跨度不太大的情况(一般在3m以内)。 图2.43 板式楼梯的组成 1■梯段板 h= (1/25?1/30 )|。(|。为梯段板的计算跨度),常用厚度为100?120m m。梯段板是一块带有踏步的斜板, 可近似认为简支于上、下平台梁上,梯段板的计算跨 度可取其净跨,其计算简图如图 2.44所示。 由结构力学可知,斜置简支构件的跨中弯矩可按平置构件计算,跨长取斜构件的水平投影长度,故梯段斜板可简化为两端简支的水平板计算。由于板的两端与平台梁为整体连接,考虑梁对板的约束作用,板 (1 )梯段板内力计算梯段板的厚度一般取 ffunn 图2.44 梯段板的计算简图 mTmnTrrnrn |o= g+q

的跨中弯矩相对于简支构件有所减少,故跨中最大弯矩一般可按 作用在梯段板上的沿水平方向单位长度上的恒荷载、活荷载设计值; l o =ln ,l n 为梯段板净跨的水平投影长度。 为了满足建筑使用要求,有时采用折线形梯段板,折线形梯段板的梯段荷载和平台荷载有所差别,但 差别不大。为了简化计算,可近似取梯段荷载和平台荷载中的较大值来计算跨中弯矩,从而计算出梯段配 筋。折线形梯段板的荷载及计算简图见图 2.45。 图2.45 折线形梯段板的荷载 (2 )梯段板钢筋配置 梯段斜板中的受力钢筋按跨中最大弯矩计算求得,并沿跨度方向布置。为考 虑支座连接处实际存在的负弯矩, 防止混凝土开裂,在支座处板面应配置适量负筋, 一般不小于 ①8@200, 其伸出支座长度为l n /4 ( l n 为梯段板水平方向净跨度)。在垂直受力钢筋的方向应设置分布钢筋,分布钢筋 应位于受力筋的内侧,并要求每踏步内至少 1①&梯段板钢筋布置见图 2.46。 折线形梯段板曲折处形成内折角,若钢筋沿内折角连续配置,则此处受拉钢筋将产生较大的向外的合 力,可能使该处混凝土保护层剥落,钢筋被拉出而失去作用。因此,在折线形梯段的内折角处,受力钢筋 1 2 M max (g q )l o 计算,其中g 、q 为 10 l

高山滑雪固定器怎么用

高山滑雪固定器怎么用 导读:我根据大家的需要整理了一份关于《高山滑雪固定器怎么用》的内容,具体内容:固定器的主要功能是起到连结滑雪鞋与滑雪板及保护滑雪者人身安全。那么呢?今天我给大家分享一些高山滑雪固定器的相关知识,希望对大家有所帮助。一、强度的确定初学者的固定器... 固定器的主要功能是起到连结滑雪鞋与滑雪板及保护滑雪者人身安全。那么呢?今天我给大家分享一些高山滑雪固定器的相关知识,希望对大家有所帮助。 一、强度的确定 初学者的固定器强度在4~5公斤之间便可。 二、安装方法 一般向滑雪板上安装固定器应用模具定位、打孔、固定。滑雪板中部有一条中间线,模具上也会有一个标识,两者对平后,即可打螺丝孔,进行安装。如果没有模具,首先需要对前后位置及中心线位置定位,打孔时务必要掌握好,不要偏位。 目前市场新品雪板都带有一个轨槽,出厂前已安装在雪板上,只要将固定器滑动上去便可。 三、选择注意事项 (1)尽量选用调节功能操作方便的固定器。 (2)固定器间的档次及压力大小差别很大,而功能的差别不大,远不像

滑雪板与滑雪鞋那样。 四、结构 固定器由前、中、后三部分组成,前部与后部都有显示与调整其松紧强度的装置。前部是固定雪鞋前端,并能在横向外力过大时自动脱开;后部具有固定雪鞋后端,调整前后长度,锁住或松开雪鞋,在纵向外力过大时自动脱开等功能;中部的止滑器可防止雪板与滑雪鞋分离后滑向山谷,中部的垫板用于防止立刃时雪鞋侧面与雪面的磨擦。 下面给大家分享一些滑雪的准备常识: 1、要及时关注当地的气候情况和天气变化,以防天气突变。 2、初到雪场时应先滑雪场的大概情况,要仔细了解一下雪道的高度、坡度、长度、宽度及周边的情况,根据自己的滑雪水平来选择相应的滑道。熟悉地图一雪场设施的分布位置,出事获救情况,并严格遵守滑雪场的有关安全管理的规定。注意索道开放时间,在无人看守时切勿乘坐。 3、初练滑雪应注意循序渐进,量力而行。在训练期间要按教练和雪场工作人员的安排和指挥去做,在未达到一定水准时,可别擅自到技术要求的雪区去滑雪,以免发生意外。 4、在滑雪时,要注意与他人保持一定的间距,以免碰撞。人员较多时应调节好速度不要过快过猛。 5、滑雪是较为复杂的运动,滑雪前要一些简单的准备活动。 6、在区域较大的雪场滑雪时应早去早回,尤其在身体疲劳时,很容易迷路。 7、地况生疏,又无向导,气候突变要向中无人烟地方或原始森林中深

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图

钢筋混凝土板式楼梯设计 楼梯板及平台板配筋图 Revised by Liu Jing on January 12, 2021

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋,fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m 斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m

恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12 ξ=1-(1-2ɑs)0.5=0.1282 As= fcbh ξ/fy=9.6×1000×0.1282×80/210=468.85mm2 受力钢筋选用10@150(As=604 mm2) 分布钢筋选用6@300 2、平台板计算 (1)荷载计算(取1米板宽计算) 假定板厚80mm,平台梁TL-1截面尺寸200×300mm,TL-2截面尺寸为150×300mm。 楼梯板及平台板配筋图 恒载:平台板自重 0.08×1.0×25=2 kN/m 20mm厚抹面: 0.02×1.0×20=0.4kN/m

FLOW单板的技术特点图列(快穿固定器)

Reflex木芯 Flow最轻,最灵敏的木芯,带给人类已知的最高强度-重量比的木芯结构。在你所需要的区域侧重响应性,特定区域使用更多中低密度木芯,在增加强度的同时减轻重量。 皇家威士忌使用玻璃纤维的全新剪裁,好处就是消除了固定器脚跟和脚尖的区域的抖动。增加了边刃控制力并提供流畅平顺的滑行。 枪手威士忌一种反V字型设计,使用4条炭纤维实现疯狂的弹性,同时让板头、板尾不受约束,拥有轻快和灵活的滑行感觉。 双轴纤维(0/90度)大部份纤维在0度轴上,用于增加额外的弹性和使雪板拥有更自然的扭力弹性。 OPTIX 2000 快速并少维护。 EZDT(E-DT)边刃为EZ-Rock和另一个版本的EZ Flat-Rock设计,EZDT在固定器和板头之间是一条小弧度的边刃,在固定器区域是更加积极抓地的边刃。这样更加容易上手滑行,同时混合的大弧度刃也可以做出快速的换刃。 纯双向板头板尾的距离相等,使滑行在任何 方向滑行都有相同的感觉。 单向板头比板尾略长,固定器安装孔 后置,板尾跳跃会获得更多的弹性,更好的野雪漂浮。

3DT(3D-过渡)边刃平顺并拥有的宽泛的抓地能力,3D 过渡边刃的混合方式很与众不同,两脚之间弧度小的是为I-Rock,弧度超大的是为了采用Pop-Cam的雪板。小弧度板头和固定器区域较大的弧度提供一个无限的抓地性,具综合性的超平顺和轻快的滑行感觉。 摇椅传送带一条炭纤维带子水平的放置在木芯下面,在每款摇椅雪板上创造出一个轻微凸起的板底。从上铁杆儿到呲铁杆滑行都变得更平顺了。 摇滚威士忌位于脚跟和脚尖下面的4片玄武岩薄片直接将滑 手的能量传递到雪板上的关键控制区域。同时也使强度和全地形的边刃控制得到加倍,并且不会影响到滑行的平顺。 I-ROCK 摇椅凸起板底的摇椅拱形在铁杆上更自然的感觉,在 多边的情况下也能保持稳定。在固定器区域的外侧结合了反弓,I-ROCK提供了稳定和反弓的弹性,使之拥有了从高山到公园的性能。 EZ-ROCK 固定器之间超微小的凸起摇椅板底和固定器区域外侧反弓提供了独一无二的稳定。无论你将固定器安装在哪,压板都非常容易和稳定。 POP-CAM 三段式的反弓使之成为市场上最有 趣的反弓结构。脚下还是传统反弓,固定器之间是平面,这种特有的设计增大冰面的抓地性,在野雪也有更好的漂浮性呲杆儿更稳定。 4000烧结最快,超硬,雪蜡高吸收性和高耐久性。 四向纤维(0/30)有着最多的纤维部署,从板头到板尾每30度方向,这种矩阵在提供了大量的弹力和自由扭力同时将固定器的力量分散到了一个更大片

教你如何滑雪分解

怎样滑雪 A 级初学者 1. 正确穿戴并熟悉雪具 在滑雪教练或工作人员帮助下选用合适自己的滑雪靴(自己平时的尺码即可)、滑雪板、滑雪杖(参见滑雪器材页面),在滑雪场的初级练习场先做热身活动。很多初学者穿上滑雪靴会觉得双脚被箍的很紧,宁愿脚在里面松快一些,到底怎样的滑雪靴合适呢? 正确的选择是:合适的靴子的应该是让你的胫骨、脚后跟、脚面被紧握而不感压迫,踝关节要能弯曲,脚趾能活动抓地,总之要让靴子和脚成为一个整体,因为滑雪过程中滑雪者主要通过滑雪板控制速度,没有合脚的靴子就无法有效做出各种动作。 在雪地上的站立姿势 切记不要为了舒服而让你的脚在靴子里晃悠,那样可能会扭伤脚。穿雪靴在雪地行走时步子适中,用后跟先着地。 在穿滑雪板之前,先把两支雪板放在平地(初学者不要在斜坡上穿鞋),在双手执杖支持下先后穿板:先将前脚掌置入滑雪板固定器,上滑雪板时,只需将后部的固定器抬起,将滑雪靴的前端插入前部固定器的凹槽内,用力向下压滑雪靴的后跟,听见“啪”的一声,固定器已将滑雪靴的前后端紧紧的卡在滑雪板上了。 雪杖的正确握法是:先将手穿过雪杖的佩带,然后将佩带握在手中,这样万一摔倒后,雪杖不会下意识地扔出去。 穿好板后,双手执杖插在身体两侧雪地上帮助平衡,同时两脚踩板前后移动,适应滑雪板。 2. 着板平地行走、在平地和斜坡上保持平衡、横向蹬坡、外八字蹬坡 平地行走技术包括前后方向行走、横行、原地行走转圈。 平地前后行走时注意保持双板平行,两支雪板的板头和板尾不能交叉,步幅要小。 横向行走是为上坡打基础,要领是步幅小,保持双板平行。 原地转圈360度时,每一步的角度不要大,以向左转圈为例,左板每走一步,右板跟上的一步要保持与左板平行,板头和板尾不能交叉,否则将会失去平衡以至于摔跤。 平地保持平衡比较容易,少有滑动可以顺其自然,不要紧张挣扎导致自己失去平衡。 在斜坡上保持平衡首先要明白“滚落线”的概念,“滚落线”是指一个圆球从斜坡上滚落的线路,要想在斜坡上保持平衡,必须使你的滑雪板与滚落线保持垂直,并且要让山下雪板的内刃和山上雪板的外刃嵌入山体,并形成夹角,身体的中心要放在山下板上,以抗拒身体重量的自然下滑。 可以在斜坡上保持平衡后就能尝试横向蹬坡,即由山下雪板的内刃和山上雪板的外刃做支撑,轮流交换重心横着向山上蹬行,双手执雪杖自然地在身体两侧点地帮助保持平衡,记住要领:上身要直立,膝盖微弯顶住靴子的前沿以支持身体的重量,双板要平行并与滚落线垂直(要时刻观察滚落线的走向——滚落线要靠你的脑袋去想象,雪道上并不会画出来的),身体的姿势——想象自己是一个球嵌在斜坡上——双膝和髋部往山上方向倾斜、腰部和肩部向山下倾斜,身体呈反弓形。

板式楼梯配筋计算实例.

9 板式楼梯设计 9.1 楼梯建筑设计 (1)楼梯甲(净面积3350×7150)、楼梯乙(净面积3325×7150)、楼梯丙(净面积3350×7150)计算(梯段宽取1600mm ): 设h =150mm ,N=1503900 =26, 2h +b =600~620mm 且h +b ≈450mm ,取b =300mm 。 平台宽度≥900+300=1200,取1700mm 。 第一梯段:7150-1700-900=4550mm 4550/300=15.2,取15步。 平台实际长度=300×15=4500mm 首层平台高度=150×16=2400mm 平台梁下与室内地面净高差2400-400=2000mm , 满足平台下过人要求净高≥2000mm ,故无需降低平台梁下地面标高。 第二梯段:踏步数26-16=10,踏面数9。 水平长度=300×9=2700mm 。 二层以上每跑梯段踏步数相等26/2=13,水平面长度=300×12=3600mm 。 核算首层中间平台到二层平台底的净高(3.9+1.95)-2.4=3.45m > 2.2m ,满足要求。 (2)楼梯丁(净面积6950×7150)计算(中间梯段宽取3000mm ,两边梯段宽取1800 mm ): 设h =150mm ,N=1503900 =26, 2h +b =600~620mm 且h +b ≈450mm ,取b =300mm 。 平台宽度≥900+300=1200,取1900mm 。 第一梯段:7150-1900-600=4650mm 4650/300=15.5,取15步。

平台实际长度=300×15=4500mm 首层平台高度=150×16=2400mm 平台梁下与室内地面净高差2400-400=2000mm , 满足平台下过人要求净高≥2000mm ,故无需降低平台梁下地面标高。 第二梯段:踏步数26-16=10,踏面数9。 水平长度=300×9=2700mm 。 二层以上每跑梯段踏步数相等26/2=13,水平面长度=300×12=3600mm 。 核算首层中间平台到二层平台底的净高(3.9+1.95)-2.4=3.45m > 2.2m ,满足要求。 9.2 楼梯斜板设计 以下均以楼梯甲的设计为例。 考虑到第一跑楼梯梯段斜板两端与混凝土楼梯梁的固结作用,斜板跨度可按净跨计算,对斜板取1m 宽作为其计算单元。 (1)确定斜板厚度t ,斜板的水平投影净长l 1n =300×12=3600mm 斜板的斜向净长l′1n =mm l n 4027894 .03600 300150/3003600cos 2 21== += α 斜板厚度t 1 =n l 1 )30 1 ~251( '= (134~161)mm,取板厚t 1 =140mm (2)荷载计算,楼梯梯段斜板的荷载计算列于下表(取1m 宽的板带作为计算单元): 表9-1 楼梯梯段斜板的荷载计算表

相关文档